Error Estimation of Weddle’s Rule for Generalized Convex Functions with Applications to Numerical Integration and Computational Analysis
Abstract
1. Introduction
- Midpoint rule: Derived from a constant (degree-0) interpolant.
- Trapezoidal rule: Based on linear (degree-1) polynomial interpolation.
- Simpson’s rule: Uses quadratic (degree-2). interpolation, named after Thomas Simpson (1710–1761).
- Boole’s rule: Employing quartic (degree-4) interpolation.
- Weddle’s rule: Utilizing sextic (degree-6) polynomial interpolation.
- The trapezoidal formula:
- The midpoint formula:
- Simpson’s 1/3 formula:
- The following Boole formula:
- The six-point Weddle’s formula for numerical integration is defined as follows:
2. Main Results
3. Numerical Examples
4. Application to Numerical Integration Formulas
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gibb, D. A Course in Interpolation and Numerical Integration for the Mathematical Laboratory; G. Bell & Sons, Limited: London, UK, 1915. [Google Scholar]
- Leader, J.J. Numerical Analysis and Scientific Computation; Addison Wesley: Boston, MA, USA, 2004. [Google Scholar]
- Eves, H.W. An Introduction to the History of Mathematics; Saunders: Philadelphia, PA, USA, 1990. [Google Scholar]
- Jamei, M.M. Unified error bounds for all Newton Cotes quadrature rules. J. Numer. Math. 2015, 23, 67–80. [Google Scholar] [CrossRef]
- Al-Alaoui, M.A. A class of numerical integration rules with first-order derivatives. ACM Signum Newsl. 1996, 31, 25–44. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Agarwal, P.R. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef]
- Kirmaci, U.S. Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula. Appl. Math. Comput. 2004, 147, 137–146. [Google Scholar] [CrossRef]
- Alomari, M.; Darus, M.; Dragomir, S.S. New inequalities of Simpson’s type for s-convex functions with applications. RGMIA Res. Rep. Coll. 2009, 12, 4. [Google Scholar]
- Dragomir, S.S.; Agarwal, R.P.; Cerone, P. On Simpson’s inequality and applications. J. Inequal. Appl. 2000, 5, 533–579. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Özdemir, M.E. On new inequalities of Simpson’s type for convex functions. RGMIA Res. Rep. Coll. 2010, 13, 2. [Google Scholar] [CrossRef]
- Özdemir, M.E.; Akdemir, A.O.; Kavurmaci, H.; Avci, M. On the Simpson’s inequality for co-ordinated convex functions. Turkish J. Math. Anal. Number Theory 2014, 2, 165–169. [Google Scholar] [CrossRef]
- Du, T.; Li, Y.; Yang, Z. A generalization of Simpson’s inequality via differentiable mapping using extended (s,m)-convex functions. Appl. Math. Comput. 2017, 293, 358–369. [Google Scholar] [CrossRef]
- Ali, M.A.; Mateen, A.; Feckan, M. Study of Quantum Ostrowski’s-Type Inequalities for Differentiable convex Functions. Ukr. Math. J. 2023, 75, 5–28. [Google Scholar] [CrossRef]
- Mateen, A.; Zhang, Z.; Ali, M.A. Some Milne’s Rule Type Inequalities for convex functions with Their Computational Analysis on Quantum Calculus. Filomat 2024, 38, 3329–3345. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- İşcan, İ.; Wu, S. Hermite–Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl. Math. Comput. 2014, 238, 237–244. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Yildrim, H. On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals. Miskolc Math. Notes 2016, 17, 1049–1059. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Özdemir, M.E. On new inequalities of Simpson’s type for s-convex functions. Comput. Math. Appl. 2010, 60, 2191–2199. [Google Scholar] [CrossRef]
