Bi-Objective Portfolio Optimization Under ESG Volatility via a MOPSO-Deep Learning Algorithm
Abstract
1. Introduction
- (i)
- We introduce as the objective function an augmented portfolio volatility, where the standard financial volatility is expanded with ESG volatility signals via a sustainable-risk-aversion parameter;
- (ii)
- We analyze the interplay between this new augmented volatility and the portfolio diversification à la Carmichael–Koumou–Moran;
- (iii)
- We develop an improved MOPSO solver with a suitable project-and-repair mechanism to satisfy the constraints, which is also enhanced by a Long Short-Term Memory (LSTM) neural network architecture to better estimate the diversification measure.
2. Literature Review
2.1. MOPSO Solver
2.2. Neural Network Architecture
3. Mathematical Problem
3.1. Motivation of the Problem
3.2. Scenario Generation Technique
4. Overview of the Solver
4.1. MOPSO Description
Algorithm 1: Multi-Objective Particle Swarm Optimization (MOPSO) |
|
Project-and-Repair Mechanism
4.2. LSTM Design
A Multivariate Quantile-LSTM for CVaR Estimate
5. Experimental Results
5.1. Efficient Frontiers
5.2. Profitability Analysis
5.3. Ex-Post Performance Measures
5.4. Ex-Post Performance Analysis
6. Conclusions and Future Works
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Normality Check and Goodness-of-Fit Tests
Asset | Anderson– Darling | Jarque– Bera | Lilliefors | Asset | Anderson– Darling | Jarque– Bera | Lilliefors |
---|---|---|---|---|---|---|---|
Asset 1 | 0.0037 | 0.0010 | 0.0436 | Asset 15 | 0.3918 | 0.0813 | 0.4802 |
Asset 2 | 0.0751 | 0.1448 | 0.0217 | Asset 16 | 0.0706 | 0.0032 | 0.1204 |
Asset 3 | 0.0029 | 0.0022 | 0.0455 | Asset 17 | 0.0083 | 0.0020 | 0.0473 |
Asset 4 | 0.1109 | 0.0188 | 0.1035 | Asset 18 | 0.0799 | 0.0130 | 0.0274 |
Asset 5 | 0.1839 | 0.0027 | 0.2755 | Asset 19 | 0.0005 | 0.0010 | 0.0010 |
Asset 6 | 0.0005 | 0.0010 | 0.0010 | Asset 20 | 0.0426 | 0.0208 | 0.0742 |
Asset 7 | 0.1134 | 0.0517 | 0.2490 | Asset 21 | 0.0005 | 0.0010 | 0.0010 |
Asset 8 | 0.0926 | 0.0228 | 0.5000 | Asset 22 | 0.1599 | 0.0264 | 0.4203 |
Asset 9 | 0.0205 | 0.0089 | 0.1658 | Asset 23 | 0.0007 | 0.0010 | 0.0010 |
Asset 10 | 0.0104 | 0.0010 | 0.1288 | Asset 24 | 0.0005 | 0.0010 | 0.0113 |
Asset 11 | 0.7015 | 0.5000 | 0.5000 | Asset 25 | 0.0005 | 0.0010 | 0.0224 |
Asset 12 | 0.1367 | 0.0592 | 0.1356 | Asset 26 | 0.0005 | 0.0110 | 0.0010 |
Asset 13 | 0.0019 | 0.0064 | 0.0641 | Asset 27 | 0.0104 | 0.0053 | 0.0497 |
Asset 14 | 0.2944 | 0.0010 | 0.5000 | Asset 28 | 0.5694 | 0.5000 | 0.5000 |
Asset | Anderson– Darling | Jarque– Bera | Lilliefors | Asset | Anderson– Darling | Jarque– Bera | Lilliefors |
---|---|---|---|---|---|---|---|
Asset 1 | 0.0153 | 0.0405 | 0.0851 | Asset 24 | 0.0005 | 0.0010 | 0.0010 |
Asset 2 | 0.0970 | 0.0134 | 0.0658 | Asset 25 | 0.0005 | 0.0010 | 0.0010 |
Asset 3 | 0.0005 | 0.0010 | 0.0228 | Asset 26 | 0.2633 | 0.2759 | 0.3484 |
Asset 4 | 0.0794 | 0.0081 | 0.1816 | Asset 27 | 0.5335 | 0.0189 | 0.1399 |
Asset 5 | 0.2288 | 0.3999 | 0.1541 | Asset 28 | 0.1573 | 0.0127 | 0.3688 |
Asset 6 | 0.2617 | 0.0110 | 0.5000 | Asset 29 | 0.0139 | 0.0010 | 0.0404 |
Asset 7 | 0.0005 | 0.0010 | 0.0029 | Asset 30 | 0.3185 | 0.1109 | 0.4791 |
Asset 8 | 0.0005 | 0.0010 | 0.0188 | Asset 31 | 0.0128 | 0.0075 | 0.0072 |
