Studies on Poisson–Nernst–Planck Systems with Large Permanent Charges Under Relaxed Neutral Boundary Conditions
Abstract
1. Introduction
1.1. One-Dimensional Poisson–Nernst–Planck Models
1.2. Permanent Charges
1.3. Electrochemical Potentials
1.4. Electroneutrality Boundary Conditions and Boundary Layers
- (i)
- Investigate the large permanent charge effects on individual fluxes under the relaxed neutral conditions;
- (ii)
- Examine the effects on ionic flows from the boundary layers due to the relaxation of the neutral boundary conditions.
2. Problem Formulation
2.1. Assumptions
2.2. Dimensionless Form of the Quasi-One-Dimensional PNP Model
2.3. Existing Results
3. Results
3.1. Analysis of Individual Fluxes with Boundary Layers
- (i)
- Small parameter ν enhances if while reducing it if . That is, (resp. ) if (resp. ). Equivalently, the large permanent charge reduces cation’s flux if while enhancing it if .
- (ii)
- The large permanent charge strengthens anion’s flow if while weakening it if . That is, (resp. ) if (resp. ).
- (i)
- There exists a unique critical potential such that for and for .
- (ii)
- as and as .
3.2. Boundary Layer Effects on Ionic Flows
- (i)
- For ,
- (i1)
- and over . That is, the small parameter ν reduces cation’s fluxes and , equivalently, and the large permanent charge enhances both and .
- (i2)
- but over . That is, the small parameter ν enhances while reducing , equivalently, the large permanent charge reduces while enhancing .
- (i3)
- and over . That is, the small parameter ν enhances cation’s fluxes and , equivalently, and the large permanent charge reduces both and .
- (ii)
- For ,
- (ii1)
- and over . That is, the small parameter ν reduces cation’s fluxes and , equivalently, and the large permanent charge enhances both and .
- (ii2)
- but over . That is, the small parameter ν reduces while enhancing , equivalently, and the large permanent charge enhances while reducing .
- (ii3)
- and over . That is, the large permanent charge enhances cation’s fluxes and , equivalently, and the large permanent charge reduces both and .
- (i)
- as if one of the following conditions holds
- (i1)
- , ;
- (i2)
- , , .
- (ii)
- as if one of the following conditions holds
- (ii1)
- , ;
- (ii2)
- , , .
- (iii)
- as , while as if , , .
- (iv)
- as , while as if , , .
- (i)
- as if , .
- (ii)
- as if , .
- (iii)
- as , while as if , .
- (iv)
- as , while as if , .
3.3. Numerical Simulations
- (i)
- (ii)
- Numerically identify the two critical potentials and under different setups for the boundary layer parameters and illustrate our analytical results stated in Theorem 2 (see Figure 3).
4. Discussion
5. Conclusions
- We derived explicit asymptotic expansions for individual fluxes up to first-order terms in the small parameter , incorporating the boundary layer parameters as perturbations from electroneutrality.
- We identified critical potentials and , characterizing sign changes and monotonicity properties of fluxes, which are sensitive to both large permanent charge magnitudes and boundary layer parameters.
- We established rigorous saturation results showing that both cation and anion fluxes saturate as the transmembrane potential V tends to infinity, with their magnitudes influenced by deviations from boundary neutrality.
