Closed-Form Expressions for the Normalizing Constants of the Mallows Model and Weighted Mallows Model on Combinatorial Domains
Abstract
1. Introduction
2. The Mallows Model
3. Discrepancy Functions
3.1. Permutation Discrepancy Functions
3.2. Combinatorial Discrepancy Functions
4. Normalizing Constant for Combinatorial Domains
4.1. Normalizing Constant with the Hamming Distance
4.2. Normalizing Constant with the Symmetric Difference
4.3. Normalizing Constant with the Similarity Coefficient Distance
5. Weighted Mallows Model for Combinatorial Domains
5.1. Weighted Mallows Model Normalizing Constant with the Hamming Distance
5.2. Weighted Mallows Model Normalizing Constant with the Symmetric Difference
5.3. Weighted Mallows Model Normalizing Constant with the Similarity Coefficient Distance
6. Discussion
7. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Berge, C. Principles of Combinatorics; Academic Press: New York, NY, USA, 1971. [Google Scholar]
- Biggs, N.L. The roots of combinatorics. Hist. Math. 1979, 6, 109–136. [Google Scholar] [CrossRef]
- Cameron, P.J. Permutation Groups; Number 45; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Nixon, R. Amending the Selective Service Regulations to Prescribe Random Selection; Executive Order 11497, Number 229; Federal Register: Washington, DC, USA, 1969; Volume 34. [Google Scholar]
- Fienberg, S.E. Randomization and Social Affairs: The 1970 Draft Lottery. Science 1971, 171, 255–261. [Google Scholar] [CrossRef]
- Hall, M.; Knuth, D.E. Combinatorial Analysis and Computers. Am. Math. Mon. 1965, 72, 21–28. [Google Scholar] [CrossRef]
- Papadimitriou, C.H.; Steiglitz, K. Combinatorial Optimization: Algorithms and Complexity; Courier Corporation: New York, NY, USA, 2013. [Google Scholar]
- Chen, S.; Lin, T.; King, I.; Lyu, M.R.; Chen, W. Combinatorial pure exploration of multi-armed bandits. Adv. Neural Inf. Process. Syst. 2014, 27, 379–387. [Google Scholar]
- Robins, G.; Pattison, P.; Kalish, Y.; Lusher, D. An introduction to exponential random graph (p*) models for social networks. Soc. Netw. 2007, 29, 173–191. [Google Scholar] [CrossRef]
- Liang, F. A double Metropolis–Hastings sampler for spatial models with intractable normalizing constants. J. Stat. Comput. Simul. 2010, 80, 1007–1022. [Google Scholar] [CrossRef]
- Park, J.; Haran, M. Bayesian inference in the presence of intractable normalizing functions. J. Am. Stat. Assoc. 2018, 113, 1372–1390. [Google Scholar] [CrossRef]
- Mallows, C.L. Non-null ranking models. I. Biometrika 1957, 44, 114–130. [Google Scholar] [CrossRef]
- Spearman, C. The proof and measurement of association between two things. Am. J. Psychol. 1904, 15, 72–101. [Google Scholar] [CrossRef]
- Kendall, M.G. A new measure of rank correlation. Biometrika 1938, 30, 81–93. [Google Scholar] [CrossRef]
- Bradley, R.A.; Terry, M.E. Rank analysis of incomplete block designs: I. The method of paired comparisons. Biometrika 1952, 39, 324–345. [Google Scholar] [CrossRef]
- Diaconis, P. Group Representations in Probability and Statistics; Lecture Notes-Monograph Series; Institute of Mathematical Statistics: Hayward, CA, USA, 1988; Volume 11, pp. i–vi+1–192. [Google Scholar]
- Fligner, M.A.; Verducci, J.S. Distance based ranking models. J. R. Stat. Soc. Ser. B (Methodol.) 1986, 48, 359–369. [Google Scholar] [CrossRef]
- Spearman, C. Footrule for measuring correlation. Br. J. Psychol. 1906, 2, 89. [Google Scholar] [CrossRef]
- Hamming, R.W. Error detecting and error correcting codes. Bell Syst. Tech. J. 1950, 29, 147–160. [Google Scholar] [CrossRef]