Asset 9 | 0.0048 | 0.0010 | 0.1069 | Asset 32 | 0.0171 | 0.0023 | 0.1261 |
Asset 10 | 0.2024 | 0.1155 | 0.1550 | Asset 33 | 0.0763 | 0.0016 | 0.5000 |
Asset 11 | 0.0007 | 0.0069 | 0.0042 | Asset 34 | 0.0005 | 0.0010 | 0.0093 |
Asset 12 | 0.0502 | 0.0113 | 0.0337 | Asset 35 | 0.0268 | 0.0060 | 0.3609 |
Asset 13 | 0.0059 | 0.0010 | 0.0226 | Asset 36 | 0.0022 | 0.0020 | 0.0234 |
Asset 14 | 0.1507 | 0.0840 | 0.3124 | Asset 37 | 0.0151 | 0.0073 | 0.0433 |
Asset 15 | 0.0573 | 0.0098 | 0.0347 | Asset 38 | 0.0008 | 0.0018 | 0.0096 |
Asset 16 | 0.0005 | 0.0010 | 0.0010 | Asset 39 | 0.0005 | 0.0010 | 0.0010 |
Asset 17 | 0.0018 | 0.0010 | 0.0114 | Asset 40 | 0.1278 | 0.0032 | 0.1551 |
Asset 18 | 0.0005 | 0.0011 | 0.0010 | Asset 41 | 0.0005 | 0.0010 | 0.0010 |
Asset 19 | 0.0080 | 0.0010 | 0.1514 | Asset 42 | 0.0005 | 0.0010 | 0.0040 |
Asset 20 | 0.0005 | 0.0010 | 0.0010 | Asset 43 | 0.0016 | 0.0010 | 0.0011 |
Asset 21 | 0.0009 | 0.0090 | 0.0035 | Asset 44 | 0.0105 | 0.0093 | 0.0025 |
Asset 22 | 0.1659 | 0.0433 | 0.0086 | Asset 45 | 0.0005 | 0.0010 | 0.0010 |
Asset 23 | 0.0154 | 0.0010 | 0.0608 |
Asset | Anderson– Darling | Jarque– Bera | Lilliefors | Asset | Anderson– Darling | Jarque– Bera | Lilliefors |
---|---|---|---|---|---|---|---|
Asset 1 | 0.0005 | 0.0010 | 0.0077 | Asset 41 | 0.8491 | 0.1307 | 0.5000 |
Asset 2 | 0.1395 | 0.3362 | 0.5000 | Asset 42 | 0.0444 | 0.0272 | 0.1430 |
Asset 3 | 0.7401 | 0.2402 | 0.5000 | Asset 43 | 0.0005 | 0.0010 | 0.0059 |
Asset 4 | 0.2691 | 0.1220 | 0.5000 | Asset 44 | 0.0580 | 0.0116 | 0.1319 |
Asset 5 | 0.4124 | 0.2982 | 0.2738 | Asset 45 | 0.0567 | 0.0081 | 0.1842 |
Asset 6 | 0.0019 | 0.0010 | 0.0598 | Asset 46 | 0.0005 | 0.0010 | 0.0010 |
Asset 7 | 0.8464 | 0.5000 | 0.5000 | Asset 47 | 0.0200 | 0.0010 | 0.1629 |
Asset 8 | 0.0009 | 0.0010 | 0.0047 | Asset 48 | 0.0005 | 0.0010 | 0.0681 |
Asset 9 | 0.0090 | 0.0114 | 0.0450 | Asset 49 | 0.0698 | 0.0155 | 0.0790 |
Asset 10 | 0.0005 | 0.0010 | 0.0607 | Asset 50 | 0.0005 | 0.0010 | 0.0010 |
Asset 11 | 0.1288 | 0.0106 | 0.2018 | Asset 51 | 0.0011 | 0.0010 | 0.0352 |
Asset 12 | 0.3873 | 0.5000 | 0.3881 | Asset 52 | 0.0005 | 0.0010 | 0.0010 |
Asset 13 | 0.0986 | 0.0844 | 0.0321 | Asset 53 | 0.2725 | 0.1798 | 0.2450 |
Asset 14 | 0.0403 | 0.0010 | 0.1467 | Asset 54 | 0.0125 | 0.0111 | 0.0416 |
Asset 15 | 0.4704 | 0.1494 | 0.5000 | Asset 55 | 0.1014 | 0.0104 | 0.2645 |
Asset 16 | 0.0015 | 0.0010 | 0.0108 | Asset 56 | 0.1974 | 0.0067 | 0.3843 |
Asset 17 | 0.0005 | 0.0010 | 0.0010 | Asset 57 | 0.9519 | 0.5000 | 0.5000 |
Asset 18 | 0.0024 | 0.0029 | 0.0079 | Asset 58 | 0.6118 | 0.2989 | 0.5000 |
Asset 19 | 0.0241 | 0.0484 | 0.0711 | Asset 59 | 0.0005 | 0.0010 | 0.0010 |
Asset 20 | 0.0807 | 0.0123 | 0.0856 | Asset 60 | 0.3305 | 0.4605 | 0.3275 |
Asset 21 | 0.0005 | 0.0010 | 0.0010 | Asset 61 | 0.0005 | 0.0010 | 0.0010 |
Asset 22 | 0.0005 | 0.0010 | 0.0010 | Asset 62 | 0.0016 | 0.0010 | 0.0786 |
Asset 23 | 0.0314 | 0.0232 | 0.0329 | Asset 63 | 0.0005 | 0.0010 | 0.0010 |
Asset 24 | 0.0005 | 0.0010 | 0.0035 | Asset 64 | 0.0005 | 0.0010 | 0.0010 |
Asset 25 | 0.0274 | 0.0010 | 0.0450 | Asset 65 | 0.0021 | 0.0044 | 0.0855 |
Asset 26 | 0.0005 | 0.0010 | 0.0010 | Asset 66 | 0.2577 | 0.5000 | 0.1634 |
Asset 27 | 0.4040 | 0.0897 | 0.5000 | Asset 67 | 0.0175 | 0.0039 | 0.0455 |