- Most notably, we demonstrated non-intuitive discrepancies in flux behaviors between relaxed neutral and electroneutral boundary conditions. Specifically, in certain parameter regimes, large permanent charges can enhance or reduce ionic fluxes in opposite directions under these two boundary setups.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PNP | Poisson–Nernst–Planck |
References
- Baradaran, R.; Wang, C.; Siliciano, A.F.; Long, S.B. Cryo-EM Structures of Fungal and Metazoan Mitochondrial Calcium Uniporters. Nature 2018, 559, 580–584. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Fan, M.; Orlando, B.J.; Fastman, N.M.; Zhang, J.; Xu, Y.; Chambers, M.G.; Xu, X.; Perry, K.; Liao, M.; et al. X-ray and Cryo-EM Structures of the Mitochondrial Calcium Uniporter. Nature 2018, 559, 575–579. [Google Scholar] [CrossRef]
- Nguyen, N.X.; Armache, J.P.; Lee, C.; Yang, Y.; Zeng, W.; Mootha, V.K.; Cheng, Y.; Bai, X.C.; Jiang, Y. Cryo-EM Structure of a Fungal Mitochondrial Calcium Uniporter. Nature 2018, 559, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-S.; Kim, J.; Ahn, J.; Chung, S.; Han, C.S. Artificial Action Potential and Ionic Power Device Inspired by Ion Channels and Excitable Cell. Adv. Sci. 2023, 10, 2301037. [Google Scholar] [CrossRef] [PubMed]
- Park, K.S. Humans and Electricity: Understanding Body Electricity and Applications; Springer International Publishing: Berlin/Heidelberg, Germany, 2023; pp. 53–57. [Google Scholar]
- Firth, A.; Remillard, C.; Platoshyn, O.; Fantozzi, I.; Ko, E.A.; Yuan, J.X.J. Functional Ion Channels in Human Pulmonary Artery Smooth Muscle Cells: Voltage-Dependent Cation Channels. Pulm. Circ. 2011, 1, 48–71. [Google Scholar] [CrossRef]
- Moody, W.; Bosma, M. Ion Channel Development, Spontaneous Activity, and Activity-Dependent Development in Nerve and Muscle Cells. Physiol. Rev. 2005, 85, 883–941. [Google Scholar] [CrossRef]
- Dworakowska, B.; Dołowy, K. Ion channels-related diseases. Acta Biochim. Pol. 2000, 47, 685–703. [Google Scholar] [CrossRef]
- Lawson, K. Potassium channel openers as potential therapeutic weapons in ion channel disease. Kidney Int. 2000, 57, 838–845. [Google Scholar] [CrossRef]
- Moldovan, M.; Pisciotta, C.; Pareyson, D.; Krarup, C. Myelin protein zero gene dose dependent axonal ion-channel dysfunction in a family with Charcot-Marie-Tooth disease. Clin. Neurophysiol. 2020, 131, 2440–2451. [Google Scholar] [CrossRef]
- Nass, R.; Aiba, T.; Tomaselli, G.; Akar, F.G. Mechanisms of Disease: Ion channel remodeling in the failing ventricle. Nat. Rev. 2008, 5, 196–207. [Google Scholar] [CrossRef]
- Patel, N.; Ramachandran, S.; Azimov, R.; Kagan, B.L.; Lal, R. Ion Channel Formation by Tau Protein: Implications for Alzheimer’s Disease and Tauopathies. Biochemistry 2015, 54, 7320–7325. [Google Scholar] [CrossRef]
- Eisenberg, B. Crowded charges in ion channels. Adv. Chem. Phys. 2011, 148, 77–223. [Google Scholar]
- Eisenberg, B. Ion Channels as Devices. J. Comp. Electro. 2003, 2, 245–249. [Google Scholar] [CrossRef]
- Eisenberg, B. Proteins, channels, and crowded ions. Biophys. Chem. 2003, 100, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, R.S. Channels as enzymes. J. Memb. Biol. 1990, 115, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, R.S. Atomic Biology, Electrostatics and Ionic Channels. In New Developments and Theoretical Studies of Proteins; Elber, R., Ed.; World Scientific: Singapore, 1996; pp. 269–357. [Google Scholar]
