A Majority Theorem for the Uncapacitated p = 2 Median Problem and Local Spatial Autocorrelation
Abstract
:1. Introduction
1.1. The Objective of This Paper
1.2. The Content Organized of This Paper
2. Solving the Uncapacitated p = 2 Median Problem
3. Special Formal Mathematical Properties of the p = 2 Median Problem
3.1. An ETC-2 Proposition
3.2. More About the Collinearity Conjecture
3.3. A Conjecture Relating to MT-1 for the p = 2 Spatial Median Problem
3.4. An MTC-2 Formulation
- Step 1:
- sum the weights and check to see if each of any two of them is greater than a specified percentage of that calculated total (each of the two weights must be at least 25% of the computed sum);
- Step 2:
- if Step 1 identifies two weights, check that their respective positions are on opposite sides of the geographic landscape’s transect passing through the p = 1 spatial median perpendicular to the straight line connecting; and,
- Step 3:
- if Step 2 conditions hold, construct a perpendicular bisector of the line connecting the two identified demand points (this construction can be completed with a GIS Thiessen polygon tool; it is equivalent to allocating each demand point to its closest of the two dominant weight points), and then check to see if each identified weight is at least 50% of its respective subset’s total weight sum.
4. Local SA in the Presence of a Two Dominant Demand Point Weights in a p = 2 Median Problem
Specimen LISA Examples for n = 500
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Collinearity of p = 1 and p = 2 Solutions: Simulation Evidence
Geographic Point Pattern Distribution | Collinearity (# of Replicates) | # of Demand Points | Demand Point Weights | Collinearity Index | ||
---|---|---|---|---|---|---|
Matrix Determinant | Triangle Area | Distance Segments Sum | ||||
uniform | exact † (0) | 36 | i | *** | *** | *** |
near (100) | 0.0001 (0.0001) | 0.0001 (<0.0001) | 0 (***) | |||
exact † (1) | 400 | 0 | 0 | 0 | ||
near (99) | 0.0000 (<0.0000) | 0.0000 (<0.0000) | 0 (***) | |||
exact † (0) | 729 | *** | *** | *** | ||
near (100) | 0.0002 (0.0001) | 0.0001 (0.0001) | 0 (***) | |||
random | exact † (0) | 36 | *** | *** | *** | |
near (100) | 0.0081 (0.0065) | 0.0040 (0.0032) | 0.0013 (0.0020) | |||
exact † (1) | 400 | 0 | 0 | 0 | ||
near (99) | 0.0032 (0.0026) | 0.0016 (0.0013) | 0.0002 (0.0004) | |||
exact † (0) | 729 | *** | *** | *** | ||
near (100) | 0.0019 (0.0014) | 0.0010 (0.0007) | 0.0001 (0.0001) | |||
uniform | exact † (0) | 36 | wi~1 + Poisson (μ) | *** | *** | *** |
near (100) | 0.0072 (0.0056) | 0.0036 (0.0028) | 0.0013 (0.0016) | |||
exact † (0) | 400 | *** | *** | *** | ||
near (100) | 0.0011 (0.0009) | 0.0006 (0.0004) | 0.0000 (<0.0001) | |||
exact † (1) | 729 | 0 | 0 | 0 | ||
near (99) | 0.0008 (0.0007) | 0.0004 (0.0003) | 0.0000 (<0.0001) | |||
random | exact † (0) | 36 | *** | *** | *** | |
near (100) | 0.0097 (0.0069) | 0.0049 (0.0035) | 0.0018 (0.0022) | |||
exact † (0) | 400 | *** | *** | *** | ||
near (100) | 0.0030 (0.0025) | 0.0015 (0.0012) | 0.0002 (0.0004) | |||
exact † (0) | 729 | *** | *** | *** | ||
near (100) | 0.0023 (0.0016) | 0.0011 (0.0008) | 0.0001 (0.0002) |
Appendix B. Computer Code Information
Figure 1 Simulation
- insertion of a DO loop enables repeated optimizations to generate the simulation experiment replications;
- IMSL random number generator RNBET samples coordinates from either a uniform (parameters: α = 1, β = 1) or a skewed distribution (parameters: α = 9, β = 5);
- IMSL random number generator RNPOI samples weights from a Poisson distribution (parameter: μ = 4); the mean was 1 added to it, increasing it to μ = 5, to ensure all weights are positive.