Asset 28 | 0.0005 | 0.0010 | 0.0010 | Asset 68 | 0.0005 | 0.0010 | 0.0010 |
Asset 29 | 0.5751 | 0.1300 | 0.3636 | Asset 69 | 0.0284 | 0.0287 | 0.0022 |
Asset 30 | 0.0383 | 0.0012 | 0.1135 | Asset 70 | 0.0249 | 0.0409 | 0.0542 |
Asset 31 | 0.0005 | 0.0010 | 0.0010 | Asset 71 | 0.0005 | 0.0010 | 0.0010 |
Asset 32 | 0.0005 | 0.0010 | 0.0010 | Asset 72 | 0.0636 | 0.3041 | 0.0642 |
Asset 33 | 0.0621 | 0.0018 | 0.3543 | Asset 73 | 0.0135 | 0.0081 | 0.2031 |
Asset 34 | 0.0945 | 0.0862 | 0.1916 | Asset 74 | 0.0005 | 0.0010 | 0.0010 |
Asset 35 | 0.0005 | 0.0010 | 0.0010 | Asset 75 | 0.0216 | 0.0010 | 0.1127 |
Asset 36 | 0.0005 | 0.0010 | 0.0010 | Asset 76 | 0.0005 | 0.0010 | 0.0137 |
Asset 37 | 0.4875 | 0.0596 | 0.2852 | Asset 77 | 0.0016 | 0.0010 | 0.0159 |
Asset 38 | 0.6383 | 0.3906 | 0.5000 | Asset 78 | 0.0254 | 0.0010 | 0.3607 |
Asset 39 | 0.0011 | 0.0013 | 0.0175 | Asset 79 | 0.0157 | 0.0043 | 0.0691 |
Asset 40 | 0.0550 | 0.0187 | 0.1491 | Asset 80 | 0.0241 | 0.0572 | 0.0395 |
Asset | Pinball Loss | Relative Loss | Hit Rate | Asset | Pinball Loss | Relative Loss | Hit Rate |
---|---|---|---|---|---|---|---|
Asset 1 | 0.0027 | 0.0013 | 0.1000 | Asset 15 | 0.0019 | 0.0005 | 0.0333 |
Asset 2 | 0.0024 | 0.0010 | 0.0833 | Asset 16 | 0.0026 | 0.0012 | 0.1333 |
Asset 3 | 0.0019 | 0.0004 | 0.0667 | Asset 17 | 0.0015 | 0.0002 | 0.0500 |
Asset 4 | 0.0016 | 0.0003 | 0.0500 | Asset 18 | 0.0019 | 0.0006 | 0.0500 |
Asset 5 | 0.0013 | 0.0000 | 0.0167 | Asset 19 | 0.0018 | 0.0004 | 0.0500 |
Asset 6 | 0.0018 | 0.0004 | 0.0500 | Asset 20 | 0.0015 | 0.0002 | 0.0167 |
Asset 7 | 0.0018 | 0.0006 | 0.0333 | Asset 21 | 0.0026 | 0.0012 | 0.0833 |
Asset 8 | 0.0020 | 0.0007 | 0.0833 | Asset 22 | 0.0019 | 0.0003 | 0.0333 |
Asset 9 | 0.0026 | 0.0010 | 0.0833 | Asset 23 | 0.0026 | 0.0014 | 0.1000 |
Asset 10 | 0.0017 | 0.0003 | 0.0167 | Asset 24 | 0.0034 | 0.0019 | 0.1833 |
Asset 11 | 0.0013 | 0.0000 | 0.0000 | Asset 25 | 0.0031 | 0.0016 | 0.0667 |
Asset 12 | 0.0017 | 0.0004 | 0.0500 | Asset 26 | 0.0017 | 0.0004 | 0.0333 |
Asset 13 | 0.0039 | 0.0026 | 0.1167 | Asset 27 | 0.0021 | 0.0006 | 0.1000 |
Asset 14 | 0.0042 | 0.0031 | 0.1667 | Asset 28 | 0.0039 | 0.0025 | 0.1667 |
Asset | Pinball Loss | Relative Loss | Hit Rate | Asset | Pinball Loss | Relative Loss | Hit Rate |
---|---|---|---|---|---|---|---|
Asset 1 | 0.0020 | 0.0001 | 0.0333 | Asset 24 | 0.0020 | 0.0000 | 0.0167 |
Asset 2 | 0.0022 | 0.0003 | 0.0333 | Asset 25 | 0.0031 | 0.0009 | 0.0500 |
Asset 3 | 0.0018 | 0.0000 | 0.0167 | Asset 26 | 0.0022 | 0.0003 | 0.0667 |
Asset 4 | 0.0018 | 0.0001 | 0.0167 | Asset 27 | 0.0018 | 0.0000 | 0.0000 |
Asset 5 | 0.0023 | 0.0004 | 0.0667 | Asset 28 | 0.0022 | 0.0005 | 0.0333 |
Asset 6 | 0.0019 | 0.0001 | 0.0167 | Asset 29 | 0.0017 | 0.0000 | 0.0167 |
Asset 7 | 0.0022 | 0.0002 | 0.0500 | Asset 30 | 0.0017 | 0.0000 | 0.0000 |
Asset 8 | 0.0021 | 0.0003 | 0.0333 | Asset 31 | 0.0021 | 0.0003 | 0.0167 |
Asset 9 | 0.0028 | 0.0009 | 0.0833 | Asset 32 | 0.0020 | 0.0001 | 0.0333 |
Asset 10 | 0.0023 | 0.0005 | 0.0333 | Asset 33 | 0.0028 | 0.0009 | 0.0333 |
Asset 11 | 0.0019 | 0.0001 | 0.0333 | Asset 34 | 0.0018 | 0.0000 | 0.0000 |
Asset 12 | 0.0018 | 0.0000 | 0.0000 | Asset 35 | 0.0026 | 0.0007 | 0.0500 |
Asset 13 | 0.0020 | 0.0002 | 0.0333 | Asset 36 | 0.0019 | 0.0001 | 0.0333 |