- Roux, B.; Allen, T.W.; Berneche, S.; Im, W. Theoretical and computational models of biological ion channels. Quat. Rev. Biophys. 2004, 37, 15–103. [Google Scholar] [CrossRef]
- Barcilon, V. Ion flow through narrow membrane channels: Part I. SIAM J. Appl. Math. 1992, 52, 1391–1404. [Google Scholar] [CrossRef]
- Schuss, Z.; Nadler, B.; Eisenberg, R.S. Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model. Phys. Rev. E 2001, 64, 1–14. [Google Scholar] [CrossRef]
- Hyon, Y.; Eisenberg, B.; Liu, C. A mathematical model for the hard sphere repulsion in ionic solutions. Commun. Math. Sci. 2010, 9, 459–475. [Google Scholar]
- Hyon, Y.; Fonseca, J.; Eisenberg, B.; Liu, C. A new Poisson-Nernst-Planck equation (PNP-FS-IF) for charge inversion near walls. Biophys. J. 2011, 100, 578a. [Google Scholar] [CrossRef]
- Hyon, Y.; Fonseca, J.; Eisenberg, B.; Liu, C. Energy variational approach to study charge inversion (layering) near charged walls. Discrete Contin. Dyn. Syst. Ser. B 2012, 17, 2725–2743. [Google Scholar] [CrossRef]
- Hyon, Y.; Liu, C.; Eisenberg, B. PNP equations with steric effects: A model of ion flow through channels. J. Phys. Chem. B 2012, 116, 11422–11441. [Google Scholar]
- Ji, S.; Eisenberg, B.; Liu, W. Flux Ratios and Channel Structures. J. Dyn. Diff. Equat. 2019, 31, 1141–1183. [Google Scholar] [CrossRef]
- Li, H.; Li, Z.; Pan, C.; Song, J.; Zhang, M. Cubic-like features of I-V relations via classical Poisson-Nernst-Planck systems under relaxed electroneutrality boundary conditions. Axioms 2024, 13, 790. [Google Scholar] [CrossRef]
- Liu, W. Geometric singular perturbation approach to steady-state Poisson-Nernst-Planck systems. SIAM J. Appl. Math. 2005, 65, 754–766. [Google Scholar] [CrossRef]
- Liu, W.; Wang, B. Poisson-Nernst-Planck systems for narrow tubular-like membrane channels. J. Dyn. Diff. Equat. 2010, 22, 413–437. [Google Scholar] [CrossRef]
- Liu, X.; Song, J.; Zhang, L.; Zhang, M. Roles played by critical potentials in the study of Poisson-Nernst-Planck models with steric effects under relaxed neutral boundary conditions. Axioms 2025, 14, 69. [Google Scholar] [CrossRef]
- Sun, L.; Liu, W. Non-localness of excess potentials and boundary value problems of Poisson-Nernst-Planck systems for ionic flow: A Case Study. J. Dyn. Differ. Equ. 2018, 30, 779–797. [Google Scholar] [CrossRef]
- Ding, J.; Wang, C.; Zhou, S. Convergence analysis of structure-preserving numerical methods based on Slotboom transformation for the Poisson-Nernst-Planck equations. Commun. Math. Sci. 2023, 21, 459–484. [Google Scholar]
- Burger, M.; Eisenberg, R.S.; Engl, H.W. Inverse problems related to ion channel selectivity. SIAM J. Appl. Math. 2007, 67, 960–989. [Google Scholar] [CrossRef][Green Version]
- Cardenas, A.E.; Coalson, R.D.; Kurnikova, M.G. Three-Dimensional Poisson-Nernst-Planck Theory Studies: Influence of Membrane Electrostatics on Gramicidin A Channel Conductance. Biophys. J. 2000, 79, 80–93. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.P.; Eisenberg, R.S. Charges, currents and potentials in ionic channels of one conformation. Biophys. J. 1993, 64, 1405–1421. [Google Scholar] [CrossRef] [PubMed]
- Coalson, R.; Kurnikova, M. Poisson-Nernst-Planck theory approach to the calculation of current through biological ion channels. IEEE Trans. Nanobiosci. 2005, 4, 81–93. [Google Scholar] [CrossRef]
- Qian, Y.; Wang, C.; Zhou, S. A positive and energy stable numerical scheme for the Poisson-Nernst-Planck-Cahn-Hilliard equations with steric interactions. J. Comput. Phys. 2021, 426, 109908. [Google Scholar] [CrossRef]