References
- Carmona-Benítez, R. Dimensionality-reduction procedure for the capacitated p-median transportation inventory problem. Mathematics 2020, 8, 471. [Google Scholar] [CrossRef]
- Janáček, J.; Kvet, M.; Czimmermann, P. Kit of uniformly deployed sets for p-Location problems. Mathematics 2023, 11, 2418. [Google Scholar] [CrossRef]
- Lopes, C.; Rodrigues, A.; Romanciuc, V.; Ferreira, J.; Öztürk, E.; Oliveira, C. Divide and conquer: A location-allocation approach to sectorization. Mathematics 2023, 11, 2553. [Google Scholar] [CrossRef]
- Giraldo, R.; Leiva, V.; Castro, C. An overview of kriging and cokriging predictors for functional random fields. Mathematics 2023, 11, 3425. [Google Scholar] [CrossRef]
- Griffith, D.; Chun, Y.; Kim, H. Spatial autocorrelation informed approaches to solving location–allocation problems. Spat. Stat. 2022, 50, 100612. [Google Scholar] [CrossRef]
- Lee, C.; Griffith, D.; Chun, Y.; Kim, H. Effects of geographically stratified random sampling initial solutions on solving a continuous surface p-median location problem using the ALTERN heuristic. Spat. Stat. 2023, 57, 10076. [Google Scholar] [CrossRef]
- Church, R.L. BEAMR: An exact and approximate model for the p-median problem. Comput. Oper. Res. 2008, 35, 417–426. [Google Scholar] [CrossRef]
- Kim, K.; Chun, Y.; Kim, H. p-Functional Clusters Location Problem for Detecting Spatial Clusters with Covering Approach. Geogr. Anal. 2017, 49, 101–121. [Google Scholar] [CrossRef]
- Griffith, D. Articulating spatial statistics and spatial optimization relationships: Expanding the relevance of statistics. Stats 2021, 4, 850–867. [Google Scholar] [CrossRef]
- Kim, D.; Chun, Y.; Griffith, D. Impacts of spatial imputation on location-allocation problem solutions. Spat. Stat. 2024, 59, 100810. [Google Scholar] [CrossRef]
- Anselin, L. Thirty years of spatial econometrics. Pap. Reg. Sci. 2010, 89, 3–26. [Google Scholar] [CrossRef]
- Griffith, D.; Chun, Y.; Kim, H. The majority theorem for the single (p = 1) median problem and local spatial autocorrelation. Geogr. Anal. 2022, 55, 107–124. [Google Scholar] [CrossRef]
- Drezner, Z.; Klamroth, K.; Schobel, A.; Wesolowsky, G. Chapter 1: The Weber problem. In Facility Location: Applications and Theory; Drezner, Z., Hamacher, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 1–24. [Google Scholar]
- Griffith, D. Interpreting of Moran eigenvector maps with the Getis-Ord Gi* statistic. Prof. Geogr. 2021, 73, 447–463. [Google Scholar] [CrossRef]
- Witzgall, C. Optimal Location of a Central Facility: Mathematical Models and Concepts; NBS Report 8388; U. S. National Bureau of Standards: Washington, DC, USA, 1964.