Asset 14 | 0.0017 | 0.0000 | 0.0167 | Asset 37 | 0.0023 | 0.0004 | 0.0167 |
Asset 15 | 0.0018 | 0.0000 | 0.0000 | Asset 38 | 0.0020 | 0.0003 | 0.0167 |
Asset 16 | 0.0021 | 0.0002 | 0.0333 | Asset 39 | 0.0022 | 0.0005 | 0.0333 |
Asset 17 | 0.0028 | 0.0008 | 0.0833 | Asset 40 | 0.0018 | 0.0000 | 0.0167 |
Asset 18 | 0.0024 | 0.0005 | 0.0333 | Asset 41 | 0.0028 | 0.0010 | 0.0333 |
Asset 19 | 0.0021 | 0.0001 | 0.0167 | Asset 42 | 0.0049 | 0.0034 | 0.0333 |
Asset 20 | 0.0030 | 0.0012 | 0.0833 | Asset 43 | 0.0023 | 0.0005 | 0.0333 |
Asset 21 | 0.0018 | 0.0000 | 0.0167 | Asset 44 | 0.0023 | 0.0004 | 0.0500 |
Asset 22 | 0.0019 | 0.0000 | 0.0333 | Asset 45 | 0.0020 | 0.0001 | 0.0167 |
Asset 23 | 0.0020 | 0.0003 | 0.0500 |
Asset | Pinball Loss | Relative Loss | Hit Rate | Asset | Pinball Loss | Relative Loss | Hit Rate |
---|---|---|---|---|---|---|---|
Asset 1 | 0.0018 | 0.0007 | 0.1000 | Asset 41 | 0.0020 | 0.0010 | 0.1167 |
Asset 2 | 0.0030 | 0.0021 | 0.1500 | Asset 42 | 0.0039 | 0.0027 | 0.2000 |
Asset 3 | 0.0019 | 0.0010 | 0.1333 | Asset 43 | 0.0021 | 0.0009 | 0.1000 |
Asset 4 | 0.0013 | 0.0003 | 0.0500 | Asset 44 | 0.0025 | 0.0015 | 0.1667 |
Asset 5 | 0.0031 | 0.0019 | 0.1333 | Asset 45 | 0.0017 | 0.0007 | 0.0333 |
Asset 6 | 0.0042 | 0.0031 | 0.2333 | Asset 46 | 0.0041 | 0.0033 | 0.2000 |
Asset 7 | 0.0016 | 0.0007 | 0.1333 | Asset 47 | 0.0044 | 0.0031 | 0.2167 |
Asset 8 | 0.0018 | 0.0007 | 0.1167 | Asset 48 | 0.0024 | 0.0014 | 0.1000 |
Asset 9 | 0.0021 | 0.0011 | 0.1333 | Asset 49 | 0.0029 | 0.0019 | 0.1500 |
Asset 10 | 0.0028 | 0.0018 | 0.1500 | Asset 50 | 0.0024 | 0.0012 | 0.1167 |
Asset 11 | 0.0025 | 0.0017 | 0.1667 | Asset 51 | 0.0041 | 0.0029 | 0.2167 |
Asset 12 | 0.0026 | 0.0015 | 0.1167 | Asset 52 | 0.0027 | 0.0018 | 0.1333 |
Asset 13 | 0.0015 | 0.0005 | 0.1000 | Asset 53 | 0.0014 | 0.0003 | 0.0833 |
Asset 14 | 0.0025 | 0.0013 | 0.1167 | Asset 54 | 0.0019 | 0.0009 | 0.1667 |
Asset 15 | 0.0020 | 0.0009 | 0.1167 | Asset 55 | 0.0019 | 0.0008 | 0.1333 |
Asset 16 | 0.0032 | 0.0021 | 0.1500 | Asset 56 | 0.0030 | 0.0020 | 0.1833 |
Asset 17 | 0.0039 | 0.0027 | 0.2000 | Asset 57 | 0.0022 | 0.0012 | 0.1167 |
Asset 18 | 0.0016 | 0.0007 | 0.0833 | Asset 58 | 0.0024 | 0.0015 | 0.1500 |
Asset 19 | 0.0029 | 0.0020 | 0.1833 | Asset 59 | 0.0031 | 0.0020 | 0.2000 |
Asset 20 | 0.0029 | 0.0018 | 0.1500 | Asset 60 | 0.0025 | 0.0016 | 0.1167 |
Asset 21 | 0.0051 | 0.0039 | 0.2333 | Asset 61 | 0.0035 | 0.0023 | 0.2000 |
Asset 22 | 0.0044 | 0.0031 | 0.2000 | Asset 62 | 0.0033 | 0.0024 | 0.1333 |
Asset 23 | 0.0017 | 0.0007 | 0.1000 | Asset 63 | 0.0045 | 0.0032 | 0.2500 |
Asset 24 | 0.0016 | 0.0005 | 0.1000 | Asset 64 | 0.0048 | 0.0037 | 0.1500 |
Asset 25 | 0.0037 | 0.0026 | 0.1667 | Asset 65 | 0.0028 | 0.0018 | 0.1667 |
Asset 26 | 0.0015 | 0.0004 | 0.0167 | Asset 66 | 0.0041 | 0.0033 | 0.1500 |
Asset 27 | 0.0030 | 0.0020 | 0.2000 | Asset 67 | 0.0031 | 0.0020 | 0.1833 |
Asset 28 | 0.0023 | 0.0014 | 0.0667 | Asset 68 | 0.0039 | 0.0026 | 0.2000 |
Asset 29 | 0.0020 | 0.0009 | 0.1167 | Asset 69 | 0.0018 | 0.0008 | 0.1000 |
Asset 30 | 0.0023 | 0.0010 | 0.0833 | Asset 70 | 0.0045 | 0.0033 | 0.2333 |
Asset 31 | 0.0027 | 0.0017 | 0.2000 | Asset 71 | 0.0034 | 0.0022 | 0.1667 |
Asset 32 | 0.0033 | 0.0021 | 0.1667 | Asset 72 | 0.0029 | 0.0020 | 0.1167 |
