Modeling Intervention Strategies to Control Hepatitis C Outbreak and Related Mortality in Bangladesh
Abstract
1. Introduction
2. Methods and Materials
3. Model Analysis
3.1. Positivity and Boundness Analysis
Positive Invariance
3.2. Positive Invariance for All Variables
3.2.1. Boundedness
3.2.2. Disease Free Equilibrium and Basic Reproduction Number
3.2.3. Endemic Equilibrium Points
4. Results and Discussion
4.1. Parameter Estimation
4.2. Sensitivity Analysis
4.3. Bifurcation Analysis
4.4. Scenario Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shepard, C.W.; Finelli, L.; Alter, M.J. Global epidemiology of hepatitis C virus infection. Lancet Infect. Dis. 2005, 5, 558–567. [Google Scholar] [CrossRef]
- Valery, P.C.; Laversanne, M.; Clark, P.J.; Petrick, J.L.; McGlynn, K.A.; Bray, F. Projections of primary liver cancer to 2030 in 30 countries worldwide. Hepatology 2018, 67, 600–611. [Google Scholar] [CrossRef]
- Perz, J.F.; Armstrong, G.L.; Farrington, L.A.; Hutin, Y.J.; Bell, B.P. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J. Hepatol. 2006, 45, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Wait, S.; Kell, E.; Hamid, S.; Muljono, D.H.; Sollano, J.; Mohamed, R.; Shah, S.; Mahtab, M.A.; Abbas, Z.; Johnston, J.; et al. Hepatitis B and hepatitis C in southeast and southern Asia: Challenges for governments. Lancet Gastroenterol. Hepatol. 2016, 1, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Stewart, B.W.; Wild, C. World Cancer Report 2014; International Agency for Research on Cancer: Lyon, France, 2014; p. 630. [Google Scholar]
- Liu, Y.; Liu, L. Changes in the Epidemiology of Hepatocellular Carcinoma in Asia. Cancers 2022, 14, 4473. [Google Scholar] [CrossRef]
- IEDCR; ICDDRB. National HIV Serological Surveillance 2011, Bangladesh: 9th Round Technical Report; National AIDS/STD Program (NASP), Directorate General of Health Services, Ministry of Health and Family Welfare, Government of the People’s Republic of Bangladesh: Dhaka, Bangladesh, 2011. [Google Scholar]
- Yee, L.J.; Weiss, H.L.; Langner, R.G.; Herrera, J.; A Kaslow, R.; van Leeuwen, D.J. Risk factors for acquisition of hepatitis C virus infection: A case series and potential implications for disease surveillance. BMC Infect. Dis. 2001, 1, 8. [Google Scholar] [CrossRef]
- Lapa, D.; Garbuglia, A.R.; Capobianchi, M.R.; Del Porto, P. Hepatitis C virus genetic variability, human immune response, and genome polymorphisms: Which is the interplay? Cells 2019, 8, 305. [Google Scholar] [CrossRef]
- Al-Mahtab, M. Past, Present, and Future of Viral Hepatitis in Bangladesh. Euroasian J. Hepato-Gastroenterol. 2016, 6, 43–44. [Google Scholar] [CrossRef]
- Abedin, M.F.; Hoque, M.M.; Islam, A.S.M.S.; Chowdhury, M.F.I.; Das, D.C.; Begum, S.A.; Mamun, A.A.; Mahtab, M.A.; Rahman, S.; Saha, A.K. Chronic liver disease is one of the leading causes of death in Bangladesh: Experience by death audit from a tertiary hospital. Euroasian J. Hepato-Gastroenterol. 2014, 4, 14–17. [Google Scholar] [CrossRef]
- Cuypers, L.; Li, G.; Libin, P.; Piampongsant, S.; Vandamme, A.-M.; Theys, K. Genetic diversity and selective pressure in hepatitis C virus genotypes 1–6: Significance for direct-acting antiviral treatment and drug resistance. Viruses 2015, 7, 5018–5039. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.J.; Habib, M.A.; Jamiruddin, M.R.; Ahmed, F.; Hossain, A. Prevalence of Hepatitis C Virus Genotypes in Bangladesh. In Proceedings of the 13th Annual Scientific Conference ICDDRB Dhaka, Dhaka, Bangladesh, 14–17 March 2011. [Google Scholar]
- Petruzziello, A.; Marigliano, S.; Loquercio, G.; Cozzolino, A.; Cacciapuoti, C. Global epidemiology of hepatitis C virus infection: An up-date of the distribution and circulation of hepatitis C virus genotypes. World J. Gastroenterol. 2016, 22, 7824–7840. [Google Scholar] [CrossRef] [PubMed]
