Chaplygin and Polytropic Gases Teleparallel Robertson-Walker F(T) Gravity Solutions
Abstract
1. Introduction
- Quintessence : This describes a controlled accelerating universe expansion where energy conditions are always satisfied, i.e., [70,71,72,73,74,75,76,77,78,79,80,81,82]. This usual DE form has been significantly studied in the literature in recent decades for the fascination it provokes and the realism of the models.
- Cosmological constant : This is an intermediate limit between the quintessence and phantom DE states, where . A constant SF source added by a positive scalar potential will directly lead to this primary DE state. Note that a negative scalar potential (i.e., ) will not lead to a positive cosmological constant and/or a DE solution.
2. Summary of Teleparallel Gravity and Field Equations
2.1. Teleparallel -Gravity Theory Field Equations and Torsional Quantities
2.2. Teleparallel Robertson–Walker Spacetime Geometry
- : ,
- : and ,
- : and .
2.3. Conservation Laws and Field Equations of Cosmological Perfect Fluids
- flat or non-curved:The pure vacuum solution ( and ) to Equations (19) and (20) is . However for any , we can set as cosmological scale and as solution ansatz, and we find the unified FE by merging Equations (19) and (20):Equation (21) is the general unified FE to solve for any EoS and CL. This is easy to solve, and the solution will be an easy-to-compute integral equation.
- negative curved:From Equation (24) and using ansatz, we find a characteristic equation yielding to solutions:The possible solutions of Equation (25) are
- (a)
- (slow expansion):
- (b)
- (linear expansion):
- (c)
- (fast expansion):
- (d)
- (very fast expansion limit):
- positive curved:From Equation (35) and using ansatz, we find the characteristic equation for :The possible solutions of Equation (36) are
- (a)
- (slow expansion):
- (b)
- (linear expansion):
- (c)
- (fast expansion):
- (d)
- (very fast expansion limit):
2.4. Energy Conditions in Teleparallel Gravity
- Weak Energy Condition (WEC): , and .
- Strong Energy Condition (SEC): , and .
- Null Energy Condition (NEC): and .
- Dominant Energy Condition (DEC): and .
3. Pure Chaplygin Gas Teleparallel Field Equation Solutions
3.1. Conservation Law Solutions and Energy Conditions
3.2. Cosmological Solutions
3.3. Cosmological Solutions
- : We use the approximation , the weak torsion scalar T or far future approximations for analytic solutions, in agreement to Section 2.3 characteristic equation solutions. This type of approximation will allow us to study the long-term cosmological universe evolution models in a simpler manner. By setting the + root, Equation (50) simplifies:
- : For , Equation (50) can be approximated asIf , we find the TEGR limit.
3.4. Cosmological Solutions
- If , we find the TEGR limit.
- : By using the approximation and setting the − root, Equation (59) simplifies under the approximation asUnder the limit: and . Then Equation (52) becomes . The TEGR limit is not possible under .
- : Once again for , we find under this limit the same differential equation and solution as Equation (58), i.e., .
4. General Polytropic Gas Teleparallel Field Equation Solutions
4.1. Conservation Law Solutions and Energy Conditions
4.2. Cosmological Solutions
4.3. Cosmological Solutions
- : We will again use the weak torsion scalar approximation (or far future case as shown in Section 2.3 characteristic equation solutions) as in Section 3.3 and Section 3.4 solutions. By setting the + root, Equation (70) becomes:
- limit: For , we obtain Equation (58) with as solution.