Asset 33 | 0.0027 | 0.0016 | 0.1500 | Asset 73 | 0.0044 | 0.0034 | 0.1667 |
Asset 34 | 0.0018 | 0.0008 | 0.1333 | Asset 74 | 0.0063 | 0.0049 | 0.2333 |
Asset 35 | 0.0029 | 0.0018 | 0.1667 | Asset 75 | 0.0018 | 0.0007 | 0.0667 |
Asset 36 | 0.0153 | 0.0138 | 0.3333 | Asset 76 | 0.0016 | 0.0007 | 0.0833 |
Asset 37 | 0.0024 | 0.0014 | 0.1167 | Asset 77 | 0.0023 | 0.0011 | 0.1333 |
Asset 38 | 0.0021 | 0.0010 | 0.2167 | Asset 78 | 0.0027 | 0.0016 | 0.1333 |
Asset 39 | 0.0030 | 0.0019 | 0.1833 | Asset 79 | 0.0028 | 0.0019 | 0.1500 |
Asset 40 | 0.0028 | 0.0018 | 0.1333 | Asset 80 | 0.0039 | 0.0026 | 0.2167 |
Appendix B. Pareto Set Metrics and Optimal Weights
Metric | Minimum | Maximum | Mean |
---|---|---|---|
Dow Jones Industrial | |||
cardinality | 136 | 171 | 153 |
value | 0.01732 | 0.02255 | 0.01908 |
value | 0.22318 | 0.33125 | 0.30367 |
spacing | 3 | 0.00206 | 7 |
spread | 0.80187 | 1.01128 | 0.97610 |
Euro Stoxx 50 | |||
cardinality | 149 | 200 | 185 |
value | 0.02163 | 0.03709 | 0.02564 |
value | 0.22804 | 0.31879 | 0.29308 |
spacing | 2 | 5 | 4 |
spread | 0.74752 | 0.97209 | 0.94567 |
FTSE 100 | |||
cardinality | 88 | 124 | 105 |
value | 0.01814 | 0.03108 | 0.02075 |
value | 0.33800 | 0.39983 | 0.38327 |
spacing | 2 | 0.00163 | 5 |
spread | 0.97643 | 1.01608 | 0.98890 |
Asset | Asset | ||||||
---|---|---|---|---|---|---|---|
Asset 1 | 0.0072 | 0.0225 | 0.0212 | Asset 15 | 0.0249 | 0.0733 | 0.0230 |
Asset 2 | 0.0052 | 0.0017 | 0 | Asset 16 | 0.0695 | 0.0155 | 0.0094 |
Asset 3 | 0 | 0 | 0.0009 | Asset 17 | 0.0475 | 0.0570 | 0.0296 |
Asset 4 | 0.0072 | 0 | 0.0436 | Asset 18 | 0.0437 | 0.0985 | 0.1115 |
Asset 5 | 0.1485 | 0.1405 | 0.0688 | Asset 19 | 0.0011 | 0.0001 | 0.0013 |
Asset 6 | 0 | 0.0085 | 0.0291 | Asset 20 | 0 | 0 | 0.0003 |
Asset 7 | 0.0250 | 0.0807 | 0.0905 | Asset 21 | 0.0002 | 0.0020 | 0.0632 |
Asset 8 | 0 | 0 | 0.0010 | Asset 22 | 0.0131 | 0.0043 | 0 |
Asset 9 | 0.0163 | 0.0511 | 0.0755 | Asset 23 | 0.0449 | 0.0308 | 0.0235 |
Asset 10 | 0.1073 | 0.0978 | 0.3238 | Asset 24 | 0.0285 | 0.0281 | 0 |
Asset 11 | 0.0370 | 0.0747 | 0.0633 | Asset 25 | 0.1407 | 0.0970 | 0 |
Asset 12 | 0.0004 | 0.0008 | 0.0006 | Asset 26 | 0.0082 | 0 | 0 |
Asset 13 | 0.1674 | 0.0342 | 0 | Asset 27 | 0.0009 | 0.0038 | 0.0178 |
Asset 14 | 0.0465 | 0.0487 | 0.0001 | Asset 28 | 0.0086 | 0.0285 | 0.0020 |
References
- Hagin, R.L. Investment Management: Portfolio Diversification, Risk, and Timing–Fact and Fiction; John Wiley & Sons: Hoboken, NJ, USA, 2004; Volume 235. [Google Scholar]
- Markowitz, H. Modern portfolio theory. J. Financ. 1952, 7, 77–91. [Google Scholar]
- Koumou, G.B. Diversification and portfolio theory: A review. Financ. Mark. Portf. Manag. 2020, 34, 267–312. [Google Scholar] [CrossRef]
- Meucci, A. Managing diversification. Risk 2009, 22, 74–79. [Google Scholar]
- Pola, G. On entropy and portfolio diversification. J. Asset Manag. 2016, 17, 218–228. [Google Scholar] [CrossRef]
- Ararat, Ç.; Cesarone, F.; Pınar, M.Ç.; Ricci, J.M. MAD risk parity portfolios. Ann. Oper. Res. 2024, 336, 899–924. [Google Scholar] [CrossRef]
- Hoepner, A.G. Corporate Social Responsibility and Investment Portfolio Diversification. 2010. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1599334 (accessed on 11 August 2025).
