Next Article in Journal
A Comprehensive Review on Automated Grading Systems in STEM Using AI Techniques
Previous Article in Journal
General Runge–Kutta–Nyström Methods for Linear Inhomogeneous Second-Order Initial Value Problems
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

The Geometry of (p,q)-Harmonic Maps

1
School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
2
School of Mathematics and Statistics, Shangqiu Normal University, Shangqiu 476000, China
*
Author to whom correspondence should be addressed.
Mathematics 2025, 13(17), 2827; https://doi.org/10.3390/math13172827
Submission received: 5 July 2025 / Revised: 25 August 2025 / Accepted: 30 August 2025 / Published: 2 September 2025

Abstract

This paper studies ( p , q ) -harmonic maps by unified geometric analytic methods. First, we deduce variation formulas of the ( p , q ) -energy functional. Second, we analyze weakly conformal and horizontally conformal ( p , q ) -harmonic maps and prove Liouville results for ( p , q ) -harmonic maps under Hessian and asymptotic conditions on complete Riemannian manifolds. Finally, we define the ( p , q ) - S S U manifold and prove that non-constant stable ( p , q ) -harmonic maps do not exist.
MSC:
35B53; 58E20; 53C21

1. Introduction

Harmonic maps play a fundamental role in mathematics and physics, with extensive interdisciplinary impacts [1,2,3]. These critical points of the energy functional E ( F ) = M | d F | 2 2 d v g generalize naturally to p-harmonic maps, which are critical points of E p ( F ) = M | d F | p p d v g . In particular, when p = 2 , the 2-harmonic maps correspond precisely to the classical harmonic maps. A central research theme involves establishing Liouville-type theorems for such maps [4,5,6].
In [7], Dong and Wei established monotonicity formulas using the stress–energy tensor. Their approach relies on fundamental integral formulas and employs distinct exhaustion functions to construct the required vector fields. In [8,9], Kawai and Nakauchi showed that non-constant stable Φ -harmonic maps do not exist. By using the extrinsic average variational method [10,11], in [12], Han and Wei generalized the results of Kawai and Nakauchi and proved that there are no non-constant stable Φ -harmonic maps from or into these manifolds. Similarly, in [13,14,15], Feng et al. introduced the notions of Φ ( 3 ) - S S U , Φ S - S S U , and Φ S , p - S S U manifolds. They proved that any stable Φ ( 3 ) -harmonic map from or into a compact Φ ( 3 ) - S S U manifold, any stable Φ S -harmonic map from or into a compact Φ S - S S U manifold, and any stable Φ S , p -harmonic map from or into a compact Φ S , p - S S U manifold must be constant. In [16], Cherif investigated the stability of P ( x ) -harmonic maps. By defining core concepts such as the P ( x ) -tension field, energy functional, and index form, he proved that stable P ( x ) -harmonic maps from the two-dimensional sphere to Kähler manifolds with non-positive holomorphic bisectional curvature must be holomorphic or anti-holomorphic maps, and he clarified the constant characteristic of stable P ( x ) -harmonic maps from high-dimensional spheres to Riemannian manifolds under specific conditions.
Due to the conformal properties of harmonic maps, in the field of neuroscience, the brain can be mapped onto the unit sphere. This approach helps to simplify the complex structure of the cerebral cortex and facilitates further analysis and comparison. In [17], Nakauchi studied a variational problem related to conformal maps. In [18], Takeuchi investigated p-harmonic conformal maps and established relationships between their mean curvature vectors and p-tension fields and proved two key results: ( i ) if dim M = p < dim N , a conformal map F is p-harmonic if and only if F ( M ) is a minimal submanifold of N; ( i i ) if dim M = p > dim N , the fibers of p-harmonic horizontal conformal maps are minimal submanifolds of M.
It is well-known that the single-phase functional corresponds to the classical p-energy functional, such as M | F | p d v g . Single-phase problems are based on uniform ellipticity, where the energy response to the gradient is consistent across the entire domain, corresponding to the stable mechanical behavior of homogeneous materials (e.g., pure metals). However, in physical modeling, the ellipticity is not necessarily uniform. In 2015, Colombo and Mingione [19] investigated the regularity of the minimizers for the double-phase functional
M | F | p + a ( x ) | F | q d v g .