4.4. Cosmological Solutions
5. Physical, Graphical and Experimental Comparisons of New Teleparallel Gravity Solutions
5.1. Comparison Between New Chaplygin and Polytropic Solutions and Consequences
5.2. Comparisons with Recent Experimental Results
6. Concluding Remarks
Funding
Data Availability Statement
Conflicts of Interest
References
- Lucas, T.G.; Obukhov, Y.; Pereira, J.G. Regularizing role of teleparallelism. Phys. Rev. D 2009, 80, 064043. [Google Scholar] [CrossRef]
- Krššák, M.; van den Hoogen, R.J.; Pereira, J.G.; Boehmer, C.G.; Coley, A.A. Teleparallel Theories of Gravity: Illuminating a Fully Invariant Approach. Class. Quantum Gravity 2019, 36, 183001. [Google Scholar] [CrossRef]
- Bahamonde, S.; Dialektopoulos, K.F.; Escamilla-Rivera, C.; Farrugia, G.; Gakis, V.; Hendry, M.; Hohmann, M.; Said, J.L.; Mifsud, J.; Di Valentino, E. Teleparallel Gravity: From Theory to Cosmology. Rep. Prog. Phys. 2023, 86, 026901. [Google Scholar] [CrossRef] [PubMed]
- Krssak, M.; Pereira, J.G. Spin Connection and Renormalization of Teleparallel Action. Eur. Phys. J. C 2015, 75, 519. [Google Scholar] [CrossRef]
- Coley, A.A.; van den Hoogen, R.J.; McNutt, D.D. Symmetry and Equivalence in Teleparallel Gravity. J. Math. Phys. 2020, 61, 072503. [Google Scholar] [CrossRef]
- McNutt, D.D.; Coley, A.A.; van den Hoogen, R.J. A frame based approach to computing symmetries with non-trivial isotropy groups. J. Math. Phys. 2023, 64, 032503. [Google Scholar] [CrossRef]
- Aldrovandi, R.; Pereira, J.G. Teleparallel Gravity, an Introduction; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Olver, P. Equivalence, Invariants and Symmetry; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Krššák, M.; Saridakis, E.N. The covariant formulation of f(T) gravity. Class. Quantum Gravity 2016, 33, 115009. [Google Scholar] [CrossRef]
- Ferraro, R.; Fiorini, F. Modified teleparallel gravity: Inflation without an inflation. Phys. Rev. D 2007, 75, 084031. [Google Scholar] [CrossRef]
- Ferraro, R.; Fiorini, F. On Born-Infeld Gravity in Weitzenbock spacetime. Phys. Rev. D 2008, 78, 124019. [Google Scholar] [CrossRef]
- Linder, E. Einstein’s Other Gravity and the Acceleration of the Universe. Phys. Rev. D 2010, 81, 127301, Erratum in Phys. Rev. D 2010, 82, 109902.. [Google Scholar] [CrossRef]
- Hayashi, K.; Shirafuji, T. New general relativity. Phys. Rev. D 1979, 19, 3524. [Google Scholar] [CrossRef]
- Jimenez, J.B.; Dialektopoulos, K.F. Non-Linear Obstructions for Consistent New General Relativity. J. Cosmol. Atroparticle Phys. 2020, 2020, 18. [Google Scholar] [CrossRef]
- Bahamonde, S.; Blixt, D.; Dialektopoulos, K.F.; Hell, A. Revisiting Stability in New General Relativity. Phys. Rev. D 2024, 111, 064080. [Google Scholar] [CrossRef]
- Heisenberg, L. Review on f(Q) Gravit. Phys. Rep. 2023, 1066, 1–78. [Google Scholar] [CrossRef]
- Heisenberg, L.; Hohmann, M.; Kuhn, S. Cosmological teleparallel perturbations. J. Cosmol. Astropart. Phys. 2024, 3, 63. [Google Scholar] [CrossRef]
- Flathmann, K.; Hohmann, M. Parametrized post-Newtonian limit of generalized scalar-nonmetricity theories of gravity. Phys. Rev. D 2022, 105, 044002. [Google Scholar] [CrossRef]
