Direct Sampling Method to Retrieve Small Objects from Two-Dimensional Limited-Aperture Scattered Field Data
Abstract
1. Introduction
2. Problem Setup and Scattered Field
- 1.
- 2.
- (Well separation of objects) We let be the distance between two objects and providing . If satisfies
- 3.
3. Indicator Function of the DSM with a Single Source
3.1. Introduction of the Indicator Function
3.2. Mathematical Structure of the Indicator Function
3.3. Properties of Indicator Function with a Single Source
4. Indicator Function of DSM with Multiple Sources
4.1. Introduction of the Indicator Function
4.2. Mathematical Structure of the Indicator Function
4.3. Properties of Indicator Function with Multiple Sources
5. Results of Numerical Simulations
6. Concluding Remarks
Funding
Data Availability Statement
Conflicts of Interest
References
- Sasada, S.; Masumoto, N.; Song, H.; Emi, A.; Kadoya, T.; Arihiro, K.; Kikkawa, T.; Okada, M. Microwave breast imaging using rotational bistatic impulse radar for the detection of breast cancer: Protocol for a prospective diagnostic study. JMIR Res. Protoc. 2020, 9, e17524. [Google Scholar] [CrossRef] [PubMed]
- Persson, M.; Fhager, A.; Trefnà, H.D.; Yu, Y.; McKelvey, T.; Pegenius, G.; Karlsson, J.E.; Elam, M. Microwave-based stroke diagnosis making global prehospital thrombolytic treatment possible. IEEE Trans. Biomed. Eng. 2014, 61, 2806–2817. [Google Scholar] [CrossRef]
- Haynes, M.; Stang, J.; Moghaddam, M. Real-time microwave imaging of differential temperature for thermal therapy monitoring. IEEE Trans. Biomed. Eng. 2014, 61, 1787–1797. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.Q.; Flaviis, F.D.; Kim, Y.J. Use of microwaves for damage detection of fiber reinforced polymer-wrapped concrete structures. J. Eng. Mech. 2002, 128, 172–183. [Google Scholar] [CrossRef]
- Henriksson, T.; Lambert, M.; Lesselier, D. Non-iterative MUSIC-type algorithm for eddy-current nondestructive evaluation of metal plates. In Electromagnetic Nondestructive Evaluation (XIV); Studies in Applied Electromagnetics and Mechanics; IOS Press: Amsterdam, The Netherlands, 2011; Volume 35, pp. 22–29. [Google Scholar]
- Foudazi, A.; Mirala, A.; Ghasr, M.T.; Donnell, K.M. Active microwave thermography for nondestructive evaluation of surface cracks in metal structures. IEEE Trans. Instrum. Meas. 2019, 68, 576–585. [Google Scholar] [CrossRef]
- Brovoll, S.; Berger, T.; Paichard, Y.; Aardal, Ø.; Lande, T.S.; Hamran, S. Time-lapse imaging of human heart motion with switched array UWB radar. IEEE Trans. Biomed. Circuits Syst. 2014, 8, 704–715. [Google Scholar] [CrossRef]
- Delbary, F.; Erhard, K.; Kress, R.; Potthast, R.; Schulz, J. Inverse electromagnetic scattering in a two-layered medium with an application to mine detection. Inverse Probl. 2008, 24, 015002. [Google Scholar] [CrossRef]
- Wu, S.; Zhou, H.; Liu, S.; Duan, R. Improved through-wall radar imaging using modified Green’s function-based multi-path exploitation method. EURASIP J. Adv. Signal Process. 2020, 2020, 4. [Google Scholar] [CrossRef]
- Ammari, H. Mathematical Modeling in Biomedical Imaging II: Optical, Ultrasound, and Opto-Acoustic Tomographies; Lecture Notes in Mathematics; Springer: Berlin, Germany, 2011; Volume 2035. [Google Scholar]
- Aster, R.C.; Borchers, B.; Thurber, C.H. Parameter Estimation and Inverse Problems, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Ammari, H.; Kang, H. Reconstruction of Small Inhomogeneities from Boundary Measurements; Lecture Notes in Mathematics; Springer: Berlin, Germnay, 2004; Volume 1846. [Google Scholar]
- Bleistein, N.; Cohen, J.; Stockwell, J.S., Jr. Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion; Interdisciplinary Applied Mathematics; Springer: New York, NY, USA, 2001; Volume 13. [Google Scholar]
