Fast Cluster Bootstrap Methods for Spatial Error Models
Abstract
1. Introduction
2. Spatial Error Model
3. Bootstrap Computations for Maximum Likelihood Estimation of SEM
3.1. The Fast Pairs Cluster Bootstrap Method for SEM
3.2. The Fast Wild Cluster Bootstrap Methods for SEM
3.2.1. The Fast Unrestricted Wild Cluster Bootstrap Method for SEM
3.2.2. The Fast Restricted Wild Cluster Bootstrap Method for SEM
4. Computing Costs
5. Monte Carlo Simulations
6. Conclusions
7. Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
- (a)
- ,
- (b)
- is permissible, VC, and has envelop F satisfying , and
- (c)
- .
References
- Lim, J.; Lee, K.; Yu, D.; Liu, H.Y.; Sherman, M. Parameter estimation in the spatial auto-logistic model with working independent subblocks. Comput. Stat. Data Anal. 2012, 56, 4421–4432. [Google Scholar] [CrossRef]
- Wang, Y.F.; Song, Y.Q. Variable selection via penalized quasi-maximum likelihood method for spatial autoregressive model with missing response. Spat. Stat. 2024, 59, 100809. [Google Scholar] [CrossRef]
- Al-Momani, M.; Arashi, M. Ridge-Type Pretest and Shrinkage Estimation Strategies in Spatial Error Models with an Application to a Real Data Example. Mathematics 2024, 12, 390. [Google Scholar] [CrossRef]
- MacKinnon, J.G.; Webb, M.D. Wild bootstrap inference for wildly different cluster sizes. J. Appl. Econom. 2017, 32, 233–254. [Google Scholar] [CrossRef]
- MacKinnon, J.G.; Webb, M.D. Pitfalls when estimating treatment effects using clustered data. Political Methodol. 2017, 24, 20–31. [Google Scholar]
- MacKinnon, J.G.; Webb, M.D. The wild bootstrap for few (treated) clusters. Econom. J. 2018, 21, 114–135. [Google Scholar] [CrossRef]
- Pustejovsky, J.E.; Tipton, E. Small sample methods for cluster-robust variance estimation and hypothesis testing in fixed effects models. J. Bus. Econ. Stat. 2018, 36, 672–683. [Google Scholar] [CrossRef]
- Djogbenou, A.A.; MacKinnon, J.G.; Nielsen, M.Ø. Asymptotic theory and wild bootstrap inference with clustered errors. J. Econom. 2019, 212, 393–412. [Google Scholar] [CrossRef]
- Canay, I.A.; Santos, A.; Shaikh, A. The wild bootstrap with a ‘small’ number of ‘large’ clusters. Rev. Econ. Stat. 2021, 103, 346–363. [Google Scholar] [CrossRef]
- Hong, H.; Li, J. The numerical bootstrap. Ann. Stat. 2020, 48, 397–412. [Google Scholar] [CrossRef]
- Taconeli, C.A.; de Lara, I.A.R. Improved confidence intervals based on ranked set sampling designs within a parametric bootstrap approach. Comput. Stat. 2022, 37, 2267–2293. [Google Scholar] [CrossRef]
- Varmann, L.; Mouriño, H. Clustering Empirical Bootstrap Distribution Functions Parametrized by Galton–Watson Branching Processes. Mathematics 2024, 12, 2409. [Google Scholar] [CrossRef]
- Bongiorno, C. Bootstraps regularize singular correlation matrices. J. Comput. Appl. Math. 2024, 449, 115958. [Google Scholar] [CrossRef]
- Febrero-Bande, M.; Galeano, P.; García-Portugués, E.; González-Manteiga, W. Testing for linearity in scalar-on-function regression with responses missing at random. Comput. Stat. 2024, 39, 3405–3429. [Google Scholar] [CrossRef]
- Freedman, D.A. Bootstrapping Regression Models. Ann. Stat. 1981, 9, 1218–1228. [Google Scholar] [CrossRef]