- Hohmann, M. General covariant symmetric teleparallel cosmology. Phys. Rev. D 2021, 104, 124077. [Google Scholar] [CrossRef]
- Jimenez, J.B.; Heisenberg, L.; Koivisto, T.S. The Geometrical Trinity of Gravity. Universe 2019, 5, 173. [Google Scholar] [CrossRef]
- Nakayama, Y. Geometrical trinity of unimodular gravity. Class. Quantum Gravity 2023, 40, 125005. [Google Scholar] [CrossRef]
- Xu, Y.; Li, G.; Harko, T.; Liang, S.-D. f(Q,T) gravity. Eur. Phys. J. C 2019, 79, 708. [Google Scholar] [CrossRef]
- Maurya, D.C.; Myrzakulov, R. Exact Cosmology in Myrzakulov Gravity. Eur. Phys. J. C 2024, 84, 625. [Google Scholar]
- Harko, T.; Lobo, F.S.N.; Nojiri, S.; Odintsov, S.D. f(R,T) gravity. Phys. Rev. D 2011, 84, 024020. [Google Scholar] [CrossRef]
- Momeni, D.; Myrzakulov, R. Myrzakulov Gravity in Vielbein Formalism: A Study in Weitzenböck Spacetime. Nucl. Phys. B 2025, 1015, 116903. [Google Scholar] [CrossRef]
- Maurya, D.C.; Yesmakhanova, K.; Myrzakulov, R.; Nugmanova, G. Myrzakulov F(T,Q) gravity: Cosmological implications and constraints. Phys. Scr. 2024, 99, 10. [Google Scholar] [CrossRef]
- Maurya, D.C.; Yesmakhanova, K.; Myrzakulov, R.; Nugmanova, G. FLRW Cosmology in Metric-Affine F(R,Q) Gravity. Chin. Phys. C 2024, 48, 125101. [Google Scholar] [CrossRef]
- Maurya, D.C.; Myrzakulov, R. Transit cosmological models in Myrzakulov F(R,T) gravity theory. Eur. Phys. J. C 2024, 84, 534. [Google Scholar] [CrossRef]
- Mandal, S.; Myrzakulov, N.; Sahoo, P.K.; Myrzakulov, R. Cosmological bouncing scenarios in symmetric teleparallel gravity. Eur. Phys. J. Plus 2021, 136, 760. [Google Scholar] [CrossRef]
- Golovnev, A.; Guzman, M.-J. Approaches to spherically symmetric solutions in f(T)-gravity. Universe 2021, 7, 121. [Google Scholar] [CrossRef]
- Golovnev, A. Issues of Lorentz-invariance in f(T)-gravity and calculations for spherically symmetric solutions. Class. Quantum Gravity 2021, 38, 197001. [Google Scholar] [CrossRef]
- DeBenedictis, A.; Ilijić, S.; Sossich, M. On spherically symmetric vacuum solutions and horizons in covariant f(T) gravity theory. Phys. Rev. D 2022, 105, 084020. [Google Scholar] [CrossRef]
- Bahamonde, S.; Camci, U. Exact Spherically Symmetric Solutions in Modified Teleparallel gravity. Symmetry 2019, 11, 1462. [Google Scholar] [CrossRef]
- Awad, A.; Golovnev, A.; Guzman, M.-J.; El Hanafy, W. Revisiting diagonal tetrads: New Black Hole solutions in f(T)-gravity. Eur. Phys. J. C 2022, 82, 972. [Google Scholar] [CrossRef]
- Bahamonde, S.; Golovnev, A.; Guzmán, M.-J.; Said, J.L.; Pfeifer, C. Black Holes in f(T,B) Gravity: Exact and Perturbed Solutions. J. Cosmol. Atroparticle Phys. 2022, 1, 037. [Google Scholar] [CrossRef]
- Bahamonde, S.; Faraji, S.; Hackmann, E.; Pfeifer, C. Thick accretion disk configurations in the Born-Infeld teleparallel gravity. Phys. Rev. D 2022, 106, 084046. [Google Scholar] [CrossRef]
- Nashed, G.G.L. Quadratic and cubic spherically symmetric black holes in the modified teleparallel equivalent of general relativity: Energy and thermodynamics. Class. Quantum Gravity 2021, 38, 125004. [Google Scholar] [CrossRef]