- Sbaiz, G. Sustainable information into portfolio optimization models. J. Appliedmath 2023, 1, 125. [Google Scholar] [CrossRef]
- Brauers, W.K. Optimization Methods for a Stakeholder Society: A Revolution in Economic Thinking by Multi-Objective Optimization; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2003; Volume 73. [Google Scholar]
- Coello, C.A.C. Evolutionary multi-objective optimization in finance. In Handbook of Research on Nature-Inspired Computing for Economics and Management; IGI Global: Hershey, PA, USA, 2007; pp. 74–89. [Google Scholar]
- Doumpos, M.; Zopounidis, C. Multi-objective optimization models in finance and investments. J. Glob. Optim. 2020, 76, 243–244. [Google Scholar] [CrossRef]
- Fabretti, A.; Herzel, S. Delegated portfolio management with socially responsible investment constraints. Eur. J. Financ. 2012, 18, 293–309. [Google Scholar] [CrossRef]
- Utz, S.; Wimmer, M.; Hirschberger, M.; Steuer, R.E. Tri-criterion inverse portfolio optimization with application to socially responsible mutual funds. Eur. J. Oper. Res. 2014, 234, 491–498. [Google Scholar] [CrossRef]
- Coqueret, G. Diversified minimum-variance portfolios. Ann. Financ. 2015, 11, 221–241. [Google Scholar] [CrossRef]
- Gasser, S.M.; Rammerstorfer, M.; Weinmayer, K. Markowitz revisited: Social portfolio engineering. Eur. J. Oper. Res. 2017, 258, 1181–1190. [Google Scholar] [CrossRef]
- Pedersen, L.H.; Fitzgibbons, S.; Pomorski, L. Responsible investing: The ESG-efficient frontier. J. Financ. Econ. 2021, 142, 572–597. [Google Scholar] [CrossRef]
- Steuer, R.E.; Utz, S. Non-contour efficient fronts for identifying most preferred portfolios in sustainability investing. Eur. J. Oper. Res. 2023, 306, 742–753. [Google Scholar] [CrossRef]
- Ling, A.; Li, J.; Wen, L.; Zhang, Y. When trackers are aware of ESG: Do ESG ratings matter to tracking error portfolio performance? Econ. Model. 2023, 125, 106346. [Google Scholar] [CrossRef]
- Carmichael, B.; Koumou, G.B.; Moran, K. Unifying portfolio diversification measures using Rao’s quadratic entropy. J. Quant. Econ. 2023, 21, 769–802. [Google Scholar] [CrossRef]
- Aprea, I.L.; Sbaiz, G. A neural network-particle swarm solver for sustainable portfolio optimization problems. In Decisions in Economics and Finance; Springer: Berlin/Heidelberg, Germany, 2025; pp. 1–40. [Google Scholar]
- Zeidan, R.; Onabolu, S. The generalized sustainability credit rating system. Braz. Rev. Financ. 2023, 21, 21–47. [Google Scholar] [CrossRef]
- Poveda, C.A.; Lipsett, M.G. A review of sustainability assessment and sustainability/environmental rating systems and credit weighting tools. J. Sustain. Dev. 2011, 4, 36. [Google Scholar] [CrossRef]
- Zeidan, R.; Boechat, C.; Fleury, A. Developing a sustainability credit score system. J. Bus. Ethics 2015, 127, 283–296. [Google Scholar] [CrossRef]
- Gutiérrez-Nieto, B.; Serrano-Cinca, C.; Camón-Cala, J. A credit score system for socially responsible lending. J. Bus. Ethics 2016, 133, 691–701. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Mostaghim, S.; Teich, J. Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO). In Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS’03 (Cat. No. 03EX706), Indianapolis, IN, USA, 26–26 April 2003; pp. 26–33. [Google Scholar]
- Zheng, X.; Liu, H. A hybrid vertical mutation and self-adaptation based MOPSO. Comput. Math. Appl. 2009, 57, 2030–2038. [Google Scholar] [CrossRef]
- Lalwani, S.; Singhal, S.; Kumar, R.; Gupta, N. A comprehensive survey: Applications of multi-objective particle swarm optimization (MOPSO) algorithm. Trans. Comb. 2013, 2, 39–101. [Google Scholar]
- Sun, Y.; Gao, Y. A multi-objective particle swarm optimization algorithm based on gaussian mutation and an improved learning strategy. Mathematics 2019, 7, 148. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y.; Luo, Y.; Ouyang, A.; Yang, J.; Bai, W. Multi-objective particle swarm optimization algorithm for task allocation and archived guided mutation strategies. Sci. Rep. 2025, 15, 15821. [Google Scholar] [CrossRef] [PubMed]
- Moore, J. Application of Particle Swarm to Multiobjective Optimization. Technical Report. 1999. Available online: https://cir.nii.ac.jp/crid/1571980076089705344 (accessed on 11 August 2025).