- Liu, R.Y. Bootstrap procedures under some non-I.I.D. models. Ann. Stat. 1988, 16, 1696–1708. [Google Scholar] [CrossRef]
- Mammen, E. Bootstrap and wild bootstrap for high dimensional linear models. Ann. Stat. 1993, 21, 255–285. [Google Scholar] [CrossRef]
- Davidson, R.; Flachaire, E. The wild bootstrap, tamed at last. J. Econom. 2008, 146, 162–169. [Google Scholar] [CrossRef]
- Cameron, A.C.; Gelbach, J.B.; Miller, D.L. Bootstrap-based improvements for inference with clustered errors. Rev. Econ. Stat. 2008, 90, 414–427. [Google Scholar] [CrossRef]
- Flachaire, E. Bootstrapping heteroskedastic regression models: Wild bootstrap vs. pairs bootstrap. Comput. Stat. Data Anal. 2005, 49, 361–376. [Google Scholar] [CrossRef]
- Bouzebda, S.; El-hadjali, T.; Ferfache, A.A. Central limit theorems for functional Z-estimators with functional nuisance parameters. Commun. Stat.-Theory Methods 2022, 53, 2535–2577. [Google Scholar] [CrossRef]
- Bouzebda, S.; Elhattab, I.; Ferfache, A.A. General M-Estimator Processes and their m out of n Bootstrap with Functional Nuisance Parameters. Methodol. Comput. Apply Probab. 2022, 24, 2961–3005. [Google Scholar] [CrossRef]
- Mackinnon, J.G. Fast cluster bootstrap methods for linear regression models. Econom. Stat. 2023, 26, 52–71. [Google Scholar] [CrossRef]
- Rüttenauer, T. Spatial Regression Models: A Systematic Comparison of Different Model Specifications Using Monte Carlo Experiments. Sociol. Methods Res. 2022, 51, 728–759. [Google Scholar] [CrossRef]
- Cressie, N. Statistics for Spatial Data; John Wiley & Sons: Nashville, TN, USA, 1993. [Google Scholar]
- Mackinnon, J.G.; Webb, M.D. When and How to Deal with Clustered Errors in Regression Models; Queen’s Economics Department Working Paper; Queen’s University: Kingston, ON, USA, 2020. [Google Scholar]
- Hansen, B.E. Econometrics; University of Wisconsin Department of Economics: Madison, WI, USA, 2020. [Google Scholar]
- Wu, C.F.J. Jackknife bootstrap and other resampling methods in regression analysis. Ann. Stat. 1986, 14, 1261–1295. [Google Scholar] [CrossRef]
- Roodman, D.; MacKinnon, J.G.; Nielsen, M.Ø.; Webb, M.D. Fast and wild: Bootstrap inference in Stata using boottest. Stata J. 2019, 19, 4–60. [Google Scholar] [CrossRef]
- MacKinnon, J.G. Wild cluster bootstrap confidence intervals. L’Actualité Économique 2015, 91, 11–33. [Google Scholar] [CrossRef]
- Mackinnon, J.G.; Nielsen, M.Ø.; Webb, M.D. Cluster-robust inference: A guide to empirical practice. J. Econom. 2023, 232, 272–299. [Google Scholar] [CrossRef]
- Radulović, D. The bootstrap for empirical processes based on stationary observations. Stoch. Process. Their Appl. 1996, 65, 259–279. [Google Scholar] [CrossRef]
Notation | Description | Notation | Description |
---|---|---|---|
Number of clusters | cluster | ||
Spatial dependence parameter | |||
Spatial weight matrix | Bootstrap | ||
Sample size | Vector of unknown regression parameters | ||
Bootstrap replications | True value of | ||
Number of observations for the cluster | |||
Matrix of exogenous regressors | |||
cluster | Bootstrap | ||
cluster | Bootstrap t-test statistic | ||
cluster |
10, 999 | 20, 999 | 10, 9999 | 20, 9999 | |
Benchmark | 0.1844 | 0.2003 | 1.8440 | 2.0030 |
pcb | 0.0895 | 0.0899 | 0.8850 | 0.8889 |