Double-phase problems introduce non-uniform ellipticity by modulating the energy response via a coefficient function a ( x ) , which allows the system to switch between phases (the p-phase and the ( p , q ) -phase) depending on the spatial location. This structure is particularly suitable for modeling anisotropic materials (e.g., composite materials), where abrupt changes in mechanical properties occur across different components, thereby overcoming the limitations of the single-phase models in capturing spatially inhomogeneous energy laws. The transition from single-phase to double-phase functionals essentially aims to more accurately model the physical distinction between homogeneous and anisotropic materials.
This paper studies some properties of ( p , q ) -harmonic maps F from an m-dimensional Riemannian manifold M with metric g into an n-dimensional Riemannian manifold N with metric h. The ( p , q ) -harmonic maps are critical points of the ( p , q ) -energy functional E p , q , which is defined below. Assume that the map F : M N is smooth, and we consider the following functional
E p , q ( F ) = M | d F | p p + | d F | q q d v g , ( p , q 2 )
where d v g denotes the volume form on ( M , g ) . We say that F is a ( p , q ) -harmonic map if F is a critical point of E p , q , i.e.,
d d t E p , q ( F t ) | t = 0 = 0
for any compactly supported variation F t : M N , ( κ < t < κ ) with F 0 = F . That is, F satisfies the ( p , q ) -tension field equation
τ p , q ( F ) = i = 1 m ˜ e i ( | d F | p 2 + | d F | q 2 ) d F ( e i ) ( | d F | p 2 + | d F | q 2 ) d F e i e i
on M.
Next, we extend the study of harmonic maps and p-harmonic maps, and we investigate some properties of ( p , q ) -harmonic maps. We now give the following definitions.
Definition 1. 
A smooth map F is called a ( p , q ) -harmonic map provided its ( p , q ) -tension field vanishes, i.e., τ p , q ( F ) = 0 , where τ p , q ( F ) is the tension field associated with the ( p , q ) -energy functional E p , q .
The notion of the ( p , q ) - S S U manifold is defined as follows.
Definition 2. 
A Riemannian manifold M m is said to be ( p , q ) -superstrongly unstable ( ( p , q ) - S S U ) manifold if it admits an isometric immersion into some Euclidean space R d such that at any point P M m , relative to its second fundamental form H , the functional
G ( p , q ) , P = max { ( p 2 ) , ( q 2 ) } H ( z , z ) , H ( z , z ) + i = 1 m 2 H ( z , e i ) , H ( z , e i ) H ( z , z ) , H ( e i , e i )
is strictly negative for all unit tangent vectors z T P ( M m ) , where { e i } i = 1 m is a local orthonormal frame on M m .
The plan of this paper is as follows. Section 1 introduces some background knowledge and defines ( p , q ) -harmonic maps and ( p , q ) - S S U manifolds. Section 2 derives the variation formulas and introduces the ( p , q ) -stress–energy tensor S p , q associated with the ( p , q ) -energy functional E p , q . Section 3 establishes some properties of weakly conformal and horizontally conformal ( p , q ) -harmonic maps. Section 4 obtains a Liouville-type result (cf. Theorem 6) using Jin’s method [20]. Section 6 proves that non-constant stable ( p , q ) -harmonic maps from any compact Riemannian manifold into a compact ( p , q ) - S S U manifold or from a compact ( p , q ) - S S U manifold into any compact Riemannian manifold do not exist (cf. Theorem 9, Theorem 10).

2. Variation Formula and (p,q)-Stress–Energy Tensor

Let D ,   N D , and D ˜ be the Levi-Civita connections of M, N, and the induced connection on F 1 T N defined by D ˜ Y W = N D d F ( Y ) W , respectively, where W is a section of F 1 T N and Y is a tangent vector of M. In [21], Takeuchi defined the tensor τ p ( F ) . We define the ( p , q ) -tension field τ p , q ( F ) as follows:
τ p , q ( F ) = δ | d F | p 2 d F + | d F | q 2 d F = i = 1 m D ˜ e i ( | d F | p 2 + | d F | q 2 ) d F ( e i ) ( | d F | p 2 + | d F | q 2 ) d F D e i e i ,
which is a section of pullback bundle F 1 T N . If τ p , q ( F ) = 0 ( ( p , q ) -harmonic map), then the physical system is in equilibrium, with no additional tension, and the energy reaches a local minimum.