- Pfeifer, C.; Schuster, S. Static spherically symmetric black holes in weak f(T)-gravity. Universe 2021, 7, 153. [Google Scholar] [CrossRef]
- El Hanafy, W.; Nashed, G.G.L. Exact Teleparallel Gravity of Binary Black Holes. Astrophys. Space Sci. 2016, 361, 68. [Google Scholar] [CrossRef]
- Aftergood, J.; DeBenedictis, A. Matter Conditions for Regular Black Holes in f(T) Gravity. Phys. Rev. D 2014, 90, 124006. [Google Scholar] [CrossRef]
- Bahamonde, S.; Doneva, D.D.; Ducobu, L.; Pfeifer, C.; Yazadjiev, S.S. Spontaneous Scalarization of Black Holes in Gauss-Bonnet Teleparallel Gravity. Phys. Rev. D 2023, 107, 104013. [Google Scholar] [CrossRef]
- Bahamonde, S.; Ducobu, L.; Pfeifer, C. Scalarized Black Holes in Teleparallel Gravity. J. Cosmol. Atroparticle Phys. 2022, 2022, 18. [Google Scholar] [CrossRef]
- Iorio, L.; Radicella, N.; Ruggiero, M.L. Constraining f(T) gravity in the Solar System. J. Cosmol. Atroparticle Phys. 2015, 2015, 21. [Google Scholar] [CrossRef]
- Pradhan, S.; Bhar, P.; Mandal, S.; Sahoo, P.K.; Bamba, K. The Stability of Anisotropic Compact Stars Influenced by Dark Matter under Teleparallel Gravity: An Extended Gravitational Deformation Approach. Eur. Phys. J. C 2025, 85, 127. [Google Scholar] [CrossRef]
- Mohanty, D.; Ghosh, S.; Sahoo, P.K. Charged gravastar model in noncommutative geometry under f(T) gravity. Phys. Dark Universe 2025, 46, 101692. [Google Scholar] [CrossRef]
- Calza, M.; Sebastiani, L. A class of static spherically symmetric solutions in f(T)-gravity. Eur. Phys. J. C 2024, 84, 476. [Google Scholar] [CrossRef]
- Coley, A.A.; Landry, A.; van den Hoogen, R.J.; McNutt, D.D. Spherically symmetric teleparallel geometries. Eur. Phys. J. C 2024, 84, 334. [Google Scholar] [CrossRef] [PubMed]
- Landry, A. Static spherically symmetric perfect fluid solutions in teleparallel F(T) gravity. Axioms 2024, 13, 333. [Google Scholar] [CrossRef]
- Landry, A. Kantowski-Sachs spherically symmetric solutions in teleparallel F(T) gravity. Symmetry 2024, 16, 953. [Google Scholar] [CrossRef]
- van den Hoogen, R.J.; Forance, H. Teleparallel Geometry with Spherical Symmetry: The diagonal and proper frames. J. Cosmol. Astrophys. 2024, 11, 033. [Google Scholar] [CrossRef]
- Landry, A. Scalar field Kantowski-Sachs spacetime solutions in teleparallel F(T) gravity. Universe 2025, 11, 26. [Google Scholar] [CrossRef]
- Landry, A. Scalar Field Static Spherically Symmetric Solutions in Teleparallel F(T) Gravity. Mathematics 2025, 13, 1003. [Google Scholar] [CrossRef]
- Coley, A.A.; Landry, A.; van den Hoogen, R.J.; McNutt, D.D. Generalized Teleparallel de Sitter geometries. Eur. Phys. J. C 2023, 83, 977. [Google Scholar] [CrossRef] [PubMed]
- Golovnev, A.; Guzman, M.-J. Bianchi identities in f(T)-gravity: Paving the way to confrontation with astrophysics. Phys. Lett. B 2020, 810, 135806. [Google Scholar] [CrossRef]
- Landry, A. Scalar field source Teleparallel Robertson-Walker F(T)-gravity solutions. Mathematics 2025, 13, 374. [Google Scholar] [CrossRef]
- Coley, A.A.; Landry, A.; Gholami, F. Teleparallel Robertson-Walker Geometries and Applications. Universe 2023, 9, 454. [Google Scholar] [CrossRef]
- Coley, A.A.; van den Hoogen, R.J.; McNutt, D.D. Symmetric Teleparallel Geometries. Class. Quantum Gravity 2022, 39, 22LT01. [Google Scholar] [CrossRef]