UWC1 | 0.0057 | 0.0068 | 0.0560 | 0.0645 |
UWC2 | 0.0046 | 0.0052 | 0.0450 | 0.0517 |
UWC3 | 0.0017 | 0.0023 | 0.0169 | 0.0184 |
RWC | 0.0012 | 0.0016 | 0.0103 | 0.0110 |
10, 999 | 20, 999 | 10, 9999 | 20, 9999 | |
Benchmark | 20.3400 | 21.5200 | 203.4000 | 215.2000 |
pcb | 0.8610 | 0.8740 | 1.0103 | 1.0216 |
UWC1 | 0.0614 | 0.0620 | 0.1052 | 0.1083 |
UWC2 | 0.0429 | 0.0435 | 0.0856 | 0.0867 |
UWC3 | 0.0174 | 0.0187 | 0.0291 | 0.0293 |
RWC | 0.0102 | 0.0108 | 0.0194 | 0.0195 |
pcb | UWC1 | UWC2 | UWC3 | RWC | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | |
0.8159 | 0.7855 | 0.8835 | 0.8119 | 0.8874 | 0.8224 | 0.8907 | 0.8523 | 0.8978 | 0.8728 | |
(0.9016) | (0.9184) | (0.4686) | (0.6031) | (0.4652) | (0.5601) | (0.4285) | (0.4916) | (0.2017) | (0.2210) | |
0.8231 | 0.7922 | 0.8948 | 0.8605 | 0.8980 | 0.8561 | 0.9032 | 0.8702 | 0.9302 | 0.8939 | |
(0.8550) | (0.8657) | (0.3322) | (0.4037) | (0.3370) | (0.3928) | (0.2355) | (0.3831) | (0.1911) | (0.2146) | |
0.8796 | 0.8509 | 0.9064 | 0.8829 | 0.9183 | 0.8834 | 0.9299 | 0.9194 | 0.9345 | 0.9255 | |
(0.7283) | (0.7502) | (0.2817) | (0.3932) | (0.2756) | (0.3898) | (0.2284) | (0.3205) | (0.1814) | (0.2036) | |
0.8398 | 0.8059 | 0.8829 | 0.8635 | 0.8972 | 0.8727 | 0.9030 | 0.8979 | 0.9296 | 0.9107 | |
(0.8345) | (0.8414) | (0.3247) | (0.4750) | (0.3173) | (0.4622) | (0.3031) | (0.4313) | (0.2269) | (0.2261) |
pcb | UWC1 | UWC2 | UWC3 | RWC | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | |
0.8782 | 0.8660 | 0.9042 | 0.8959 | 0.9231 | 0.9162 | 0.9356 | 0.9324 | 0.9404 | 0.9387 | |
(0.7248) | (0.7690) | (0.2249) | (0.2417) | (0.2149) | (0.2244) | (0.2279) | (0.2286) | (0.1896) | (0.1920) | |
0.9125 | 0.8801 | 0.9226 | 0.9180 | 0.9492 | 0.9275 | 0.9494 | 0.9398 | 0.9612 | 0.9574 | |
(0.5845) | (0.6149) | (0.2057) | (0.2243) | (0.1942) | (0.2188) | (0.1986) | (0.2049) | (0.1414) | (0.1482) | |
0.9073 | 0.8944 | 0.9479 | 0.9351 | 0.9524 | 0.9460 | 0.9575 | 0.9451 | 0.9595 | 0.9498 | |
(0.4742) | (0.5015) | (0.1860) | (0.2004) | (0.1805) | (0.1904) | (0.1811) | (0.1968) | (0.1515) | (0.1546) | |
0.8961 | 0.8826 | 0.9207 | 0.9196 | 0.9398 | 0.9342 | 0.9446 | 0.9316 | 0.9523 | 0.9406 | |
(0.4894) | (0.5120) | (0.2037) | (0.2139) | (0.1987) | (0.2105) | (0.2003) | (0.2106) | (0.1602) | (0.1639) |
The Main Empirical Findings of This Study | |
---|---|
Finding 1: | The computational cost of our proposed methods is substantially reduced compared with traditional bootstrap methods. |
Finding 2: | The optimal coverage of the parameter based on RWC is higher than the nominal frequency. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Fan, H. Fast Cluster Bootstrap Methods for Spatial Error Models. Mathematics 2025, 13, 2913. https://doi.org/10.3390/math13182913
Zheng Y, Fan H. Fast Cluster Bootstrap Methods for Spatial Error Models. Mathematics. 2025; 13(18):2913. https://doi.org/10.3390/math13182913
Chicago/Turabian StyleZheng, Yu, and Honggang Fan. 2025. "Fast Cluster Bootstrap Methods for Spatial Error Models" Mathematics 13, no. 18: 2913. https://doi.org/10.3390/math13182913
APA StyleZheng, Y., & Fan, H. (2025). Fast Cluster Bootstrap Methods for Spatial Error Models. Mathematics, 13(18), 2913. https://doi.org/10.3390/math13182913