- Chen, J.; Huang, X. Some new inequalities of Simpson’s type for s-convex functions via fractional integrals. Filomat 2017, 31, 4989–4997. [Google Scholar] [CrossRef]
- Mateen, A.; Zhang, Z.; Budak, H.; Özcan, S. Some novel inequalities of Weddle’s formula type for Riemann—Liouville fractional integrals with their applications to numerical integration. Chaos Solitons Fractals 2025, 192, 115973. [Google Scholar] [CrossRef]
- Breckner, W.W. Stetigkeitsaussagen füreine Klasse verallgemeinerter konvexer funktionen in topologischen lin-earen Räumen. Publ. Inst. Math. 1978, 23, 13–20. [Google Scholar]
- Hudzik, H.; Maligranda, L. Some remarks on s-convex functions. Aequationes Math. 1994, 48, 100–111. [Google Scholar] [CrossRef]
- Pycia, M. A direct proof of the s-Hölder continuity of Breckner s-convex functions. Aequationes Math. 2001, 61, 128–130. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Fitzpatrick, S. The Hadamard’s inequality for s-convex functions in the second sense. Demonstr. Math. 1999, 32, 687–696. [Google Scholar]
- Kirmaci, U.S.; Bakula, M.K.; Özdemir, M.E.; Pečarić, J. Hadamard-type inequalities for s-convex functions. Appl. Math. Comp. 2007, 193, 26–35. [Google Scholar] [CrossRef]
- Alomari, M.; Darus, M.; Dragomir, S.S. Inequalities of Hermite-Hadamard’s type for functions whose derivative’s absolute values are quasi-convex. Res. Rep. Collect. 2009, 12. [Google Scholar]
- Alomari, M.; Darus, M.; Kirmaci, U.S. Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means. Comp. Math. Appl. 2010, 59, 225–232. [Google Scholar] [CrossRef]
s | Left Inequality | Right Inequality |
---|---|---|
0.1 | 3.0864 × 10−14 | 0.0123 |
0.2 | 2.2071 × 10−12 | 0.0264 |
0.3 | 2.9257 × 10−11 | 0.0428 |
0.4 | 1.9141 × 10−10 | 0.0621 |
0.5 | 8.5077 × 10−10 | 0.0851 |
0.6 | 2.9618 × 10−9 | 0.1126 |
0.7 | 8.7132 × 10−9 | 0.1456 |
0.8 | 2.2664 × 10−8 | 0.1854 |
0.9 | 5.3668 × 10−8 | 0.2336 |
1 | 1.1803 × 10−7 | 0.2920 |
s | Left Inequality | Right Inequality |
---|---|---|
0.1 | 2.20712 × 10−12 | 0.00744 |
0.2 | 1.9141 × 10−10 | 0.02035 |
0.3 | 2.96184 × 10−9 | 0.04247 |
0.4 | 2.26636 × 10−8 | 0.07996 |
0.5 | 1.18029 × 10−7 | 0.14283 |
0.6 | 4.82308 × 10−7 | 0.24714 |
0.7 | 1.66828 × 10−6 | 0.41854 |
0.8 | 5.11063 × 10−6 | 0.69778 |
0.9 | 0.0000142757 | 1.14924 |
1 | 0.0000370908 | 1.87429 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mateen, A.; Bin-Mohsin, B.; Tipu, G.H.; Shehzadi, A. Error Estimation of Weddle’s Rule for Generalized Convex Functions with Applications to Numerical Integration and Computational Analysis. Mathematics 2025, 13, 2874. https://doi.org/10.3390/math13172874
Mateen A, Bin-Mohsin B, Tipu GH, Shehzadi A. Error Estimation of Weddle’s Rule for Generalized Convex Functions with Applications to Numerical Integration and Computational Analysis. Mathematics. 2025; 13(17):2874. https://doi.org/10.3390/math13172874
Chicago/Turabian StyleMateen, Abdul, Bandar Bin-Mohsin, Ghulam Hussain Tipu, and Asia Shehzadi. 2025. "Error Estimation of Weddle’s Rule for Generalized Convex Functions with Applications to Numerical Integration and Computational Analysis" Mathematics 13, no. 17: 2874. https://doi.org/10.3390/math13172874
APA StyleMateen, A., Bin-Mohsin, B., Tipu, G. H., & Shehzadi, A. (2025). Error Estimation of Weddle’s Rule for Generalized Convex Functions with Applications to Numerical Integration and Computational Analysis. Mathematics, 13(17), 2874. https://doi.org/10.3390/math13172874