A Hahn-Type Characterization of Generalized Hermite Polynomials Through a Dunkl-Based Raising Operator
Abstract
1. Introduction and Motivation
2. Preliminaries
- (i)
- is nonzero, and , for all .
- (ii)
- There exist complex coefficients with such that .
- (i)
- is orthogonal relative to .
- (ii)
- , for all .
- (iii)
- satisfies the TTRR:
- 1.
- Φ is monic (leading coefficient 1).
- 2.
- Ψ has degree at least 1 ().
- 3.
- The distributional differential equationholds in the dual space .
- 1.
- When u has even class, Φ is even and Ψ is odd.
- 2.
- When u has odd class, Φ is odd and Ψ is even.
3. Algebraic and Differential Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hahn, W. Über Orthogonalpolynome, die q-Differenzengleichungen genügen. Math. Nach. 1949, 2, 4–34. [Google Scholar] [CrossRef]
- Aloui, B.; Souissi, J. Characterization of q-Dunkl-classical symmetric orthogonal q-polynomials. Ramanujan J. 2022, 57, 1355–1365. [Google Scholar] [CrossRef]
- Aloui, B.; Souissi, J. Hahn’s problem with respect to some perturbations of the raising operator X−c. Ural Math. J. 2020, 6, 15–24. [Google Scholar] [CrossRef]
- Cheikh, Y.B.; Gaied, M. Characterization of the Dunkl-classical symmetric orthogonal polynomials. Appl. Math. Comput. 2007, 187, 105–114. [Google Scholar] [CrossRef]
- Khériji, L.; Maroni, P. The Hq-classical orthogonal polynomials. Acta Appl. Math. 2002, 71, 49–115. [Google Scholar] [CrossRef]
- Koornwinder, T.H. Lowering and raising operators for some special orthogonal polynomials. In Jack, Hall-Littlewood and Macdonald Polynomials; Contemporary Mathematics; Amer Mathematical Society: Providence, RI, USA, 2006; Volume 417. [Google Scholar]
- Ismail, M.E.H. Classical and Quantum Orthogonal Polynomials in One Variable; Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 2005; Volume 98. [Google Scholar] [CrossRef]
- Castillo, K.; Mbouna, D. Proof of two conjectures on Askey-Wilson polynomials. Proc. Am. Math. Soc. 2023, 151, 1655–1661. [Google Scholar] [CrossRef]
- Szegö, G. Orthogonal Polynomials, 4th ed.; American Mathematical Society Colloquium Publications; American Mathematical Society: Providence, RI, USA, 1975; Volume 23. [Google Scholar]
- Chaggara, H. Operational rules and a generalized Hermite polynomials. J. Math. Anal. Appl. 2007, 332, 11–21. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Cheikh, Y.B. Orthogonality of some polynomial sets via quasi-monomiality. Appl. Math. Comput. 2003, 141, 415–425. [Google Scholar] [CrossRef]
- Ben Salah, I.; Ghressi, A.; Khériji, L. A characterization of symmetric Tμ-classical monic orthogonal polynomials by a structure relation. Integral Transform. Spec. Funct. 2014, 25, 423–432. [Google Scholar] [CrossRef]
- Alaya, J.; Maroni, P. Symmetric Laguerre–Hahn forms of class s=1. Integral Transform. Spec. Funct. 1996, 4, 301–320. [Google Scholar] [CrossRef]
- Belmehdi, S. On semi-classical linear functionals of class s=1. Classification and integral representations. Indag. Math. 1992, 3, 253–275. [Google Scholar] [CrossRef]
- Ghressi, A.; Khériji, L. Some new results about a symmetric D-semiclassical linear form of class one. Taiwan. J. Math. 2007, 11, 371–382. [Google Scholar] [CrossRef]
- Ghressi, A.; Khériji, L. A new characterization of the generalized Hermite linear form. Bull. Belg. Math. Soc. Simon Stevin 2008, 15, 561–567. [Google Scholar] [CrossRef]
- Maroni, P. Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classique. In Orthogonal Polynomials and Their Applications (Erice, 1990); Brezinski, C., Gori, L., Ronveaux, A., Eds.; IMACS Annals on Computing and Applied Mathematics; J.C. Baltzer AG: Basel, Switzerland, 1991; Volume 9, pp. 95–130. [Google Scholar]
- Maroni, P. Fonctions Eulériennes, Polynômes Orthogonaux Classiques. In Techniques de l’Ingénieur, Traité Généralités (Sciences Fondamentales); Techniques de l’Ingénieur: Paris, France, 1994; Volume 154, pp. 1–30. [Google Scholar]
- Maroni, P. Variations around classical orthogonal polynomials. Connected problems. J. Comput. Appl. Math. 1993, 48, 133–155. [Google Scholar] [CrossRef]
- Chihara, T.S. An Introduction to Orthogonal Polynomials; Mathematics and its Applications; Gordon and Breach Science Publishers: New York, NY, USA; London, UK; Paris, France, 1978; Volume 13. [Google Scholar]
- Maroni, P. Sur la suite de polynômes orthogonaux associées à la forme u=δc + λ(t − c)−1L. Period. Math. Hungar. 1990, 21, 223–248. [Google Scholar] [CrossRef]
- Dunkl, C.F. Integral kernels with reflection group invariance. Canad. J. Math. 1991, 43, 1213–1227. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alanezy, K.A.; Souissi, J. A Hahn-Type Characterization of Generalized Hermite Polynomials Through a Dunkl-Based Raising Operator. Mathematics 2025, 13, 3371. https://doi.org/10.3390/math13213371
Alanezy KA, Souissi J. A Hahn-Type Characterization of Generalized Hermite Polynomials Through a Dunkl-Based Raising Operator. Mathematics. 2025; 13(21):3371. https://doi.org/10.3390/math13213371
Chicago/Turabian StyleAlanezy, Khalid Ali, and Jihad Souissi. 2025. "A Hahn-Type Characterization of Generalized Hermite Polynomials Through a Dunkl-Based Raising Operator" Mathematics 13, no. 21: 3371. https://doi.org/10.3390/math13213371
APA StyleAlanezy, K. A., & Souissi, J. (2025). A Hahn-Type Characterization of Generalized Hermite Polynomials Through a Dunkl-Based Raising Operator. Mathematics, 13(21), 3371. https://doi.org/10.3390/math13213371