Using the ( p , q ) -tension field τ p , q ( F ) , we get the following results.
Theorem 1. 
Suppose that the map F : M N is smooth between Riemannnian manifolds. Then we get
d d t E p , q ( F t ) | t = 0 = M h ( W , τ p , q ( F ) ) d v g ,
where W = t F t | t = 0 is a vector field and d v g is the volume form on M.
Proof. 
Let W Γ ( F 1 T N ) . We may get a one-parameter family of maps F t such that F 0 = F , W = d F t ( t ) | t = 0 . The mapping F t can be considered as a map ( κ , κ ) × M N , and we may also use D and D ˜ to denote the Levi-Civita connection on ( κ , κ ) × M and the induced connection on F 1 T N , respectively.
d d t E p , q ( F t ) | t = 0 = M t | d F t | p p + | d F t | q q | t = 0 d v g .
Next, we calculate the expression within the following integral:
t | d F | p p + | d F | q q = 1 p t ( | d F t | 2 ) p / 2 + 1 q t ( | d F t | 2 ) q / 2 = | d F t | p 2 + | d F t | q 2 i = 1 m h ( D ˜ t d F t ( e i ) , d F t ( e i ) ) = | d F t | p 2 + | d F t | q 2 i = 1 m h D ˜ e i d F t t , d F t ( e i ) = | d F t | p 2 + | d F t | q 2 i = 1 m e i h d F t t , d F t ( e i ) h d F t t , D ˜ e i d F t ( e i ) ,
where we use D ˜ t d F t ( e i ) D ˜ e i d F t ( t ) = d F t [ t , e i ] = 0 for the third equality. If for any vector field Z on M, there is g ( Y t , Z ) = h ( d F t t , d F t ( Z ) ) , where Y t is a compactly supported smooth vector field on M. Therefore, we have
t | d F | p p + | d F | q q = | d F t | p 2 + | d F t | q 2 i = 1 m e i g ( Y t , e i ) h d F t t , D ˜ e i d F t ( e i ) = | d F t | p 2 + | d F t | q 2 div Y t | d F t | p 2 + | d F t | q 2 i = 1 m h d F t t , D ˜ e i d F t ( e i ) d F t ( D e i e i ) = div | d F t | p 2 + | d F t | q 2 Y t i = 1 m e i | d F t | p 2 + | d F t | q 2 h d F t t , d F t ( e i ) | d F t | p 2 + | d F t | q 2 i = 1 m h d F t t , D ˜ e i d F t ( e i ) d F t ( D e i e i ) = div | d F t | p 2 + | d F t | q 2 Y t i = 1 m h d F t t , D ˜ e i | d F t | p 2 + | d F t | q 2 d F t ( e i ) | d F t | p 2 + | d F t | q 2 d F t ( D e i e i ) = div | d F t | p 2 + | d F t | q 2 Y t h d F t t , τ p , q ( F t ) .
According to Green’s theorem,
M div | d F t | p 2 + | d F t | q 2 Y t d v g = 0 .
Integrating both sides of (5) and substituting into (4), we have the first variational formula
d d t E p , q ( F t ) | t = 0 = M h ( W , τ p , q ( F ) ) d v g .
Remark 1. 
Let ( M , g ) be an oriented, compact, m-dimensional Riemannian manifold without boundary. Then for any smooth vector field Y,
M ( div Y ) d v g = 0 .
Let ( M , g ) be an oriented, compact, m-dimensional Riemannian manifold with boundary. Let n be the unit normal vector field on M pointing inward to M. Then for any smooth vector field Y,
M ( div Y ) d v g = M g ( n , Y ) d v g ,
where M has orientation induced by M.
Next, we define the ( p , q ) -stress–energy tensor
S p , q ( F ) = | d F | p p + | d F | q q g | d F | p 2 + | d F | q 2 F h .
Proposition 1. 
