Graph Theoretic Analyses of Tessellations of Five Aperiodic Polykite Unitiles
Abstract
1. Introduction
2. Hamiltonian Cycles
3. Ethnomathematics and Education
At … the second stage of development, children’s practical activity with shape and their discussion of their findings develops a conscious knowledge of the properties of shapes. The number of sides, size of angles, and symmetry of figures all become the object of experiment and discovery. Investigating the Chinese lattice design in [Figure 4b] for shapes which tessellate, we find equilateral triangles, hexagons, parallelograms, rhombuses, kites, and trapeziums. … Investigating the angles and angle-sums of the various polygons in the design follow very simply from knowing the angles of the kite, i.e., 60°, 90°, 120°, 90°. … that area ratios are the squares of length ratios. So, it appears we have an area ratio of 1: √3. Indeed, application of trigonometry shows that this is the case, since the lengths of the sides of the kite are in the ratio cos 60°: sin 60°, or ½: √3/2 or 1: √3. {Pages 148–150}
4. Chirality and Periodicity
4.1. Chirality in Tiling
4.2. Periodicity in Tiling
4.3. Blumeyer’s 2 × 2 Classification Framework
4.3.1. Periodic Homochiral (PH)
4.3.2. Periodic Heterochiral (PHetr)
4.3.3. Nonperiodic Homochiral (NH)
4.3.4. Nonperiodic Heterochiral (NHetr)
4.4. Filling the Missing Quadrant: The Hare
4.5. Other Polykites
5. Corona Structures and Heesch Numbers in Polykite Tilings
6. Voronoi Diagram Analysis with the Ka-me Tool for Aperiodic Tessellations
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, D.; Myers, J.S.; Kaplan, C.S.; Goodman-Strauss, C. An Aperiodic Monotile. Comb. Theory 2024, 4, 9. [Google Scholar] [CrossRef]
- Smith, D.; Myers, J.S.; Kaplan, C.S.; Goodman-Strauss, C. A Chiral Aperiodic Monotile. Comb. Theory 2024, 4, 2. [Google Scholar] [CrossRef]
- Jungck, J.R.; Brittain, S.; Plante, D.; Flynn, J. Self-Assembly, Self-Folding, and Origami: Comparative Design Principles. Biomimetics 2023, 8, 12. [Google Scholar] [CrossRef]
- Twarock, R. A Tiling Approach to Virus Capsid Assembly Explaining a Novel Role for Hexamers. J. Theor. Biol. 2004, 226, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Twarock, R. The Architecture of Viral Capsids Based on Tiling Theory. J. Theor. Med. 2005, 6, 87–90. [Google Scholar] [CrossRef]
- Todd, H. A Class of Spherical Penrose-Like Tilings with Connections to Virus Protein Patterns and Modular Sculpture. In Proceedings of the Bridges 2018: Mathematics, Art, Music, Architecture, Education, Culture, Stockholm, Sweden, 25–29 July 2018; Tessellations Publishing: Phoenix, AZ, USA, 2018; pp. 237–244. [Google Scholar]
- Konevtsova, O.G.V.; Lorman, V.L.; Rochal, S.B. Structures of Spherical Viral Capsids as Quasicrystalline Tilings. Phys. Solid State 2015, 57, 810–814. [Google Scholar] [CrossRef]
- Jungck, J.R.; Brittain, S.; Plante, D.; Yarbrough, J.; Zeller, C. Self-Foldability of Dürer Net Models of Viral Capsids: Exploring Nanocapsule Design via 4D Printing. Math. Model. Nat. Phenom. 2025; in press. [Google Scholar] [CrossRef]
- Dodd, P.M.; Damasceno, P.F.; Glotzer, S.C. Universal Folding Pathways of Polyhedron Nets. Proc. Natl. Acad. Sci. USA 2018, 115, 6690–6696. [Google Scholar] [CrossRef]
- Kaplan, C.S. Introductory Tiling Theory for Computer Graphics; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Khiripet, N.; Khantuwan, W.; Jungck, J.R. Ka-me: A Voronoi Image Analyzer. Bioinformatics 2012, 28, 1802–1804. [Google Scholar] [CrossRef]
- Jungck, J.R.; Pelsmajer, M.J.; Chappel, C.; Taylor, D. Space: The Re-Visioning Frontier of Biological Image Analysis with Graph Theory, Computational Geometry, and Spatial Statistics. Mathematics 2021, 9, 2726. [Google Scholar] [CrossRef]
- Li, H. Generalizations of Dirac’s Theorem in Hamiltonian Graph Theory—A Survey. Discret. Math. 2013, 313, 2034–2053. [Google Scholar] [CrossRef]