- Körner, M.-C. Minisum Hyperspheres; Springer: New York, NY, USA, 2011. [Google Scholar]
- Tuy, H. Convex Analysis and Global Optimization, 2nd ed.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Williams, J. Optimal reserve site selection with distance requirements. Comput. Oper. Res. 2008, 35, 488–498. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Bettinger, P.; Finney, M. Spatial optimization of the pattern of fuel management activities and subsequent effects on simulated wildfires. Eur. J. Oper. Res. 2009, 197, 253–265. [Google Scholar] [CrossRef]
- Calabrese, R. Contagion effects of UK small business failures: A spatial hierarchical autoregressive model for binary data. Eur. J. Oper. Res. 2023, 305, 989–997. [Google Scholar] [CrossRef]
- Hof, J.; Bevers, M. Direct spatial optimization in natural resource management: Four linear programming examples. Ann. Oper. Res. 2000, 95, 67–81. [Google Scholar] [CrossRef]
- Griffith, D. Using estimated missing spatial data with the 2-median model. Ann. Oper. Res. 2003, 122, 233–247. [Google Scholar] [CrossRef]
- García-Alonso, C.; Pérez-Naranjo, L.; Fernández-Caballero, J. Multiobjective evolutionary algorithms to identify highly autocorrelated areas: The case of spatial distribution in financially compromised farms. Ann. Oper. Res. 2014, 219, 187–202. [Google Scholar] [CrossRef]
- Chai, N.; Gong, Z.; Bai, C.; Abedin, M.; Shi, B. A socio-technology perspective for building a Chinese regional green economy. Ann. Oper. Res. 2023. [Google Scholar] [CrossRef]
- Milliken, G.; Willers, J.; McCarter, K.; Jenkins, J. Designing experiments to evaluate the effectiveness of precision agricultural practices on research fields: Part 1 concepts for their formulation. Oper. Res. 2010, 10, 329–348. [Google Scholar] [CrossRef]
- Nepomuceno, T.; Costa, A. Spatial visualization on patterns of disaggregate robberies. Oper. Res. 2019, 19, 857–886. [Google Scholar] [CrossRef]
- Vavatsikos, A.; Sotiropoulou, K.; Tzingizis, V. GIS-assisted suitability analysis combining PROMETHEE II, analytic hierarchy process and inverse distance weighting. Oper. Res. 2022, 22, 5983–6006. [Google Scholar] [CrossRef]
- Oh, C.; Kim, H.; Chun, Y. An efficient solving approach for the p-dispersion problem based on the distance-based spatially informed property. Geogr. Anal. 2024, 56, 600–623. [Google Scholar] [CrossRef]
- Ord, J.; Getis, A. Local spatial autocorrelation statistics: Distributional issues and an application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Duque, J.; Laniado, H.; Polo, A. S-maup: Statistical test to measure the sensitivity to the modifiable areal unit problem. PLoS ONE 2018, 13, e0207377. [Google Scholar] [CrossRef]
- Hodgson, M.; Shmulevitz, F.; Körkel, M. Aggregation error effects on the discrete-space p-median model. Can. Geogr. 2008, 41, 415–428. [Google Scholar] [CrossRef]
- Lee, S.-I.; Lee, M.; Chun, Y.; Griffith, D. Uncertainty in the effects of the modifiable areal unit problem under different levels of spatial autocorrelation: A simulation study. Int. J. Geogr. Inf. Sci. 2019, 33, 1135–1154. [Google Scholar] [CrossRef]