- Ding, J.; Zhou, S. Second-order, Positive, and Unconditional Energy Dissipative Scheme for Modified Poisson-Nernst-Planck Equations. J. Comput. Phys. 2024, 510, 113094. [Google Scholar] [CrossRef]
- De Bortoli, A.L.; Negro, E.; Di Noto, V. Generalized modified Poisson-Nernst-Planck model for electrical double layer with steric, correlation and thermal effects applied to fuel cells. Electrochim. Acta 2025, 525, 146070. [Google Scholar] [CrossRef]
- Ellingsrud, A.J.; Benedusi, P.; Kuchta, M. A splitting, discontinuous Galerkin solver for the cell-by-cell electroneutral Nernst-Planck framework. SIAM J. Sci. Comput. 2025, 47, B477–B504. [Google Scholar] [CrossRef]
- Ji, S.; Liu, W. Poisson-Nernst-Planck Systems for Ion Flow with Density Functional Theory for Hard-Sphere Potential: I-V relations and Critical Potentials. Part I: Analysis. J. Dyn. Diff. Equat. 2012, 24, 955–983. [Google Scholar] [CrossRef]
- Bates, P.W.; Chen, J.; Zhang, M. Dynamics of ionic flows via Poisson-Nernst-Planck systems with local hard-sphere potentials: Competition between cations. Math. Biosci. Eng. 2020, 17, 3736–3766. [Google Scholar] [CrossRef]
- Eisenberg, B.; Hyon, Y.; Liu, C. Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids. J. Chem. Phys. 2010, 133, 104104. [Google Scholar] [CrossRef]
- Gillespie, D.; Nonner, W.; Eisenberg, R.S. Coupling Poisson-Nernst-Planck and density functional theory to calculate ion flux. J. Phys. Condens. Matter 2002, 14, 12129–12145. [Google Scholar] [CrossRef]
- Gillespie, D.; Nonner, W.; Eisenberg, R.S. Crowded Charge in Biological Ion Channels. Nanotechnology 2003, 3, 435–438. [Google Scholar]
- Gillespie, D.; Xu, L.; Wang, Y.; Meissner, G. (De)constructing the Ryanodine Receptor: Modeling Ion Permeation and Selectivity of the Calcium Release Channel. J. Phys. Chem. B 2005, 109, 15598–15610. [Google Scholar]
- Kilic, M.S.; Bazant, M.Z.; Ajdari, A. Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations. Phys. Rev. E 2007, 75, 021503. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.; Liu, W.; Yi, Y.; Zhang, M. Poisson-Nernst-Planck systems for ion flow with density functional theory for local hard-sphere potential. SIAM J. Appl. Dyn. Syst. 2013, 12, 1613–1648. [Google Scholar] [CrossRef]
- Zhang, M. Qualitative properties of zero-current ionic flows via Poisson-Nernst-Planck systems with nonuniform ion sizes. Discrete Contin. Dyn. Sys. Ser. B 2022, 27, 6989–7019. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, Z.; Li, B. Mean-field description of ionic size effects with nonuniform ionic sizes: A numerical approach. Phy. Rev. E 2011, 84, 021901. [Google Scholar] [CrossRef]
- Zhang, L.; Eisenberg, R.S.; Liu, W. An effect of large permanent charge: Decreasing flux to zero with increasing transmembrane potential to infinity. Eur. Phys. J. Spec. Top. 2019, 227, 2575–2601. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, W. Effects of Large Permanent Charges on Ionic Flows via Poisson–Nernst–Planck Models. Siam J. Appl. Dyn. Syst. 2020, 19, 1993–2029. [Google Scholar] [CrossRef]
- Nonner, W.; Eisenberg, R.S. Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type Calcium channels. Biophys. J. 1998, 75, 1287–1305. [Google Scholar] [CrossRef]
- Eisenberg, E.; Liu, W. Poisson-Nernst-Planck systems for ion channels with permanent charges. SIAM J. Math. Anal. 2007, 38, 1932–1966. [Google Scholar] [CrossRef]