- Dirac, G.A. Some Theorems on Abstract Graphs. Proc. Lond. Math. Soc. 1952, s3-2, 69–81. [Google Scholar] [CrossRef]
- Ore, O. Note on Hamilton Circuits. Am. Math. Mon. 1960, 67, 55. [Google Scholar] [CrossRef]
- Esque, J.; Oguey, C.; de Brevern, A.G. Comparative Analysis of Threshold and Tessellation Methods for Determining Protein Contacts. J. Chem. Inf. Model. 2011, 51, 493–507. [Google Scholar] [CrossRef]
- Gardner, M. Extraordinary Nonperiodic Tiling That Enriches the Theory of Tiles. Sci. Am. 1977, 236, 110–121. [Google Scholar] [CrossRef]
- Gardner, M. Penrose Tiles to Trapdoor Ciphers: And the Return of Dr Matrix; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- de Bruijn, N.G. Algebraic Theory of Penrose’s Non-Periodic Tilings of the Plane I, II. Indag. Math. 1981, 84, 39–66. [Google Scholar] [CrossRef]
- Doroba, A.; Sokalski, K. The Time-Dependent Ising Model on the 2D Penrose Lattice. Phys. Status Solidi (b) 1991, 167, 251–264. [Google Scholar] [CrossRef]
- Gummelt, P. Penrose Tilings as Coverings of Congruent Decagons. Geom. Dedicata 1996, 62, 1–17. [Google Scholar] [CrossRef]
- Flicker, F.; Simon, S.H.; Parameswaran, S.A. Classical Dimers on Penrose Tilings. Phys. Rev. X 2020, 10, 011005. [Google Scholar] [CrossRef]
- Ghose, A. Hands-On Exploration of Tessellation and Fractal Mapping on a Tiling Wall to Enhance Interest in Doing Maths in Non-Formal Settings. J. Sci. Temper 2021, 9, 33–60. [Google Scholar]
- Yan, X.; Yan, W.Q.; Liu, L.; Lu, Y. Penrose Tiling for Visual Secret Sharing. Multimed. Tools Appl. 2020, 79, 32693–32710. [Google Scholar] [CrossRef]
- Caspar, D.L.D.; Klug, A. Physical Principles in the Construction of Regular Viruses. Cold Spring Harb. Symp. Quant. Biol. 1962, 27, 1–24. [Google Scholar] [CrossRef]
- Dye, D. The New Book of Chinese Lattice Designs; Dover Publications: New York, NY, USA, 1981. [Google Scholar]
- Sloane, N.J.A. Deltoidal Trihexagonal Tiling. In The On-Line Encyclopedia of Integer Sequences (OEIS); The OEIS Foundation Inc.: Highland Park, NJ, USA, 2020; Available online: https://oeis.org/A272463 (accessed on 10 September 2025).
- Boggs, G. Of Hexagons, Kites, and Tiles. Ology Blog. 30 April 2023. Available online: https://ology.github.io/2023/04/30/of-hexagons-kites-and-tiles/ (accessed on 10 September 2025).
- Coulbois, T.; Gajardo, A.; Guillon, P.; Lutfalla, V. Aperiodic Monotiles: From Geometry to Groups. arXiv 2024, arXiv:2409.15880. [Google Scholar] [CrossRef]
- Shutov, A.V.; Maleev, A.V. Penrose Tilings as Model Sets. Crystallogr. Rep. 2015, 60, 797–804. [Google Scholar] [CrossRef]
- Shutov, A.V.; Maleev, A.V. Coordination Numbers of the Vertex Graph of a Penrose Tiling. Acta Crystallogr. Sect. A 2018, 74, 112–122. [Google Scholar] [CrossRef]
- Williams, J. Geometry and Art. In Multicultural Mathematics: Teaching Mathematics from a Global Perspective; Nelson, D., Joseph, G.G., Williams, J., Eds.; Oxford University Press: Oxford, UK, 1993; pp. 142–174. [Google Scholar]
- Ouazene, Z. Quasi-Periodic Tiling in Moroccan and Andalusian Decorative Art: A Harmonious Symphony of Mathematics and Aesthetics. In Proceedings of the 5th International Conference on Advanced Technologies for Humanity (ICATH’2023), Rabat, Morocco, 25–26 December 2023; Springer: Cham, Switzerland, 2023; pp. 22–37. [Google Scholar]
- Cromwell, P.R. Cognitive Bias and Claims of Quasiperiodicity in Traditional Islamic Patterns. Math. Intell. 2015, 37, 30–44. [Google Scholar] [CrossRef]
- Kerins, B.; Yong, D.; Cuoco, A.; Stevens, G.; Pilgrim, M. Fractions, Tilings, and Geometry; American Mathematical Society: Providence, RI, USA, 2018. [Google Scholar]
- Blumeyer, D. Aperiodic Monotiles. Sagittal Forum. 2023. Available online: https://forum.sagittal.org/viewtopic.php?t=569 (accessed on 10 September 2025).