- Petruzziello, A.; Sabatino, R.; Loquercio, G.; Guzzo, A.; Di Capua, L.; Labonia, F.; Cozzolino, A.; Azzaro, R.; Botti, G.; Khudyakov, Y.E. Nine-year distribution pattern of hepatitis C virus (HCV) genotypes in Southern Italy. PLoS ONE 2019, 14, e0212033. [Google Scholar] [CrossRef] [PubMed]
- Messina, J.P.; Humphreys, I.; Flaxman, A.; Brown, A.; Cooke, G.S.; Pybus, O.G.; Barnes, E. Global distribution and prevalence of hepatitis C virus genotypes. Hepatology 2015, 61, 77–87. [Google Scholar] [CrossRef]
- WHO. Global Health Sector Strategy on Viral Hepatitis 2016–2021; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Rehermann, B. Pathogenesis of chronic viral hepatitis: Differential roles of T cells and NK cells. Nat. Med. 2013, 19, 859–868. [Google Scholar] [CrossRef]
- Hajarizadeh, B.; Grebely, J.; Dore, G.J. Epidemiology and natural history of HCV infection. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 553–562. [Google Scholar] [CrossRef]
- Larrubia, J.R.; Moreno-Cubero, E.; Lokhande, M.U.; García-Garzón, S.; Lázaro, A.; Miquel, J.; Perna, C.; Sanz-de-Villalobos, E. Adaptive immune response during hepatitis C virus infection. World J. Gastroenterol. 2014, 20, 3418–3430. [Google Scholar] [CrossRef]
- Wedemeyer, H.; He, X.-S.; Nascimbeni, M.; Davis, A.R.; Greenberg, H.B.; Hoofnagle, J.H.; Liang, T.J.; Alter, H.; Rehermann, B. Impaired effector function of hepatitis C virus-specific CD8+ T cells in chronic hepatitis C virus infection. J. Immunol. 2002, 169, 3447–3458. [Google Scholar] [CrossRef]
- Larrubia, J.R.; Benito-Martínez, S.; Miquel, J.; Calvino, M.; Sanz-de-Villalobos, E.; González-Praetorius, A.; Albertos, S.; García-Garzón, S.; Lokhande, M.; Parra-Cid, T. Bim-mediated apoptosis and PD-1/PD-L1 pathway impair reactivity of PD1(+)/CD127(−) HCV-specific CD8(+) cells targeting the virus in chronic hepatitis C virus infection. Cell Immunol. 2011, 269, 104–114. [Google Scholar] [CrossRef]
- Penna, A.; Pilli, M.; Zerbini, A.; Orlandini, A.; Mezzadri, S.; Sacchelli, L.; Missale, G.; Ferrari, C. Dysfunction and functional restoration of HCV-specific CD8 responses in chronic hepatitis C virus infection. Hepatology 2007, 45, 588–601. [Google Scholar] [CrossRef]
- Bengsch, B.; Seigel, B.; Ruhl, M.; Timm, J.; Kuntz, M.; Blum, H.E.; Pircher, H.; Thimme, R.; Walker, C.M. Coexpression of PD-1, 2B4, CD160 and KLRG1 on exhausted HCV-specific CD8+ T cells is linked to antigen recognition and T cell differentiation. PLOS Pathog. 2010, 6, e1000947. [Google Scholar]
- Wood, N.A.; La Linn, M.; Bowen, D.G.; Kowdley, K.; McCaughan, G.; Trautwein, C. Exhausted or just sleeping: Awakening virus-specific responses in chronic hepatitis C virus infection. Hepatology 2011, 54, 1879–1882. [Google Scholar] [CrossRef]
- Larrubia, J.R.; Lokhande, M.U.; García-Garzón, S.; Miquel, J.; González-Praetorius, A.; Parra-Cid, T.; Sanz-de-Villalobos, E. Persistent hepatitis C virus (HCV) infection impairs HCV-specific cytotoxic T cell reactivity through Mcl-1/Bim imbalance due to CD127 down-regulation. J. Viral. Hepat. 2013, 20, 85–94. [Google Scholar]
- Radziewicz, H.; Ibegbu, C.C.; Hon, H.; Osborn, M.K.; Obideen, K.; Wehbi, M.; Freeman, G.J.; Lennox, J.L.; Workowski, K.A.; Hanson, H.L. Impaired hepatitis C virus (HCV)-specific effector CD8+ T cells undergo massive apoptosis in the peripheral blood during acute HCV infection and in the liver during the chronic phase of infection. J. Virol. 2008, 82, 9808–9822. [Google Scholar]
- European Association for the Study of the Liver. EASL recommendations on treatment of hepatitis C 2014. J. Hepatol. 2014, 61, 373–395. [Google Scholar] [CrossRef]
- Au, J.S.; Pockros, P.J. Novel therapeutic approaches for hepatitis C. Clin. Pharmacol. Ther. 2014, 95, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Gibbert, K.; Schlaak, J.F.; Yang, D.; Dittmer, U. IFN-α subtypes: Distinct biological activities in anti-viral therapy. Br. J. Pharmacol. 2013, 168, 1048–1058. [Google Scholar] [PubMed]