- Demetriou, D.; Stillwell, J.; See, L. A GIS-based shape index for land parcels. In Proceedings of the First International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2013), Paphos, Cyprus, 8–10 April 2013; Volume 8795, pp. 421–430. [Google Scholar] [CrossRef]
- Church, R.; Murray, A. Location Covering Models: History, Applications and Advancements; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Ostresh, L. An efficient algorithm for solving the two center location-allocation problem. J. Reg. Sci. 1975, 15, 209–216. [Google Scholar] [CrossRef]
- Kuhn, H.; Kuenne, R. An efficient algorithm for the numerical solution of the generalized Weber problem in spatial economics. J. Reg. Sci. 1962, 4, 21–33. [Google Scholar]
- Murray, A.; Church, R.; Feng, X. Single facility siting involving allocation decisions. Eur. J. Oper. Res. 2020, 284, 834–846. [Google Scholar] [CrossRef]
- Weiszfeld, E. Sur le point pour lequel la somme des distances de n points donnés est minimum. Tohoku Math. J. 1937, 43, 355–386. [Google Scholar]
- Miehle, W. Link-length minimization in networks. Oper. Res. 1958, 6, 232–243. [Google Scholar] [CrossRef]
- Cooper, L. Location-allocation problems. Oper. Res. 1963, 11, 331–343. [Google Scholar] [CrossRef]
- Vergin, R.; Rogers, J. An algorithm and computational procedure for locating economic facilities. Manag. Sci. 1967, 13, B-240–B-254. [Google Scholar] [CrossRef]
- Rushton, G.; Goodchild, M.; Ostresh, L. (Eds.) Computer Programs for Location-Allocation Problems; Monograph #6; Department of Geography, University of Iowa: Iowa City, IA, USA, 1973. [Google Scholar]
- Goldberg, K.; Newman, M.; Haynsworth, E. §24.1.4: Stirling numbers of the second kind. In Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Abramowitz, M., Stegun, I., Eds.; Dover: New York, NY, USA, 1972; pp. 824–825. [Google Scholar]
- Meracalculator. Perpendicular Bisector Calculator. How Long Can a Spinoff Like ‘Better Call Saul’ Last? FiveThirtyEight. 2024. Available online: https://www.meracalculator.com/graphic/perpendicularbisector.php (accessed on 29 October 2024).
- Burg, D.; Ausubel, J. Moore’s Law revisited through Intel chip density. PLoS ONE 2021, 16, e0256245. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Fetter, F. The economic law of market areas. Q. J. Econ. 1924, 38, 520–529. [Google Scholar] [CrossRef]
- Hyson, C.; Hyson, W. The economic law of market areas. Q. J. Econ. 1950, 64, 319–327. [Google Scholar] [CrossRef]
- Meager, K.; Teo, E.; Xie, T. Socially-optimal locations of duopoly firms with non-uniform consumer densities. Theor. Econ. Lett. 2014, 4, 431–445. [Google Scholar] [CrossRef]
- Gong, J. Clarifying the standard deviational ellipse. Geogr. Anal. 2002, 34, 155–167. [Google Scholar] [CrossRef]
- Wang, B.; Shi, W.; Miao, Z. Confidence analysis of standard deviational ellipse and its extension into higher dimensional Euclidean space. PLoS ONE 2015, 10, e0118537. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, R. Data features of the weighted standard deviational curve. In Proceedings of the 6th International Conference on Agro-Geoinformatics, Fairfax, VA, USA, 7–10 August 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 76–80. Available online: https://ieeexplore.ieee.org/document/8046253 (accessed on 5 January 2025).