- Grünbaum, B.; Shephard, G.C. Tilings and Patterns; W.H. Freeman and Company: New York, NY, USA, 1987. [Google Scholar]
- Le, T.T.Q. Local Rules for Quasiperiodic Tilings. In The Mathematics of Long-Range Aperiodic Order; Moody, R.V., Ed.; NATO ASI Series C: Mathematical and Physical Sciences; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997; Volume 489, pp. 331–366. [Google Scholar]
- Voigt, J.; Baljozović, M.; Martin, K.; Wäckerlin, C.; Avarvari, N.; Ernst, K.H. An Aperiodic Chiral Tiling by Topological Molecular Self-Assembly. Nat. Commun. 2025, 16, 83. [Google Scholar] [CrossRef]
- Adams, C. The Tiling Book: An Introduction to the Mathematical Theory of Tilings; American Mathematical Society: Providence, RI, USA, 2022. [Google Scholar]
- Friedman, E. Heesch Tiles with Surround Numbers. Available online: https://erich-friedman.github.io/papers/heesch/heesch (accessed on 10 September 2025).
- Mann, C. Heesch’s Tiling Problem. Am. Math. Mon. 2004, 111, 509–517. [Google Scholar] [CrossRef]
- Weisstein, E.W. Heesch Number. MathWorld—A Wolfram Web Resource. Available online: https://mathworld.wolfram.com/HeeschNumber.html (accessed on 10 September 2025).
- Locke Demosthenes. Aperiodic Monotile with Hole in It. Math StackExchange. 2023. Available online: https://math.stackexchange.com/q/4674746 (accessed on 10 September 2025).
- Kaplan, C.S. Heesch Numbers, Part 1. Isohedral Blog. 2017. Available online: https://isohedral.ca/heesch-numbers-part-1/ (accessed on 10 September 2025).
- Phillips, D. Tessellation. Wiley Interdiscip. Rev. Comput. Stat. 2014, 6, 202–209. [Google Scholar] [CrossRef]
- Goucher, A.P. Aperiodic Monotile. cp4space Blog. 21 March 2023. Available online: https://cp4space.hatsya.com/2023/03/21/aperiodic-monotile (accessed on 10 September 2025).
- Gilevich, A.; Shoval, S.; Nosonovsky, M.; Frenkel, M.; Bormashenko, E. Converting Tessellations into Graphs: From Voronoi Tessellations to Complete Graphs. Mathematics 2024, 12, 2426. [Google Scholar] [CrossRef]
- Wheatley, J.-P. The Hat Trick: A 3D-Printed Polyhedron of Hat Tiles. Available online: https://jonpaul.com (accessed on 10 September 2025).
