Computing One-Bit Compressive Sensing via Alternating Proximal Algorithm
Abstract
1. Introduction
2. Elementary Facts
- (i)
- The domain of f is defined and denoted by ;
- (ii)
- For each , the Fréchet subdifferential of f at x, written , is the set of vectors that satisfies
- (iii)
- The limiting-subdifferential (Mordukhovich [13]), or simply the subdifferential for short, of f at , written , is defined as follows:
3. The Model
4. Alternating Proximal Algorithm
Algorithm 1 Alternating proximal algorithm (APA) for model (20). |
|
- (i)
- The sequence is nonincreasing and convergent;
- (ii)
- The sequence is bounded and
- (iii)
- For all , define
- (iv)
- is a nonempty compact connected set and ;
- (v)
- L is finite and constant on , equal to .
5. Numerical Simulations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boufounos, P.T.; Baraniuk, R.G. 1-bit Compressive Sensing. In Proceedings of the Conference on Information Science and Systems (CISS), Princeton, NJ, USA, 19 March 2008. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, X.; Guo, D.; Honig, M.L. Sparse channel estimation for massive MIMO with 1-bit feedback per dimension. In Proceedings of the 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisico, CA, USA, 19–22 March 2017. [Google Scholar] [CrossRef]
- Chen, C.H.; Wu, J.Y. Amplitude-aided 1-bit compressive sensing over noisy wireless sensor networks. IEEE Wirel. Commun. Lett. 2015, 4, 473–476. [Google Scholar] [CrossRef]
- Fu, N.; Yang, L.; Zhang, J. Sub-nyquist 1-bit sampling system for sparse multiband signals. In Proceedings of the 2014 22nd European Signal Processing Conference (EUSIPCO), Lisbon, Portugal, 1–5 September 2014. [Google Scholar]
- Li, Z.; Xu, W.; Zhang, X.; Lin, J. A survey on one-bit compressed sensing: Theory and applications. Front. Comput. Sci. 2018, 12, 217–230. [Google Scholar] [CrossRef]
- Plan, Y.; Vershynin, R. One-bit compressed sensing by linear programming. Commun. Pure Appl. Math. 2013, 66, 1275–1297. [Google Scholar] [CrossRef]
- Jacques, L.; Laska, J.; Boufounos, P.T.; Baraniuk, R.G. Roubust 1-bit compressive sensing via binary stable embeddings of sparse vectors. IEEE Trans. Inf. Theory 2013, 59, 2082–2102. [Google Scholar] [CrossRef]
- Yan, M.; Yang, Y.; Osher, S. Robust 1-bit compressive sensing using adaptive outlier pursuit. IEEE Trans. Signal. Process. 2012, 60, 3868–3875. [Google Scholar] [CrossRef]
- Dai, D.Q.; Shen, L.; Xu, Y.; Zhang, N. Noisy 1-bit compressive sensing: Models and algorithms. Appl. Comput. Harmon. Anal. 2016, 40, 1–32. [Google Scholar] [CrossRef]
- Huang, J.; Jiao, Y.; Lu, X.; Zhu, L. Robust decoding from 1-bit compressive sampling with ordinary and regularized least squares. SIAM J. Sci. Comput. 2018, 40, 2062–2786. [Google Scholar] [CrossRef]
- Zhou, S.; Luo, Z.; Xiu, N.; Li, G.Y. Computing one-bit compressive sensing via double-sparsity constrained optimization. IEEE Trans. Signal. Process. 2022, 70, 1593–1608. [Google Scholar] [CrossRef]
- Rockafellar, R.T.; Wets, R. Variational Analysis, Grundlehren der Mathematischen Wissenschaften; Springer: Berlin, Germany, 1998; Volume 317. [Google Scholar]
- Mordukhovich, B. Variational Analysis and Generalized Differentiation. I. Basic Theory; Grundlehren der Mathematischen Wissenschaften; Springer: Berlin, Germany, 2006; Volume 330. [Google Scholar]
- Bauschke, H.L.; Combettes, P.L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces; AMS Books in Mathematics; Springer: New York, NY, USA, 2011. [Google Scholar]
- Björck, A. Numerical Methods for Least Squares Problems; SIAM: Philadelphia, PA, USA, 1996. [Google Scholar]
- Tikhonov, A.N.; Arsenin, V.Y. Solution of Ill-Posed Problems; V. H. Winston: Washington, DC, USA, 1977. [Google Scholar]