- Cooper, L. Heuristic methods for location-allocation problems. SIAM Rev. 1964, 6, 37–53. [Google Scholar] [CrossRef]
- Overton, S.; Stehman, S. Properties of designs for sampling continuous spatial resources from a triangular grid. Commun. Stat. 1993, 22, 251–264. [Google Scholar] [CrossRef]
- Anselin, L. The Moran Scatterplot as an ESDA tool to assess local instability in spatial association. In Spatial Analytical Perspectives on GIS in Environmental and Socio-Economic Sciences; Fischer, M., Scholten, H., Unwin, D., Eds.; Taylor & Francis: London, UK, 1996; pp. 111–125. [Google Scholar]
- Tong, D.; Murray, A. Spatial optimization in geography. Ann. Am. Assoc. Geogr. 2012, 102, 1290–1309. [Google Scholar] [CrossRef]
- Ryan, T. Modern Regression Analysis; Wiley: New York, NY, USA, 2009. [Google Scholar]
- Ostresh, L. TWAIN-exact solution to the two source location-allocation problem. In Computer Programs for Location-Allocation Problems; Rushton, G., Goodchild, M.F., Ostresh, L.M., Jr., Eds.; Monograph No. 6; Department of Geography, University of Iowa: Iowa City, IA, USA, 1973; pp. 15–28. [Google Scholar]
Possibility | Member Points | Group 1 | Group 2 | Objective Function | |||
---|---|---|---|---|---|---|---|
Group 1 | Group 2 | U | V | U | V | ||
5 | 1 | 2, 3, 4, 5 | 0.1237 | 0.4915 | 0.6198 | 0.5184 | 9.7654 |
6 | 4 | 1, 2, 3, 5 | 0.9541 | 0.8621 | 0.4764 | 0.4483 | 5.6900 |
7 | 5 | 1, 2, 3, 4 | 0.9982 | 0.2925 | 0.4764 | 0.4483 | 9.2870 |
1–4 | 1, 2 | 3, 4, 5 | 0.4764 | 0.4483 | 0.9541 | 0.8621 | 5.4176 |
8–9: optimal | 3, 4 | 1, 2, 5 | 0.9541 | 0.8621 | 0.4764 | 0.4483 | 5.2838 |
10 | 4, 5 | 1, 2, 3 | 0.9541 | 0.8621 | 0.4764 | 0.4483 | 5.8238 |
infeasible because of planar constraints | 3 | 1, 2, 4, 5 | |||||
1, 5 | 2, 3, 4 | ||||||
2, 3 | 1, 4, 5 | ||||||
2, 4 | 1, 3, 5 | ||||||
3, 5 | 1, 2, 4 | ||||||
absence of necessary perpendicular bisectors | 2 | 1, 3, 4, 5 | |||||
1, 3 | 2, 4, 5 | ||||||
1, 4 | 2, 3, 5 | ||||||
2, 5 | 1, 3, 4 |
Geographic Trend | Weights Equation | Spatial Autocorrelation | n | Optimal Solutions ⸸ | ||||
---|---|---|---|---|---|---|---|---|
Parameter | Coefficient | MC | GR | Collinear Algorithm ‡ | Random Search † | Match | ||
linear | slope | 3 | 0.85 | 0.14 | 50 | 98 (96; 96.861%) | 89 (82; 71.863%) | 89 (82) |
exponent | 1 | 100 | 99 (97; 99.623%) | 95 (89; 80.183%) | 95 (89) | |||
N(0,1) | 0.1 | 500 | 100 (100; 99.995%) | 100 (100; 99.971%) | 100 (100) | |||
quadratic | slope | 2 | 0.75 | 0.42 | 50 | 96 (95; 78.233% ⁑) | 67 (57; 85.707%) | 66 (56) |
exponent | 2 | 100 | 99 (99; 96.515%) | 70 (61; 86.952%) | 69 (60) | |||
N(0,1) | 0.1 | 500 | 100 (100; 99.980%) | 82 (82; 93.808%) | 82 (82) | |||
Periodic (25 evenly spaced sine function mounds) | slope | 0.6 | 0.27 | 0.74 | 50 | 99 (98; 98.062% ⁑) | 67 (56; 90.615%) | 56 (56) |
exponent | 1 | 100 | 98 (97; 92.691%) | 75 (61; 92.999%) | 73 (59) | |||
N(0,1) | 0.2 | 500 | 100 (99; 99.895%) | 74 (74; 96.856%) | 74 (74) | |||
random | slope | 0 | 0.00 | 1.00 | 50 | 100 (96; 99.489%) | 69 (55; 89.199%) | 69 (54) |
exponent | 0 | 100 | 98 (98; 88.218%) | 61 (67; 91.605%) | 61 (67) | |||