- Aldrovandi, R.; Cuzinatto, R.R.; Medeiros, L.G. Analytic solutions for the Λ-FRW Model. Found. Phys. 2006, 36, 1736–1752. [Google Scholar] [CrossRef]
- Casalino, A.; Sanna, B.; Sebastiani, L.; Zerbini, S. Bounce Models within Teleparallel modified gravity. Phys. Rev. D 2021, 103, 023514. [Google Scholar] [CrossRef]
- Capozziello, S.; Luongo, O.; Pincak, R.; Ravanpak, A. Cosmic acceleration in non-flat f(T) cosmology. Gen. Relativ. Gravit. 2018, 50, 53. [Google Scholar] [CrossRef]
- Bahamonde, S.; Dialektopoulos, K.F.; Hohmann, M.; Said, J.L.; Pfeifer, C.; Saridakis, E.N. Perturbations in Non-Flat Cosmology for f(T) gravity. Eur. Phys. J. C 2023, 83, 193. [Google Scholar] [CrossRef]
- Gholami, F.; Landry, A. Cosmological solutions in teleparallel F(T,B) gravity. Symmetry 2025, 17, 60. [Google Scholar] [CrossRef]
- Hohmann, M.; Järv, L.; Krššák, M.; Pfeifer, C. Modified teleparallel theories of gravity in symmetric spacetimes. Phys. Rev. D 2019, 2019 100, 084002. [Google Scholar] [CrossRef]
- Cai, Y.-F.; Capozziello, S.; De Laurentis, M.; Saridakis, E.N. f(T) teleparallel gravity and cosmology. Rep. Prog. Phys. 2016, 79, 106901. [Google Scholar] [CrossRef]
- Dixit, A.; Pradhan, A. Bulk Viscous Flat FLRW Model with Observational Constraints in f(T,B) Gravity. Universe 2022, 8, 650. [Google Scholar] [CrossRef]
- Chokyi, K.K.; Chattopadhyay, S. Cosmological Models within f(T,B) Gravity in a Holographic Framework. Particles 2024, 7, 856–878. [Google Scholar] [CrossRef]
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Bohmer, C.G.; d’Alfonso del Sordo, A. Cosmological fluids with boundary term couplings. Gen. Relativ. Gravit. 2024, 56, 75. [Google Scholar] [CrossRef]
- Bahamonde, S.; Bohmer, C.G.; Carloni, S.; Copeland, E.J.; Fang, W.; Tamanini, N. Dynamical systems applied to cosmology: Dark energy and modified gravity. Phys. Rep. 2018, 775–777, 1–122. [Google Scholar] [CrossRef]
- Zlatev, I.; Wang, L.; Steinhardt, P. Quintessence, Cosmic Coincidence, and the Cosmological Constant. Phys. Rev. Lett. 1999, 82, 896. [Google Scholar] [CrossRef]
- Steinhardt, P.; Wang, L.; Zlatev, I. Cosmological tracking solutions. Phys. Rev. D 1999, 59, 123504. [Google Scholar] [CrossRef]
- Caldwell, R.R.; Dave, R.; Steinhardt, P. Cosmological Imprint of an Energy Component with General Equation of State. Phys. Rev. Lett. 1998, 80, 1582. [Google Scholar] [CrossRef]
- Carroll, S.M. Quintessence and the Rest of the World. Phys. Rev. Lett. 1998, 81, 3067. [Google Scholar] [CrossRef]
- Doran, M.; Lilley, M.; Schwindt, J.; Wetterich, C. Quintessence and the Separation of CMB Peaks. Astrophys. J. 2001, 559, 501. [Google Scholar] [CrossRef]
- Zeng, X.-X.; Chen, D.-Y.; Li, L.-F. Holographic thermalization and gravitational collapse in the spacetime dominated by quintessence dark energy. Phys. Rev. D 2015, 91, 046005. [Google Scholar] [CrossRef]
- Chakraborty, S.; Mishra, S.; Chakraborty, S. Dynamical system analysis of quintessence dark energy model. Int. J. Geom. Methods Mod. Phys. 2025, 22, 2450250. [Google Scholar] [CrossRef]