- Kuddus, A.; McBryde, E.S.; Adekunle, A.I.; White, L.J.; Meehan, M.T. Mathematical analysis of a two-strain disease model with amplification. Chaos Solitons Fractals 2021, 143, 110594. [Google Scholar]
- Yang, Y.; Li, J.; Ma, Z.; Liu, L. Global stability of two models with incomplete treatment for tuberculosis. Chaos Solitons Fractals 2010, 43, 79–85. [Google Scholar]
- Trauer, J.M.; Denholm, J.T.; McBryde, E.S. Construction of a mathematical model for tuberculosis transmission in highly endemic regions of the Asia-Pacific. J. Theor. Biol. 2014, 358, 74–84. [Google Scholar] [CrossRef]
- Kuddus, A.; Mohiuddin, M.; Rahman, A. Mathematical analysis of a measles transmission dynamics model in Bangladesh with double dose vaccination. Sci. Rep. 2021, 11, 16571. [Google Scholar] [CrossRef] [PubMed]
- Tilahun, G.T.; Demie, S.; Eyob, A. Stochastic model of measles transmission dynamics with double dose vaccination. Infect. Dis. Model. 2020, 5, 478–494. [Google Scholar] [CrossRef] [PubMed]
- Sadki, M.; Danane, J.; Allali, K. Hepatitis C virus fractional-order model: Mathematical analysis. Model. Earth Syst. Environ. 2022, 9, 1695–1707. [Google Scholar] [CrossRef] [PubMed]
- Zitzmann, C.; Kaderali, L.; Perelson, A.S.; Miller-Jensen, K. Mathematical modeling of hepatitis C RNA replication, exosome secretion and virus release. PLOS Comput. Biol. 2020, 16, e1008421. [Google Scholar] [CrossRef]
- Chatterjee, A.N.; Roy, P.K. Anti-viral drug treatment along with immune activator IL-2: A control-based mathematical approach for HIV infection. Int. J. Control. 2012, 85, 220–237. [Google Scholar] [CrossRef]
- Chatterjee, A.N.; Singh, M.K.; Kumar, B. The effect of immune responses in HCV disease progression. Eng. Math. Lett. 2019, 2019, 1. [Google Scholar] [CrossRef]
- Nowak, M.A.; Bangham, C.R.M. Population dynamics of immune responses to persistent viruses. Science 1996, 272, 74–79. [Google Scholar] [CrossRef]
- Kuddus, M.A.; McBryde, E.S.; Adekunle, A.I.; White, L.J.; Meehan, M.T. Two-strain HCV vaccination model with optimal control in Bangladesh. Eur. Phys. J. Plus. 2024, 139, 5502. [Google Scholar] [CrossRef]
- Government of the people’s republic of Bangladesh. Ministry of health and family welfare. Health Bulletin 2017. Mohakhali, Dhaka 1212. Available online: https://old.dghs.gov.bd/index.php/en/home/4364-health-bulletin-2017 (accessed on 12 November 2024).
- Athithan, S.; Ghosh, M. Stability analysis and optimal control of a malaria model with larvivorous fish as biological control agent. Appl. Math. Inform. Sci. 2015, 9, 1893. [Google Scholar]
- Hirsch, A.A.; Lawrence, R.H.; Kern, E.; Falck-Ytter, Y.; Shumaker, D.T.; Watts, B. Implementation and evaluation of a multicomponent quality improvement intervention to improve efficiency of hepatitis C screening and diagnosis. Jt. Comm. J. Qual. Patient Saf. 2014, 40, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Abe, C.M.; Aguwa, M.; Zhao, M.; Sullivan, J.; Porsa, E.; Nijhawan, A.E. Hepatitis C Virus Infection in the Dallas County Jail: Implications for Screening, Prevention, and Linkage to Care. Public Health Rep. 2019, 134, 626–633. [Google Scholar] [CrossRef] [PubMed]
- Rahman, T.; Sultana, R.; Chowdhury, S.R. Seropositivity and pattern of viral hepatitis in clinically suspected cases of hepatitis in Dhaka city. Bangladesh Med. Res. Counc. Bull. 2007, 33, 103–106. [Google Scholar] [CrossRef]
- Averhoff, F.; Lazarus, J.V.; Sergeenko, D.; Colombo, M.; Gamkrelidze, A.; Tsertsvadze, T.; Butsashvili, M.; Metreveli, D.; Sharvadze, L.; Hellard, M.; et al. Excellence in viral hepatitis elimination—Lessons from Georgia. J. Hepatol. 2019, 71, 645–647. [Google Scholar] [CrossRef] [PubMed]