- Coello, C.A.C.; Pulido, G.T.; Lechuga, M.S. Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 2004, 8, 256–279. [Google Scholar] [CrossRef]
- Sierra, M.R.; Coello Coello, C.A. Improving PSO-based multi-objective optimization using crowding, mutation and ϵ-dominance. In Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization, Guanajuato, Mexico, 9–11 March 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 505–519. [Google Scholar]
- Durillo, J.J.; García-Nieto, J.; Nebro, A.J.; Coello, C.A.C.; Luna, F.; Alba, E. Multi-objective particle swarm optimizers: An experimental comparison. In Proceedings of the Evolutionary Multi-Criterion Optimization: 5th International Conference, EMO 2009, Nantes, France, 7–10 April 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 495–509. [Google Scholar]
- Reyes-Sierra, M.; Coello, C.C. Multi-objective particle swarm optimizers: A survey of the state-of-the-art. Int. J. Comput. Intell. Res. 2006, 2, 287–308. [Google Scholar] [CrossRef]
- Chalvatzis, C.; Hristu-Varsakelis, D. High-performance stock index trading via neural networks and trees. Appl. Soft Comput. 2020, 96, 106567. [Google Scholar] [CrossRef]
- Heaton, J.B.; Polson, N.G.; Witte, J.H. Deep learning for finance: Deep portfolios. Appl. Stoch. Model. Bus. Ind. 2017, 33, 3–12. [Google Scholar] [CrossRef]
- Garcia-Garcia, A.; Orts-Escolano, S.; Oprea, S.; Villena-Martinez, V.; Martinez-Gonzalez, P.; Garcia-Rodriguez, J. A survey on deep learning techniques for image and video semantic segmentation. Appl. Soft Comput. 2018, 70, 41–65. [Google Scholar] [CrossRef]
- Nassif, A.B.; Elnagar, A.; Shahin, I.; Henno, S. Deep learning for Arabic subjective sentiment analysis: Challenges and research opportunities. Appl. Soft Comput. 2021, 98, 106836. [Google Scholar] [CrossRef]
- Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958, 65, 386. [Google Scholar] [CrossRef]
- Elman, J.L. Finding structure in time. Cogn. Sci. 1990, 14, 179–211. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Md, A.Q.; Kapoor, S.; AV, C.J.; Sivaraman, A.K.; Tee, K.F.; Sabireen, H.; Janakiraman, N. Novel optimization approach for stock price forecasting using multi-layered sequential LSTM. Appl. Soft Comput. 2022, 134, 109830. [Google Scholar] [CrossRef]
- Cho, K.; Van Merriënboer, B.; Bahdanau, D.; Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches. arXiv 2014, arXiv:1409.1259. [Google Scholar] [CrossRef]
- Aslan, A.; Posch, P.N. How do investors value sustainability? A utility-based preference optimization. Sustainability 2022, 14, 15963. [Google Scholar] [CrossRef]
- Dorfleitner, G.; Utz, S. Safety first portfolio choice based on financial and sustainability returns. Eur. J. Oper. Res. 2012, 221, 155–164. [Google Scholar] [CrossRef]
- Borra, S.; Hill, A.D.C.M. Statistica-Metodologie per le Scienze Economiche e Sociali/2e; McGraw-Hill: New York, NY, USA, 2014. [Google Scholar]
- Rockafellar, R.T.; Uryasev, S. Optimization of conditional value-at-risk. J. Risk 2000, 2, 21–42. [Google Scholar] [CrossRef]
- Leitner, J. A short note on second-order stochastic dominance preserving coherent risk measures. Math. Financ. Int. J. Math. Stat. Financ. Econ. 2005, 15, 649–651. [Google Scholar] [CrossRef]
- Cesarone, F.; Martino, M.L.; Carleo, A. Does ESG impact really enhance portfolio profitability? Sustainability 2022, 14, 2050. [Google Scholar] [CrossRef]
- Politis, D.N.; Romano, J.P. The stationary bootstrap. J. Am. Stat. Assoc. 1994, 89, 1303–1313. [Google Scholar] [CrossRef]
- Politis, D.N.; White, H. Automatic block-length selection for the dependent bootstrap. Econom. Rev. 2004, 23, 53–70. [Google Scholar] [CrossRef]
- Ledoit, O.; Wolf, M. Honey, I shrunk the sample covariance matrix. J. Portf. Manag. 2004, 30, 110–119. [Google Scholar] [CrossRef]
- Beck, A. First-Order Methods in Optimization; SIAM: Philadelphia, PA, USA, 2017. [Google Scholar]
- Meghwani, S.S.; Thakur, M. Multi–criteria algorithms for portfolio optimization under practical constraints. Swarm Evol. Comput. 2017, 37, 104–125. [Google Scholar] [CrossRef]
- Aprea, I.L.; Scognamiglio, S.; Zanetti, P. Systemic risk measurement: A quantile long short-term memory network approach. Appl. Soft Comput. 2024, 152, 111224. [Google Scholar] [CrossRef]
- Tobias, A.; Brunnermeier, M.K. CoVaR. Am. Econ. Rev. 2016, 106, 1705. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A.; Bengio, Y. Deep Learning; MIT Press Cambridge: Cambridge, MA, USA, 2016; Volume 1. [Google Scholar]