- Eisenberg, R.S. Computing the field in proteins and channels. J. Memb. Biol. 1996, 150, 1–25. [Google Scholar] [CrossRef]
- Gillespie, D. A Singular Perturbation Analysis of the Poisson-Nernst-Planck System: Applications to Ionic Channels. Ph.D Dissertation, Rush University at Chicago, Chicago, IL, USA, 1999. [Google Scholar]
- Bates, P.W.; Wen, Z.; Zhang, M. Small permanent charge effects on individual fluxes via Poisson-Nernst-Planck models with multiple cations. J. Nonlinear Sci. 2021, 31, 55. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Zhang, L.; Zhang, M. Mathematical analysis of Poisson-Nernst-Planck models with permanent charges and boundary layers: Studies on individual fluxes. Nonlinearity 2021, 34, 3879–3906. [Google Scholar] [CrossRef]
- Ji, S.; Liu, W.; Zhang, M. Effects of (small) permanent charges and channel geometry on ionic flows via classical Poisson-Nernst-Planck models. SIAM J. on Appl. Math. 2015, 75, 114–135. [Google Scholar] [CrossRef]
- Wen, Z.; Bates, W.P.; Zhang, M. Effects on I-V relations from small permanent charge and channel geometry via classical Poisson-Nernst-Planck equations with multiple cations. Nonlinearity 2021, 34, 4464–4502. [Google Scholar] [CrossRef]
- Wen, Z.; Zhang, L.; Zhang, M. Dynamics of classical Poisson-Nernst-Planck systems with multiple cations and boundary layers. J. Dyn. Diff. Equat. 2021, 33, 211–234. [Google Scholar] [CrossRef]
- Akbari, A.; Palsson, B.O. Positively charged mineral surfaces promoted the accumulation of organic intermediates at the origin of metabolism. Plos Comput. Biol. 2022, 18, 1–34. [Google Scholar] [CrossRef]
- Kay, A.R.; Blaustein, M.P. Evolution of our understanding of cell volume regulation by the pump-leak mechanism. J. Gen. Physiol. 2019, 151, 407–416. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, M. Boundary layer effects on ionic flows via Poisson-Nernst-Planck systems with nonuniform ion sizes. Discret. Contin. Dyn. Syst. Ser. B 2022, 27, 6197–6216. [Google Scholar] [CrossRef]
- Zhang, M. Boundary layer effects on ionic flows via classical Poisson-Nernst-Planck systems. Comput. Math. Biophys. 2018, 6, 14–27. [Google Scholar] [CrossRef]
- Kierzenka, J.; Shampine, L. A BVP Solver Based on Residual Control and the Matlab PSE. ACM Trans. Math. Softw. 2001, 27, 299–316. [Google Scholar] [CrossRef]
- Liang, Y.Y.; Fimbres Weihs, G.A.; Fletcher, D.F. CFD study of the effect of unsteady slip velocity waveform on shear stress in membrane systems. Chem. Eng. Sci. 2018, 192, 16–24. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Li, Z.; Song, J.; Zhang, M. Studies on Poisson–Nernst–Planck Systems with Large Permanent Charges Under Relaxed Neutral Boundary Conditions. Mathematics 2025, 13, 2847. https://doi.org/10.3390/math13172847
Chen J, Li Z, Song J, Zhang M. Studies on Poisson–Nernst–Planck Systems with Large Permanent Charges Under Relaxed Neutral Boundary Conditions. Mathematics. 2025; 13(17):2847. https://doi.org/10.3390/math13172847
Chicago/Turabian StyleChen, Jianing, Zhantao Li, Jie Song, and Mingji Zhang. 2025. "Studies on Poisson–Nernst–Planck Systems with Large Permanent Charges Under Relaxed Neutral Boundary Conditions" Mathematics 13, no. 17: 2847. https://doi.org/10.3390/math13172847
APA StyleChen, J., Li, Z., Song, J., & Zhang, M. (2025). Studies on Poisson–Nernst–Planck Systems with Large Permanent Charges Under Relaxed Neutral Boundary Conditions. Mathematics, 13(17), 2847. https://doi.org/10.3390/math13172847