- Shlivko, D.; Steinhardt, P.J. Assessing observational constraints on dark energy. Phys. Lett. B 2024, 855, 138826. [Google Scholar] [CrossRef]
- Ratra, B.; Peebles, P.J.E. Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D 1988, 37, 3406. [Google Scholar] [CrossRef] [PubMed]
- Wolf, W.J.; Ferreira, P.G. Underdetermination of dark energy. Phys. Rev. D 2023, 108, 103519. [Google Scholar] [CrossRef]
- Wolf, W.J.; García-García, C.; Bartlett, D.J.; Ferreira, P.G. Scant evidence for thawing quintessence. Phys. Rev. D 2024, 110, 083528. [Google Scholar] [CrossRef]
- Wolf, W.J.; Ferreira, P.G.; García-García, C. Matching current observational constraints with nonminimally coupled dark energy. Phys. Rev. D 2025, 111, L041303. [Google Scholar] [CrossRef]
- Wetterich, C. Cosmology and the Fate of Dilatation Symmetry. Nucl. Phys. B 1988, 302, 668. [Google Scholar] [CrossRef]
- Chiba, T.; Okabe, T.; Yamaguchi, M. Kinetically Driven Quintessence. Phys. Rev. D 2000, 62, 023511. [Google Scholar] [CrossRef]
- Carroll, S.M.; Hoffman, M.; Trodden, M. Can the dark energy equation-of-state parameter w be less than −1? Phys. Rev. D 2003, 68, 023509. [Google Scholar] [CrossRef]
- Caldwell, R.R. A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Phys. Lett. B 2002, 545, 23. [Google Scholar] [CrossRef]
- Farnes, J.S. A Unifying Theory of Dark Energy and Dark Matter: Negative Masses and Matter Creation within a Modified ΛCDM Framework. Astron. Astrophys. 2018, 620, A92. [Google Scholar] [CrossRef]
- Baum, L.; Frampton, P.H. Turnaround in Cyclic Cosmology. Phys. Rev. Lett. 2007, 98, 071301. [Google Scholar] [CrossRef]
- Hu, W. Crossing the Phantom Divide: Dark Energy Internal Degrees of Freedom. Phys. Rev. D 2005, 71, 047301. [Google Scholar] [CrossRef]
- Karimzadeh, S.; Shojaee, R. Phantom-Like Behavior in Modified Teleparallel Gravity. Adv. High Energy Phys. 2019, 2019, 4026856. [Google Scholar] [CrossRef]
- Pati, L.; Kadam, S.A.; Tripathy, S.K.; Mishra, B. Rip cosmological models in extended symmetric teleparallel gravity. Phys. Dark Universe 2022, 35, 100925. [Google Scholar] [CrossRef]
- Kucukakca, Y.; Akbarieh, A.R.; Ashrafi, S. Exact solutions in teleparallel dark energy model. Chin. J. Phys. 2023, 82, 47. [Google Scholar] [CrossRef]
- Cai, Y.-F.; Saridakis, E.N.; Setare, M.R.; Xia, J.-Q. Quintom Cosmology: Theoretical implications and observations. Phys. Rep. 2010, 493, 1. [Google Scholar] [CrossRef]
- Guo, Z.-K.; Piao, Y.-S.; Zhang, X.; Zhang, Y.-Z. Cosmological evolution of a quintom model of dark energy. Phys. Lett. B 2005, 608, 177. [Google Scholar] [CrossRef]
- Feng, B.; Li, M.; Piao, Y.-S.; Zhang, X. Oscillating quintom and the recurrent universe. Phys. Lett. B 2006, 634, 101. [Google Scholar] [CrossRef]
- Mishra, S.; Chakraborty, S. Dynamical system analysis of quintom dark energy model. Eur. Phys. J. C 2018, 78, 917. [Google Scholar] [CrossRef]
- Tot, J.; Coley, A.A.; Yildrim, B.; Leon, G. The dynamics of scalar-field Quintom cosmological models. Phys. Dark Universe 2023, 39, 101155. [Google Scholar] [CrossRef]
- Bahamonde, S.; Marciu, M.; Rudra, P. Generalised teleparallel quintom dark energy non-minimally coupled with the scalar torsion and a boundary term. J. Cosmol. Astropart. Phys. 2018, 4, 56. [Google Scholar] [CrossRef]