- Daubechies, I.; Defrise, M.; Mol, C.D. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm. Pure Appl. Math. 2004, 57, 1413–1457. [Google Scholar] [CrossRef]
- Figueiredo, M.A.T.; Nowak, R.D.; Wright, S.J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE J.-STSP. 2007, 1, 586–597. [Google Scholar] [CrossRef]
- Attouch, H.; Bolte, J.; Redont, P.; Soubeyran, A. Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-Łojasiewicz inequality. Math. Oper. Res. 2010, 35, 438–457. [Google Scholar] [CrossRef]
- Attouch, H.; Soubeyran, A. Inertia and reactivity in decision making as cognitive variational inequalities. J. Convex. Anal. 2006, 13, 207–224. [Google Scholar]
- Attouch, H.; Redont, P.; Soubeyran, A. A new class of alternating proximal minimization algorithms with costs to move. SIAM J. Optimiz. 2007, 18, 1061–1081. [Google Scholar] [CrossRef]
- Attouch, H.; Bolte, J.; Redont, P.; Soubeyran, A. Alternating proximal algorithms for weakly coupled convex minimization problems. Applications to dynamical games and PDE’s. J. Convex. Anal. 2008, 15, 485–506. [Google Scholar]
s | a | SNR | HE | HD | Sparsity of | |
---|---|---|---|---|---|---|
1000 | 10 | 0.00 | 30.57 | 0.001 | 0.001 | 10 |
1000 | 10 | 0.01 | 25.94 | 0.013 | 0.021 | 10 |
1000 | 10 | 0.03 | 21.06 | 0.027 | 0.051 | 10 |
1000 | 10 | 0.05 | 20.40 | 0.023 | 0.065 | 10 |
1000 | 10 | 0.06 | 16.64 | 0.02 | 0.076 | 10 |
1000 | 10 | 0.08 | 16.55 | 0.036 | 0.102 | 11 |
1000 | 10 | 0.10 | 18.19 | 0.037 | 0.130 | 11 |
1000 | 10 | 0.15 | 12.89 | 0.066 | 0.184 | 13 |
1000 | 10 | 0.20 | 4.480 | 0.172 | 0.272 | 17 |
2000 | 20 | 0.00 | 28.49 | 0.0055 | 0.0055 | 20 |
2000 | 20 | 0.01 | 23.32 | 0.0295 | 0.0375 | 20 |
2000 | 20 | 0.03 | 21.52 | 0.019 | 0.047 | 20 |
2000 | 20 | 0.05 | 20.47 | 0.0245 | 0.0735 | 20 |
2000 | 20 | 0.06 | 19.92 | 0.026 | 0.082 | 20 |
2000 | 20 | 0.08 | 16.09 | 0.0345 | 0.1085 | 19 |
2000 | 20 | 0.10 | 16.28 | 0.0445 | 0.1355 | 21 |
2000 | 20 | 0.15 | 11.78 | 0.0745 | 0.1975 | 18 |
2000 | 20 | 0.20 | 5.081 | 0.153 | 0.371 | 17 |
3000 | 30 | 0.00 | 29.64 | 0.008 | 0.008 | 30 |
3000 | 30 | 0.01 | 22.23 | 0.0213 | 0.0307 | 30 |
3000 | 30 | 0.03 | 20.20 | 0.0277 | 0.0543 | 30 |
3000 | 30 | 0.05 | 19.71 | 0.025 | 0.0717 | 30 |
3000 | 30 | 0.06 | 17.38 | 0.0336 | 0.085 | 30 |
3000 | 30 | 0.08 | 14.01 | 0.057 | 0.1213 | 29 |
3000 | 30 | 0.10 | 14.19 | 0.061 | 0.142 | 32 |
3000 | 30 | 0.15 | 8.62 | 0.1013 | 0.2087 | 34 |
3000 | 30 | 0.20 | 6.369 | 0.1423 | 0.2677 | 27 |
5000 | 50 | 0.00 | 22.36 | 0.017 | 0.017 | 50 |
5000 | 50 | 0.01 | 20.51 | 0.0278 | 0.0362 | 50 |
5000 | 50 | 0.03 | 20.04 | 0.0295 | 0.0602 | 50 |
5000 | 50 | 0.05 | 19.95 | 0.0302 | 0.0766 | 50 |
5000 | 50 | 0.06 | 17.14 | 0.0388 | 0.092 | 49 |
5000 | 50 | 0.08 | 16.05 | 0.0428 | 0.1168 | 48 |
5000 | 50 | 0.10 | 14.32 | 0.0544 | 0.1396 | 46 |
5000 | 50 | 0.15 | 10.55 | 0.0892 | 0.2064 | 45 |
5000 | 50 | 0.20 | 7.892 | 0.1164 | 0.2696 | 47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.-J.; Hu, Y.-H. Computing One-Bit Compressive Sensing via Alternating Proximal Algorithm. Mathematics 2025, 13, 2926. https://doi.org/10.3390/math13182926
Wang J-J, Hu Y-H. Computing One-Bit Compressive Sensing via Alternating Proximal Algorithm. Mathematics. 2025; 13(18):2926. https://doi.org/10.3390/math13182926
Chicago/Turabian StyleWang, Jin-Jiang, and Yan-Hong Hu. 2025. "Computing One-Bit Compressive Sensing via Alternating Proximal Algorithm" Mathematics 13, no. 18: 2926. https://doi.org/10.3390/math13182926
APA StyleWang, J.-J., & Hu, Y.-H. (2025). Computing One-Bit Compressive Sensing via Alternating Proximal Algorithm. Mathematics, 13(18), 2926. https://doi.org/10.3390/math13182926