- Akpanya, R.; Goertzen, T.; Liu, Y.; Stüttgen, S.; Robertz, D.; Xie, Y.M.; Niemeyer, A.C. Constructing Topological Interlocking Assemblies Based on an Aperiodic Monotile. In Proceedings of the IASS 2024 Symposium: Redefining the Art of Structural Design, Zurich, Switzerland, 26–30 August 2024; IASS: Zurich, Switzerland, 2024; pp. 26–30. [Google Scholar]
Vertex Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Vertex degree in Hamiltonian cycle | ||||||||||||||||
Hat | 2 | 3 | 2 | 3 | 4 | 2 | 2 | 3 | 4 | 2 | 3 | 2 | 2 | 5 | ||
Turtle | 2 | 2 | 4 | 3 | 3 | 3 | 2 | 3 | 2 | 5 | 2 | 2 | 4 | 3 | ||
Red Squirrel | 2 | 2 | 3 | 4 | 3 | 2 | 2 | 3 | 3 | 2 | 4 | 2 | 2 | 4 | ||
Hare | 2 | 2 | 4 | 2 | 2 | 3 | 4 | 3 | 2 | 3 | 2 | 3 | 4 | 2 | 2 | 5 |
Gray Squirrel | 2 | 2 | 3 | 4 | 3 | 2 | 2 | 3 | 3 | 3 | 2 | 2 | 5 | 2 | 2 | 4 |
Images | Junctions | Images | Junctions |
---|---|---|---|
1X 5Y 0T | 0X 5Y 1T | ||
1X 4Y 0T | 2X 2Y 1T | ||
0X 4Y 3T | 1X 3Y 2T | ||
1X 4Y 1T | 1X 2Y 2T | ||
0X 3Y 4T | 2X 0Y 2T |
Type | Vertex Degree | Incoming Angles of Unitiles | Unitiles in Tessellation | Images |
---|---|---|---|---|
T | 3 | 90, 90, 180 | Hats, Turtles, Hares | |
X Type 1 | 4 | 90, 90, 90, 90 | Hats, Turtles, Hares | |
X Type 2 | 4 | 120, 120, 60, 60 | Hats, Turtles, Hares | |
X Type 3 | 4 | 120, 60, 120, 60 | Hats, Turtles, Hares | |
Y | 3 | 120, 120, 120 | Hats, Turtles, Hares | |
H Star Type 1 | 6 | 60, 60, 60, 60, 60, 60 | Hares | |
P Star Type 2 | 5 | 120, 60, 60, 60, 60 | Hare | |
I | (0,4) | 180, 180 | Red Squirrel | |
R | 3 | 60, 60, 240 | Gray Squirrel |
Name of Configuration | Degree of Vertex | Angles Involved | Tiles Involved |
---|---|---|---|
(a) Sun | 5 | 72, 72, 72, 72, 72 | 5 Kites |
(b) Star | 5 | 72, 72, 72, 72, 72 | 5 Darts |
(c) Ace | 3 | 216, 72, 72 | 1 Dart, 2 Kites |
(d) Deuce | 4 | 36, 36, 144, 144 | 2 Darts, 2 Kites |
(e) Jack | 5 | 36, 72, 72, 36, 144 | 2 Darts, 3 Kites |
(f) Queen | 5 | 72, 72, 72, 72, 72 | 1 Dart, 4 Kites |
(g) King | 5 | 72, 72, 72, 72, 72 | 3 Darts, 2 Kites |
Tile (Unitile) | Number of Polykites | Periodicity | Chirality | Class (Blumeyer 2 × 2) | |
---|---|---|---|---|---|
Homochiral | Heterochiral | ||||
Hat | 8 | Nonperiodic/Periodic | N | Y | NH, NHetr |
Turtle | 10 | Nonperiodic | N | Y | NH, NHetr |
Hare | 9 | Periodic | Y | Y | PH, PHetr |
Gray Squirrel | 6 | Periodic | Y | N | PHetr |
Red Squirrel | 7 | Periodic | Y | N | PHetr |
Spectre | N/A | Periodic and Nonperiodic | Y | Y | NHetr, NH, PHetr |
Corona Layer (k) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | N\A |
---|---|---|---|---|---|---|---|---|---|
Tile Count | 6 (surround number) | 12 | 18 | 24 | 36 | 42 | 48 | 66 | N\A |
Heesch Number | Corona Layer | Surround Number | Quasi-Heesch Number | Tile Name | Image |
---|---|---|---|---|---|
H = 1 | 1 | 8 | N\A | Hare | (a) |
H = ∞ | ∞ | 6 | N\A | Hare | (b) |
H = 8 | 8 | 6 | 8 | Hat | (c) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jungck, J.R.; Biswas, P. Graph Theoretic Analyses of Tessellations of Five Aperiodic Polykite Unitiles. Mathematics 2025, 13, 2982. https://doi.org/10.3390/math13182982
Jungck JR, Biswas P. Graph Theoretic Analyses of Tessellations of Five Aperiodic Polykite Unitiles. Mathematics. 2025; 13(18):2982. https://doi.org/10.3390/math13182982
Chicago/Turabian StyleJungck, John R., and Purba Biswas. 2025. "Graph Theoretic Analyses of Tessellations of Five Aperiodic Polykite Unitiles" Mathematics 13, no. 18: 2982. https://doi.org/10.3390/math13182982
APA StyleJungck, J. R., & Biswas, P. (2025). Graph Theoretic Analyses of Tessellations of Five Aperiodic Polykite Unitiles. Mathematics, 13(18), 2982. https://doi.org/10.3390/math13182982