- Myrzakulov, R. Accelerating universe from F(T) gravity. Eur. Phys. J. C 2011, 71, 1752. [Google Scholar] [CrossRef]
- Myrzakulov, R.; Saez-Gomez, D.; Tsyba, P. Cosmological solutions in F(T) gravity with the presence of spinor fields. Int. J. Geom. Methods Mod. Phys. 2015, 12, 1550023. [Google Scholar] [CrossRef]
- Paliathanasis, A. F(T) Cosmology with Nonzero Curvature. Mod. Phys. Lett. A 2021, 36, 2150261. [Google Scholar] [CrossRef]
- Gorini, V.; Kamenshchik, A.Y.; Moschella, U.; Pasquier, V. Chaplygin gas as a model for dark energy. In Proceedings of the Tenth Marcel Grossmann Meeting: On Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories (In 3 Volumes), Rio de Janeiro, Brazil, 20–26 July 2003; p. 840. [Google Scholar]
- Bento, M.C.; Bertolami, O.; Sen, A.A. Generalized Chaplygin Gas Model: Dark Energy-Dark Matter Unification and CMBR Constraints. Gen. Relativ. Gravit. 2003, 35, 2063. [Google Scholar] [CrossRef]
- Bilić, N.; Tuppe, G.B.; Viollier, R.D. Unification of dark matter and dark energy: The inhomogeneous Chaplygin gas. Phys. Lett. B 2002, 535, 17. [Google Scholar] [CrossRef]
- Makler, M.; de Oliveira, S.Q.; Waga, I. Observational constraints on Chaplygin quartessence: Background results. Phys. Rev. D 2003, 68, 123521. [Google Scholar] [CrossRef]
- Zhu, Z.-H. Generalized Chaplygin gas as a unified scenario of dark matter/energy: Observational constraints. Astron. Astrophys. 2004, 423, 421. [Google Scholar] [CrossRef]
- Karami, K.; Ghaffari, S.; Fehri, J. Interacting polytropic gas model of phantom dark energy in non-flat universe. Eur. Phys. J. C 2009, 64, 85. [Google Scholar] [CrossRef]
- Karami, K.; Safari, Z.; Asadzadeh, S. Cosmological constraints on polytropic gas model. Int. J. Theor. Phys. 2014, 53, 1248. [Google Scholar]
- Karami, K.; Abdolmaleki, A. Reconstructing interacting new agegraphic polytropic gas model in non-flat FRW universe. Astrophys. Space Sci. 2010, 330, 133. [Google Scholar] [CrossRef]
- Karami, K.; Khaledian, M.S. Polytropic and Chaplygin f(R)-gravity models. Int. J. Mod. Phys. D 2012, 21, 1250083. [Google Scholar] [CrossRef]
- Banerjee, S.; Paul, A. Effect of Accretion on the evolution of Primordial Black Holes in the context of Modified Gravity Theories. arXiv 2024, arXiv:2406.04605. [Google Scholar] [CrossRef]
- Aboueisha, M.S.; Nouh, M.I.; Abdel-Salam, E.A.-B.; Kamel, T.M.; Beheary, M.M.; Gadallah, K.A.K. Analysis of the Fractional Relativistic Polytropic Gas Sphere. Sci. Rep. 2023, 13, 14304. [Google Scholar] [CrossRef]
- Cardenas, V.H.; Cruz, M. Emulating dark energy models with known equation of state via the created cold dark matter scenario. Phys. Dark Universe 2024, 44, 101452. [Google Scholar] [CrossRef]
- Jia, Y.; He, T.-Y.; Wang, W.-Q.; Han, Z.-W.; Yang, R.-J. Accretion of matter by a Charged dilaton black hole. Eur. Phys. J. C 2024, 84, 501. [Google Scholar] [CrossRef]
- Arun, K.; Gudennavar, S.B.; Sivaram, C. Dark matter, dark energy, and alternate models: A review. Adv. Space Res. 2017, 60, 166. [Google Scholar] [CrossRef]
- Iosifidis, D. Cosmological Hyperfluids, Torsion and Non-metricity. Eur. Phys. J. C 2020, 80, 1042. [Google Scholar] [CrossRef]