- Beraldi, P.; Violi, A.; Ferrara, M.; Ciancio, C.; Pansera, B.A. Dealing with complex transaction costs in portfolio management. Ann. Oper. Res. 2021, 299, 7–22. [Google Scholar] [CrossRef]
- Shen, W.; Wang, J.; Ma, S. Doubly regularized portfolio with risk minimization. In Proceedings of the AAAI Conference on Artificial Intelligence, Québec City, QC, Canada, 27–31 July 2014; Volume 28. [Google Scholar]
- Chekhlov, A.; Uryasev, S.; Zabarankin, M. Drawdown measure in portfolio optimization. Int. J. Theor. Appl. Financ. 2005, 8, 13–58. [Google Scholar] [CrossRef]
- Woerheide, W.; Persson, D. An index of portfolio diversification. Financ. Serv. Rev. 1992, 2, 73–85. [Google Scholar] [CrossRef]
- DeMiguel, V.; Garlappi, L.; Uppal, R. Optimal versus naive diversification: How inefficient is the 1/N portfolio strategy? Rev. Financ. Stud. 2009, 22, 1915–1953. [Google Scholar] [CrossRef]
- Schott, J.R. Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1995. [Google Scholar]
- Wang, Y.N.; Wu, L.H.; Yuan, X.F. Multi-objective self-adaptive differential evolution with elitist archive and crowding entropy-based diversity measure. Soft Comput. 2010, 14, 193–209. [Google Scholar] [CrossRef]
Dataset Name | Daily Observations | Assets (N) | Currency |
---|---|---|---|
Dow Jones Industrial | 3715 | 28 | $ |
Euro Stoxx 50 | 3715 | 45 | € |
FTSE 100 | 3715 | 80 | £ |
Parameter | Value |
---|---|
MOPSO solver | |
600 | |
500 | |
200 | |
0.4 | |
2 | |
2 | |
50% | |
LSTM architecture | |
50 | |
dropoutα | |
batch-sizeα | 8 |
epochsα | 500 |
Activation Functions | |
ReLU ×(−1) | |
tanh |
Dataset Name | Computational Time (s) |
---|---|
Dow Jones Industrial | 26.2567 |
Euro Stoxx 50 | 28.4240 |
FTSE 100 | 35.9011 |
Trading Segment (Local Currency) | Fixed Fee (Local Currency) | Proportional Cost (%) |
---|---|---|
40 | 0 | |
0 | 0.5 | |
0 | 0.4 | |
0 | 0.25 | |
400 | 0 |
Value | EW | |||
---|---|---|---|---|
Dow Jones Industrial | ||||
CAGR | 0.3151 | 0.2883 | 0.2966 | 0.1294 |
SR | 0.5954 | 0.6127 | 0.6615 | 0.2716 |
0.0245 | 0.0226 | 0.0230 | 0.0113 | |
0.0413 | 0.0370 | 0.0349 | 0.0418 | |
mean DD | −0.0121 | −0.0109 | −0.0100 | −0.0247 |
std DD | 0.0271 | 0.0243 | 0.0234 | 0.0405 |
max DD | −0.1359 | −0.1114 | −0.1097 | −0.2039 |
TR | 0.6584 | 0.6648 | 0.6378 | – |
IQRTR | 0.3772 | 0.4964 | 0.4810 | – |
8618.7 | 8393.5 | 7965.6 | – | |
DI | 0.7951 | 0.7983 | 0.8022 | – |
nnz assets (avg) | 22 | 21 | 21 | 28 |
nnz assets (min) | 12 | 11 | 13 | 28 |
Euro Stoxx 50 | ||||
CAGR | 0.3711 | 0.3300 | 0.2726 | 0.0671 |
SR | 0.6201 | 0.6929 | 0.6207 | 0.1343 |
0.0283 | 0.0254 | 0.0215 | 0.0071 | |
0.0457 | 0.0367 | 0.0347 | 0.0533 | |
mean DD | −0.0104 | −0.0075 | −0.0070 | −0.0514 |
std DD | 0.0283 | 0.0212 | 0.0168 | 0.0627 |
max DD | −0.1753 | −0.1336 | −0.1009 | −0.2744 |
TR | 0.7522 | 0.8165 | 0.6536 | – |
IQRTR | 0.4175 | 0.6460 | 0.4758 | – |
10343 | 9937.4 | 8174.1 | – | |
DI | 0.8552 | 0.8534 | 0.8461 | – |
nnz assets (avg) | 30 | 30 | 27 | 45 |
nnz assets (min) | 13 | 12 | 10 | 45 |
FTSE 100 | ||||
CAGR | 0.3101 | 0.2484 | 0.2447 | 0.0649 |
SR | 0.5816 | 0.5839 | 0.5844 | 0.1517 |
0.0246 | 0.0202 | 0.0199 | 0.0066 | |
0.0423 | 0.0347 | 0.0341 | 0.0439 | |
mean DD | −0.0151 | −0.0113 | −0.0098 | −0.0464 |
std DD | 0.0322 | 0.0236 | 0.0206 | 0.0678 |
max DD | −0.1636 | −0.1276 | −0.1139 | −0.2634 |
TR | 0.8893 | 0.8401 | 0.8099 | – |
IQRTR | 0.3752 | 0.3349 | 0.4565 | – |
15502 | 15022 | 13627 | – | |
DI | 0.9380 | 0.9518 | 0.9490 | – |
nnz assets (avg) | 56 | 54 | 51 | 80 |
nnz assets (min) | 19 | 20 | 18 | 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aprea, I.L.; Bosi, G.; Sbaiz, G.; Scognamiglio, S. Bi-Objective Portfolio Optimization Under ESG Volatility via a MOPSO-Deep Learning Algorithm. Mathematics 2025, 13, 3308. https://doi.org/10.3390/math13203308
Aprea IL, Bosi G, Sbaiz G, Scognamiglio S. Bi-Objective Portfolio Optimization Under ESG Volatility via a MOPSO-Deep Learning Algorithm. Mathematics. 2025; 13(20):3308. https://doi.org/10.3390/math13203308
Chicago/Turabian StyleAprea, Imma Lory, Gianni Bosi, Gabriele Sbaiz, and Salvatore Scognamiglio. 2025. "Bi-Objective Portfolio Optimization Under ESG Volatility via a MOPSO-Deep Learning Algorithm" Mathematics 13, no. 20: 3308. https://doi.org/10.3390/math13203308
APA StyleAprea, I. L., Bosi, G., Sbaiz, G., & Scognamiglio, S. (2025). Bi-Objective Portfolio Optimization Under ESG Volatility via a MOPSO-Deep Learning Algorithm. Mathematics, 13(20), 3308. https://doi.org/10.3390/math13203308