- Chernyak, V.S. Fundamentals of Multisite Radar Systems: Multistatic Radars and Multiradar Systems; CRC Press; Routledge: Boca Raton, FL, USA, 1998. [Google Scholar]
- Colton, D.; Kress, R. Inverse Acoustic and Electromagnetic Scattering Problems; Mathematics and Applications Series; Springer: New York, NY, USA, 1998; Volume 93. [Google Scholar]
- Nikolova, N.K. Introduction to Microwave Imaging; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Parker, R.L. Geophysical Inverse Theory; Princeton Series in Geophysics; Princeton University Press: Princeton, NJ, USA, 1994. [Google Scholar]
- Kress, R. Inverse scattering from an open arc. Math. Meth. Appl. Sci. 1995, 18, 267–293. [Google Scholar] [CrossRef]
- Ahmad, S.; Strauss, T.; Kupis, S.; Khan, T. Comparison of statistical inversion with iteratively regularized Gauss Newton method for image reconstruction in electrical impedance tomography. Appl. Math. Comput. 2019, 358, 436–448. [Google Scholar] [CrossRef]
- Ireland, D.; Bialkowski, K.; Abbosh, A. Microwave imaging for brain stroke detection using Born iterative method. IET Microw. Antennas Propag. 2013, 7, 909–915. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Huang, R.; Han, F. Electromagnetic FWI of 2-D inhomogeneous objects straddling multiple planar layers by finite-element boundary integral and Levenberg–Marquardt methods. IEEE Trans. Geosci. Remote Sens. 2025, 63, 2001012. [Google Scholar] [CrossRef]
- Mallorqui, J.J.; Joachimowicz, N.; Broquetas, A.; Bolomey, J.C. Quantitative images of large biological bodies in microwave tomography by using numerical and real data. Electron. Lett. 1996, 32, 2138–2140. [Google Scholar] [CrossRef]
- Kwon, O.; Seo, J.K.; Yoon, J.R. A real-time algorithm for the location search of discontinuous conductivities with one measurement. Comm. Pur. Appl. Math. 2002, 55, 1–29. [Google Scholar] [CrossRef]
- Ito, K.; Jin, B.; Zou, J. A direct sampling method to an inverse medium scattering problem. Inverse Probl. 2012, 28, 025003. [Google Scholar] [CrossRef]
- Ito, K.; Jin, B.; Zou, J. A direct sampling method for inverse electromagnetic medium scattering. Inverse Probl. 2013, 29, 095018. [Google Scholar] [CrossRef][Green Version]
- Kang, S.; Lambert, M.; Park, W.K. Direct sampling method for imaging small dielectric inhomogeneities: Analysis and improvement. Inverse Probl. 2018, 34, 095005. [Google Scholar] [CrossRef]
- Kang, S.; Lambert, M. Structure analysis of direct sampling method in 3D electromagnetic inverse problem: Near- and far-field configuration. Inverse Probl. 2021, 37, 075002. [Google Scholar] [CrossRef]
- Kang, S.; Lambert, M.; Ahn, C.Y.; Ha, T.; Park, W.K. Single- and multi-frequency direct sampling methods in limited-aperture inverse scattering problem. IEEE Access 2020, 8, 121637–121649. [Google Scholar] [CrossRef]
- Chow, Y.T.; Ito, K.; Zou, J. A direct sampling method for electrical impedance tomography. Inverse Probl. 2014, 30, 095003. [Google Scholar] [CrossRef]
- Chow, Y.T.; Ito, K.; Liu, K.; Zou, J. Direct sampling method for diffusive optical tomography. SIAM J. Sci. Comput. 2015, 37, A1658–A1684. [Google Scholar] [CrossRef]
- Kang, S.; Lambert, M.; Park, W.K. Analysis and improvement of direct sampling method in the mono-static configuration. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1721–1725. [Google Scholar] [CrossRef]
- Li, J.; Zou, J. A direct sampling method for inverse scattering using far-field data. Inverse Probl. Imag. 2013, 7, 757–775. [Google Scholar] [CrossRef]
- Harris, I.; Kleefeld, A. Analysis of new direct sampling indicators for far-field measurements. Inverse Probl. 2019, 35, 054002. [Google Scholar] [CrossRef]