- Heisenberg, L.; Hohmann, M.; Kuhn, S. Homogeneous and isotropic cosmology in general teleparallel gravity. Eur. Phys. J. C 2023, 83, 315. [Google Scholar] [CrossRef] [PubMed]
- Heisenberg, L.; Hohmann, M. Gauge-invariant cosmological perturbations in general teleparallel gravity. Eur. Phys. J. C 2024, 84, 462. [Google Scholar] [CrossRef]
- Kontou, E.-A.; Sanders, K. Energy conditions in general relativity and quantum field theory. Class. Quantum Gravity 2020, 37, 193001. [Google Scholar] [CrossRef]
- DESI Collaboration. The Dark Energy Survey: Cosmology Results With 1500 New High-redshift Type Ia Supernovae Using The Full 5-year Dataset. Astrophys. J. Lett. 2024, 973, L14. [Google Scholar] [CrossRef]
- DESI Collaboration. DESI 2024 VI: Cosmological Constraints from the Measurements of Baryon Acoustic Oscillations. J. Cosmol. Astropart. Phys. 2025, 2, 21. [Google Scholar]
- DESI Collaboration. Dark Energy Survey: Implications for cosmological expansion models from the final DES Baryon Acoustic Oscillation and Supernova data. arXiv 2025, arXiv:2503.06712. [Google Scholar]
- DESI Collaboration. DESI DR2 Results II: Measurements of Baryon Acoustic Oscillations and Cosmological Constraint. arXiv arXiv:2503.14738. [CrossRef]
- DESI Collaboration. DESI DR2 Results I: Baryon Acoustic Oscillations from the Lyman Alpha Forest. Phys. Rev. D, 2025; in press. [Google Scholar]
- Notari, A.; Redi, M.; Tesi, A. BAO vs. SN evidence for evolving dark energy. J. Cosmol. Astropart. Phys. 2025, 4, 48. [Google Scholar] [CrossRef]
- Berti, M.; Bellini, E.; Bonvin, C.; Kunz, M.; Viel, M.; Zumalacarregui, M. Reconstructing the dark energy density in light of DESI BAO observations. Phys. Rev. D 2025, 112, 023518. [Google Scholar] [CrossRef]
- Escamilla-Rivera, C.; Sandoval-Orozco, R. f(T) gravity after DESI Baryon acoustic oscillation and DES supernovae 2024 data. J. High Energy Astrophys. 2024, 42, 217–221. [Google Scholar] [CrossRef]
- Aguilar, A.; Escamilla-Rivera, C.; Said, J.L.; Mifsud, J. Non-fluid like Boltzmann code architecture for early times f(T) cosmologies. arXiv 2024, arXiv:2403.13708. [Google Scholar]
- Sandoval-Orozco, R.; Escamilla-Rivera, C.; Briffa, R.; Said, J.L. Testing f(T) cosmologies with HII Hubble diagram and CMB distance priors. Phys. Dark Universe 2024, 46, 101641. [Google Scholar] [CrossRef]
p | |
0 limit | |
3 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Landry, A. Chaplygin and Polytropic Gases Teleparallel Robertson-Walker F(T) Gravity Solutions. Mathematics 2025, 13, 3143. https://doi.org/10.3390/math13193143
Landry A. Chaplygin and Polytropic Gases Teleparallel Robertson-Walker F(T) Gravity Solutions. Mathematics. 2025; 13(19):3143. https://doi.org/10.3390/math13193143
Chicago/Turabian StyleLandry, Alexandre. 2025. "Chaplygin and Polytropic Gases Teleparallel Robertson-Walker F(T) Gravity Solutions" Mathematics 13, no. 19: 3143. https://doi.org/10.3390/math13193143
APA StyleLandry, A. (2025). Chaplygin and Polytropic Gases Teleparallel Robertson-Walker F(T) Gravity Solutions. Mathematics, 13(19), 3143. https://doi.org/10.3390/math13193143