- Deming, R.; Ford, M.M.; Moore, M.S.; Lim, S.; Perumalswami, P.; Weiss, J.; Wyatt, B.; Shukla, S.; Litwin, A.; Reynoso, S.; et al. Evaluation of a hepatitis C clinical care coordination programme’s effect on treatment initiation and cure: A surveillance-based propensity score matching approach. J. Viral Hepat. 2018, 25, 1236–1243. [Google Scholar] [CrossRef] [PubMed]
- Ford, M.M.; Johnson, N.; Desai, P.; Rude, E.; Laraque, F. From Care to Cure: Demonstrating a Model of Clinical Patient Navigation for Hepatitis C Care and Treatment in High-Need Patients. Clin. Infect. Dis. 2017, 64, 685–691. [Google Scholar] [CrossRef]
- Hsiang, J.C.; Sinnaswami, P.; Lee, M.Y.; Zhang, M.M.; Quek, K.E.; Tan, K.H.; Wong, Y.M.; Thurairajah, P.H. Point-of-care hepatitis C screening with direct access referral to improve linkage of care among people with substance misuse: A pilot randomised study. Singapore Med. J. 2020, 1, 20. [Google Scholar] [PubMed]
- Cassell, M.; Ashby, F.; Hutchinson, J.; Sathyanarayana, V.; Kapur, K.; Stone, B. Improved Linkage to Hepatitis C Assessment and Treatment within Community Drug Services Through Combined Hepatitis C and Opiate Substitution Treatment Prescription Appointments; The International Network on Hepatitis in Substance Users (INHSU); Le Westin: Montréal, QC, Canada, 2019. [Google Scholar]
Illustration | Symbol | Value | Citations |
---|---|---|---|
Bangladesh’s population by 2015 | 159,000,000 | [18] | |
Rate of births and deaths | per year | [42] | |
The transmission rate for DS HCV | Fitted | ||
The transmission rate for DR HCV | Fitted | ||
Vaccination rate at the first dose | [42] | ||
The growth rate between V1 and S | σ | 0.60 | [42] |
The growth rate between S and V1 | 0.63 | Fitted | |
Second-dose vaccination rate | Fitted | ||
The mortality rate associated with DS HCV infection | per year | [42] | |
The mortality rate associated with DR HCV infection | per year | [42] | |
Amplification rate | 0.035 | [42] | |
The growth rate between I1 and R | 0.29 per year | [42] | |
The growth rate between I2 and R | 0.29 per year | [42] | |
Rate of loss of immunity | 0.10 per year | [42] |
Parameters | Parameter Values (%) | Estimated HCV Annual Cases | Reduction from Baseline | Estimated HCV Annual Mortality | Reduction from Baseline |
---|---|---|---|---|---|
Baseline (64) | |||||
75 | |||||
80 | |||||
85 | |||||
90 | |||||
100 | |||||
Baseline (70) | |||||
85 | |||||
90 | |||||
95 | |||||
97 | |||||
100 | |||||
Baseline (0.20) | |||||
84 | |||||
90 | |||||
95 | |||||
97 | |||||
100 | |||||
Baseline (0.70) | |||||
78 | |||||
85 | |||||
90 | |||||
95 | |||||
100 | |||||
Baseline (0.035) | |||||
0.005 | |||||
0.002 | |||||
0.0009 | |||||
0.0005 | |||||
0.0001 |
Scenarios | Parameters Changed | Parameter Values (%) | Estimated Annual HCV Cases | Reduction from Baseline | Estimated Annual HCV Deaths | Reduction from Baseline |
---|---|---|---|---|---|---|
Baseline | ||||||
Modest investment 1 | ||||||
Modest investment 2 | ||||||
Modest investment 3 | ||||||
Modest investment 4 | ||||||
Strong sustained investment | ||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuddus, M.A.; Tithi, S.K.; Sarker, S. Modeling Intervention Strategies to Control Hepatitis C Outbreak and Related Mortality in Bangladesh. Mathematics 2025, 13, 3009. https://doi.org/10.3390/math13183009
Kuddus MA, Tithi SK, Sarker S. Modeling Intervention Strategies to Control Hepatitis C Outbreak and Related Mortality in Bangladesh. Mathematics. 2025; 13(18):3009. https://doi.org/10.3390/math13183009
Chicago/Turabian StyleKuddus, Md Abdul, Sazia Khatun Tithi, and Subir Sarker. 2025. "Modeling Intervention Strategies to Control Hepatitis C Outbreak and Related Mortality in Bangladesh" Mathematics 13, no. 18: 3009. https://doi.org/10.3390/math13183009
APA StyleKuddus, M. A., Tithi, S. K., & Sarker, S. (2025). Modeling Intervention Strategies to Control Hepatitis C Outbreak and Related Mortality in Bangladesh. Mathematics, 13(18), 3009. https://doi.org/10.3390/math13183009