If the map F : M N is smooth, for any smooth vector fields Y on M, the relation between ( p , q ) -tension field τ p , q ( F ) and ( p , q ) -stress–energy tensor S p , q ( F ) can be written as
( div S p , q ) ( Y ) = h ( τ p , q ( F ) , d F ( Y ) ) .
Proof. 
We choose a local orthonormal frame { e i } i = 1 m of M near a point P. Let Y be a vector field on M. At P, we have
( div S p , q ) ( Y ) = i = 1 m ( D e i S p , q ) ( e i , Y ) = i = 1 m [ e i S p , q ( e i , Y ) S p , q ( D e i e i , Y ) S p , q ( e i , D e i Y ) ] = Y | d F | p p + | d F | q q i = 1 m e i | d F | p 2 + | d F | q 2 h d F ( Y ) , d F ( e i ) + | d F | p 2 + | d F | q 2 [ h ( D ˜ e i d F ( e i ) , d F ( Y ) ) + h ( d F ( e i ) , D ˜ e i d F ( Y ) ) ] | d F | p 2 + | d F | q 2 h ( d F ( D e i e i ) , d F ( Y ) ) | d F | p 2 + | d F | q 2 h ( d F ( e i ) , d F ( D e i Y ) ) = Y | d F | p p + | d F | q q | d F | p 2 + | d F | q 2 i = 1 m h ( d F ( e i ) , ( D e i d F ) ( Y ) ) h τ p , q ( F ) , d F ( Y ) = | d F | p 2 + | d F | q 2 i = 1 m [ h ( ( D Y d F ) ( e i ) , d F ( e i ) ) h ( d F ( e i ) , ( D e i d F ) ( Y ) ) ] h ( τ p , q ( F ) , d F ( Y ) ) ,
since ( D e i d F ) ( Y ) = ( D Y d F ) ( e i ) , we have ( div S p , q ) ( Y ) = h ( τ p , q ( F ) , d F ( Y ) ) .
Therefore, if τ p , q ( F ) = 0 , then
( div S p , q ) ( Y ) = 0 ,
i.e., F satisfies ( p , q ) -conservation law.
Let T 1 , T 2 Γ ( T M T M ) be any two 2-tensors. Their inner product is defined by
T 1 , T 2 = i , j = 1 m T 1 ( e i , e j ) T 2 ( e i , e j ) .
Assume that Ω is any bounded domain of M and Ω has C 1 boundary. Let χ be the unit outward normal vector field along Ω . By Stokes’s theorem, we have
Ω T ( Y , χ ) d s g = Ω T , 1 2 L Y g + div ( T ) ( Y ) d v g .
Setting T = S p , q in (9), and using (7), we obtain
Ω S p , q ( Y , χ ) d s g = Ω S p , q , 1 2 L Y g d v g .
Theorem 2. 
Assume that the map F : M N is smooth. Then we have
d d t E p , q ( F t ) | t = 0 = M S p , q , 1 2 L Y g d v g ,
where L Y is the Lie derivative, and for a local orthonormal frame field { e i } on M, the inner product is expressed as
S p , q , L Y g = i , j S p , q ( e i , e j ) L Y g ( e i , e j ) .
Proof. 
Let Y Γ 0 ( T M ) , and let φ t Y ( κ < t < κ ) be a one-parameter family of diffeomorphisms of M, hence d F ( Y ) is the variation vector field for F t = F φ t Y . By Theorem 1, we have
d d t E p , q ( F t ) | t = 0 = M d F ( Y ) , τ p , q ( F ) d v g = M d F ( Y ) , i = 1 m ˜ e i | d F | p 2 + | d F | q 2 d F ( e i ) d v g + M d F ( Y ) , | d F | p 2 + | d F | q 2 i = 1 m d F ( e i e i ) d v g = M e i d F ( Y ) , | d F | p 2 + | d F | q 2 d F ( e i ) d v g + M ˜ e i d F ( Y ) , | d F | p 2 + | d F | q 2 d F ( e i ) d v g + M d F ( Y ) , | d F | p 2 + | d F | q 2 i = 1 m d F ( e i e i ) d v g = M div h ( d F ( Y ) , | d F | p 2 + | d F | q 2 d F ( e i ) ) e i d v g + M | d F | p 2 + | d F | q 2 i = 1 m ˜ e i d F ( Y ) , d F ( e i ) d v g .