- Bousba, S.; Guo, Y.; Wang, X.; Li, L. Identifying multipolar acoustic sources by the direct sampling method. Appl. Anal. 2020, 99, 856–879. [Google Scholar] [CrossRef]
- Harris, I.; Nguyen, D.L.; Nguyen, T.P. Direct sampling methods for isotropic and anisotropic scatterers with point source measurements. Inverse Probl. Imag. 2022, 16, 1137–1162. [Google Scholar] [CrossRef]
- Ahn, C.Y.; Ha, T.; Park, W.K. Direct sampling method for identifying magnetic inhomogeneities in limited-aperture inverse scattering problem. Comput. Math. Appl. 2020, 80, 2811–2829. [Google Scholar] [CrossRef]
- Son, S.H.; Lee, K.J.; Park, W.K. Application and analysis of direct sampling method in real-world microwave imaging. Appl. Math. Lett. 2019, 96, 47–53. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, K.J.; Kim, B.R.; Jeon, S.I.; Son, S.H. Numerical and experimental assessments of focused microwave thermotherapy system at 925MHz. ETRI J. 2019, 41, 850–862. [Google Scholar] [CrossRef]
- Belkebir, K.; Saillard, M. Special section: Testing inversion algorithms against experimental data. Inverse Probl. 2001, 17, 1565–1571. [Google Scholar] [CrossRef]
- Park, W.K. On the application of subspace migration from scattering matrix with constant-valued diagonal elements in microwave imaging. AIMS Math. 2024, 9, 21356–21382. [Google Scholar] [CrossRef]
- Park, W.K. Application of Kirchhoff migration from two-dimensional Fresnel dataset by converting unavailable data into a constant. Mathematics 2024, 12, 3253. [Google Scholar] [CrossRef]
- Son, S.H.; Simonov, N.; Kim, H.J.; Lee, J.M.; Jeon, S.I. Preclinical prototype development of a microwave tomography system for breast cancer detection. ETRI J. 2010, 32, 901–910. [Google Scholar] [CrossRef]
- Slaney, M.; Kak, A.C.; Larsen, L.E. Limitations of imaging with first-order diffraction tomography. IEEE Trans. Microw. Theory Techn. 1984, 32, 860–874. [Google Scholar]
- Ammari, H.; Bonnetier, E.; Capdeboscq, Y. Enhanced resolution in structured media. SIAM J. Appl. Math. 2009, 70, 1428–1452. [Google Scholar]
- Solimene, R.; Cuccaro, A.; Ruvio, G.; Tapia, D.F.; O’Halloran, M. Beamforming and holography image formation methods: An analytic study. Opt. Express 2016, 24, 9077–9093. [Google Scholar] [CrossRef]
- Funes, J.F.; Perales, J.M.; Rapún, M.L.; Vega, J.M. Defect detection from multi-frequency limited data via topological sensitivity. J. Math. Imaging Vis. 2016, 55, 19–35. [Google Scholar]
- Moscoso, M.; Novikov, A.; Papanicolaou, G.; Tsogka, C. Robust multifrequency imaging with MUSIC. Inverse Probl. 2018, 35, 015007. [Google Scholar] [CrossRef]
- Muñoz, S.; Rapún, M.L. Towards flaw detection in welding joints via multi-frequency topological derivative methods. Comput. Math. Appl. 2024, 161, 121–136. [Google Scholar] [CrossRef]
- Geffrin, J.M.; Sabouroux, P. Continuing with the Fresnel database: Experimental setup and improvements in 3D scattering measurements. Inverse Probl. 2009, 25, 024001. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, W.-K. Direct Sampling Method to Retrieve Small Objects from Two-Dimensional Limited-Aperture Scattered Field Data. Mathematics 2025, 13, 2923. https://doi.org/10.3390/math13182923
Park W-K. Direct Sampling Method to Retrieve Small Objects from Two-Dimensional Limited-Aperture Scattered Field Data. Mathematics. 2025; 13(18):2923. https://doi.org/10.3390/math13182923
Chicago/Turabian StylePark, Won-Kwang. 2025. "Direct Sampling Method to Retrieve Small Objects from Two-Dimensional Limited-Aperture Scattered Field Data" Mathematics 13, no. 18: 2923. https://doi.org/10.3390/math13182923
APA StylePark, W.-K. (2025). Direct Sampling Method to Retrieve Small Objects from Two-Dimensional Limited-Aperture Scattered Field Data. Mathematics, 13(18), 2923. https://doi.org/10.3390/math13182923