- Ulam, S.M. Monte Carlo calculations in problems of mathematical physics. Mod. Math. Eng. 1961, 261, 281. [Google Scholar]
- Levenshtein, V.I. Binary codes capable of correcting deletions, insertions, and reversals. In Soviet Physics-Doklady; American Institute of Physics: New York, NY, USA, 1966; Volume 10, pp. 707–710. [Google Scholar]
- Irurozki, E. Sampling and Learning Distance-Based Probability Models for Permutation Spaces. Ph.D. Thesis, Universidad del País Vasco-Euskal Herriko Unibertsitatea, Biscay, Spain, 2014. [Google Scholar]
- Cayley, A. Note on the theory of permutations. Lond. Edinburgh Dublin Philos. Mag. J. Sci. 1849, 34, 527–529. [Google Scholar] [CrossRef]
- Jaccard, P. Distribution de la Flore Alpine dans le Bassin des Dranses et dans quelques régions voisines. Bull. Soc. Vaudoise Sci. Nat. 1901, 37, 241–272. [Google Scholar]
- Rand, W.M. Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 1971, 66, 846–850. [Google Scholar] [CrossRef]
- Goodall, D.W. The distribution of the matching coefficient. Biometrics 1967, 23, 647–656. [Google Scholar] [CrossRef]
- Sokal, R.R.; Michener, C.D. A Statistical Method for Evaluating Systematic Relationships; University of Kansas Scientific Bulletin: Lawrence, KS, USA, 1958. [Google Scholar]
- Esscher, F. On the probability function in the collective theory of risk. Scand. Actuar. J. 1932, 1932, 175–195. [Google Scholar] [CrossRef]
- Lehmann, L. Theory of Point Estimation; A Wiley Publication in Mathematical Statistics; Wiley: Hoboken, NJ, USA, 1983. [Google Scholar]
- Karp, R.M. On the computational complexity of combinatorial problems. Networks 1975, 5, 45–68. [Google Scholar] [CrossRef]
- Krohling, R.A. Gaussian swarm: A novel particle swarm optimization algorithm. In Proceedings of the IEEE Conference on Cybernetics and Intelligent Systems, Singapore, 1–3 December 2004; IEEE: New York, NY, USA, 2004; Volume 1, pp. 372–376. [Google Scholar]
- Jia, D.; Zheng, G.; Khan, M.K. An effective memetic differential evolution algorithm based on chaotic local search. Inf. Sci. 2011, 181, 3175–3187. [Google Scholar] [CrossRef]
- Lara, A.; Sanchez, G.; Coello, C.A.C.; Schutze, O. HCS: A new local search strategy for memetic multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 2009, 14, 112–132. [Google Scholar] [CrossRef]
Discrepancy Function | Normalizing Constant |
---|---|
Hamming distance | |
Symmetric difference | |
Similarity index | |
Weighted Hamming distance | |
Weighted Symmetric difference | |
Weighted Similarity index |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Zyl, J.-P.; Engelbrecht, A.P. Closed-Form Expressions for the Normalizing Constants of the Mallows Model and Weighted Mallows Model on Combinatorial Domains. Mathematics 2025, 13, 3126. https://doi.org/10.3390/math13193126
van Zyl J-P, Engelbrecht AP. Closed-Form Expressions for the Normalizing Constants of the Mallows Model and Weighted Mallows Model on Combinatorial Domains. Mathematics. 2025; 13(19):3126. https://doi.org/10.3390/math13193126
Chicago/Turabian Stylevan Zyl, Jean-Pierre, and Andries Petrus Engelbrecht. 2025. "Closed-Form Expressions for the Normalizing Constants of the Mallows Model and Weighted Mallows Model on Combinatorial Domains" Mathematics 13, no. 19: 3126. https://doi.org/10.3390/math13193126
APA Stylevan Zyl, J.-P., & Engelbrecht, A. P. (2025). Closed-Form Expressions for the Normalizing Constants of the Mallows Model and Weighted Mallows Model on Combinatorial Domains. Mathematics, 13(19), 3126. https://doi.org/10.3390/math13193126