N(0,1) | 0 | 500 | 99 (99; 97.394%) | 66 (67; 94.936%) | 66 (67) |
n | % Total Weights | Regional Subsets | Selected Distances | ||||||
---|---|---|---|---|---|---|---|---|---|
wh | wk | Point Counts | Minimum wj Subset % | dhk | dh,centroid | dk,centroid | |||
nh | nk | wh | wk | ||||||
uniform geographic distribution of random demand point locations [p = 1 spatial median = (0.500, 0.500)] | |||||||||
5 | 50.0 (0.000) | 30.7 (0.220) | 2.7 (0.895) | 2.3 (0.895) | 71.7 | 60.8 | 0.706 (0.149) | 0.396 (0.136) | 0.424 (0.130) |
25 | 40.0 (0.086) | 25.2 (0.085) | 14.1 (3.527) | 10.9 (3.527) | 54.4 | 50.3 | 0.705 (0.144) | 0.367 (0.141) | 0.447 (0.120) |
50 | 35.1 (0.043) | 25.1 (0.043) | 28.7 (5.858) | 21.3 (5.858) | 50.1 | 50.2 | 0.706 (0.151) | 0.354 (0.140) | 0.460 (0.105) |
75 | 30.0 (0.027) | 25.1 (0.029) | 41.3 (4.815) | 33.7 (4.815) | 50.1 | 50.1 | 0.726 (0.157) | 0.382 (0.111) | 0.453 (0.094) |
100 | 30.0 (0.021) | 25.1 (0.022) | 55.8 (6.262) | 45.2 (6.262) | 50.1 | 50.1 | 0.732 (0.154) | 0.387 (0.108) | 0.455 (0.088) |
skewed geographic distribution (e.g., see Figure 5d) of random demand point locations [p = 1 spatial median = (0.235, 0.235)] | |||||||||
5 | 50.0 (0.000) | 25.8 (0.191) | 2.8 (0.970) | 2.2 (0.970) | 67.1 | 51.1 | 0.332 (0.072) | 0.171 (0.080) | 0.209 (0.092) |
25 | 40.0 (0.086) | 25.2 (0.084) | 16.4 (4.338) | 8.6 (4.338) | 53.4 | 50.3 | 0.325 (0.065) | 0.134 (0.064) | 0.232 (0.083) |
50 | 35.1 (0.041) | 25.1 (0.042) | 32.2 (6.637) | 17.8 (6.637) | 50.1 | 50.2 | 0.321 (0.061) | 0.133 (0.054) | 0.223 (0.064) |
75 | 30.0 (0.029) | 25.1 (0.31) | 42.2 (4.943) | 32.8 (4.943) | 50.1 | 50.1 | 0.318 (0.057) | 0.155 (0.040) | 0.191 (0.043) |
100 | 30.0 (0.021) | 25.1 (0.022) | 56.4 (6.640) | 44.6 (6.640) | 50.1 | 50.1 | 0.315 (0.055) | 0.155 (0.041) | 0.191 (0.043) |
n | Uniform | Skewed | ||||
---|---|---|---|---|---|---|
Threshold Distance Identifying Neighbors | ni Range | Chi-Square (1 df) | Threshold Distance Identifying Neighbors | ni Range | Chi-Square (1 df) | |
25 | 0.10 | 1–6 | 5740 (p < 0.001) | 0.03 | 1–6 | 5758 (p < 0.001) |
50 | 0.10 | 1–10 | 5765 (p < 0.001) | 0.03 | 1–9 | 5781 (p < 0.001) |
75 | 0.10 | 1–11 | 5841 (p < 0.001) | 0.03 | 1–11 | 5851 (p < 0.001) |
100 | 0.10 | 1–13 | 5880 (p < 0.001) | 0.03 | 1–13 | 5885 (p < 0.001) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Griffith, D.A.; Chun, Y.; Kim, H. A Majority Theorem for the Uncapacitated p = 2 Median Problem and Local Spatial Autocorrelation. Mathematics 2025, 13, 249. https://doi.org/10.3390/math13020249
Griffith DA, Chun Y, Kim H. A Majority Theorem for the Uncapacitated p = 2 Median Problem and Local Spatial Autocorrelation. Mathematics. 2025; 13(2):249. https://doi.org/10.3390/math13020249
Chicago/Turabian StyleGriffith, Daniel A., Yongwan Chun, and Hyun Kim. 2025. "A Majority Theorem for the Uncapacitated p = 2 Median Problem and Local Spatial Autocorrelation" Mathematics 13, no. 2: 249. https://doi.org/10.3390/math13020249
APA StyleGriffith, D. A., Chun, Y., & Kim, H. (2025). A Majority Theorem for the Uncapacitated p = 2 Median Problem and Local Spatial Autocorrelation. Mathematics, 13(2), 249. https://doi.org/10.3390/math13020249