According to the Green theorem. Take a local orthonormal frame { e i } i = 1 m near a fixed point P M such that D e i e j | P = 0 . At P, we have
d d t E p , q ( F t ) | t = 0 = M | d F | p 2 + | d F | q 2 i = 1 m D ˜ e i d F ( Y ) , d F ( e i ) d v g . = M | d F | p 2 + | d F | q 2 i = 1 m [ h ( ( D e i d F ) ( Y ) , d F ( e i ) ) + h ( d F ( D e i Y ) , d F ( e i ) ) ] d v g = M | d F | p 2 + | d F | q 2 i = 1 m [ h ( ( D Y d F ) ( e i ) , d F ( e i ) ) + h ( d F ( D e i Y ) , d F ( e i ) ) ] d v g = M | d F | p 2 + | d F | q 2 i = 1 m [ h ( D ˜ Y d F ( e i ) , d F ( e i ) ) + h ( d F ( D e i Y ) , d F ( e i ) ) ] d v g = M D Y | d F | p p + | d F | q q + | d F | p 2 + | d F | q 2 i = 1 m h ( d F ( D e i Y ) , d F ( e i ) ) d v g = M L Y | d F | p p + | d F | q q + | d F | p 2 + | d F | q 2 i = 1 m h ( d F ( D e i Y ) , d F ( e i ) ) d v g = M | d F | p p + | d F | q q div Y d v g + M | d F | p 2 + | d F | q 2 i = 1 m h ( d F ( D e i Y ) , d F ( e i ) ) d v g = M | d F | p p + | d F | q q i , j = 1 m g ( e i , e j ) g ( D e i Y , e j ) d v g + M | d F | p 2 + | d F | q 2 i , j = 1 m h ( d F ( e j ) , d F ( e i ) ) g ( D e i Y , e j ) d v g = M i , j = 1 m S p , q ( e i , e j ) g ( D e i Y , e j ) d v g = M S p , q , 1 2 L Y g d v g .
From Theorem 2 and Equation (7), we obtain the following corollary.
Corollary 1. 
If the map F : M N is ( p , q ) -harmonic, then we have
M S p , q , 1 2 L Y g d v g = 0 ,
where Y is a vector field.
Next, we derive the following second-variation formula:
Theorem 3. 
Assume that F : M N is a ( p , q ) -harmonic map, and let F s , t : M N ( κ < s , t < κ ) be a compact two-parameter variation so that F 0 , 0 = F . Let V = s F s , t | s , t = 0 , W = t F s , t | s , t = 0 . Then we have
2 s t E p , q ( F s , t ) | s , t = 0 = ( p 2 ) M | d F | p 4 i = 1 m D ˜ e i W , d F ( e i ) j = 1 m D ˜ e j V , d F ( e j ) d v g + ( q 2 ) M | d F | q 4 i = 1 m D ˜ e i W , d F ( e i ) j = 1 m D ˜ e j V , d F ( e j ) d v g + M | d F | p 2 + | d F | q 2 i = 1 m ( D ˜ e i V , D ˜ e i W ) d v g + M | d F | p 2 + | d F | q 2 i = 1 m h ( R N ( W , d F ( e i ) ) V , d F ( e i ) ) d v g ,
where R N denotes the curvature tensor.
Ordering
I ( W , V ) = 2 s t E p , q ( F s , t ) | s , t = 0 .
If I ( W , W ) 0 for all compactly supported vector fields W along F, then the ( p , q ) -harmonic map F is said to be stable.
Proof. 
Let V , W Γ ( F 1 T N ) be vector fields along F. We consider a two-parameter family of maps F s , t such that F 0 , 0 = F . Let V = s F s , t | s , t = 0 , W = t F s , t | s , t = 0 . The mapping F s , t can be considered as a map ( κ , κ ) × ( κ , κ ) × M N , and we denote by D the Levi-Civita connection on ( κ , κ ) × ( κ , κ ) × M , and by D ˜ the induced connection on F 1 T N . Fix a point P M . We take a local orthonormal frame { e 1 , , e m } on M near P satisfying D e i e j | P = 0 .
Using (3), the definition of the ( p , q ) -harmonic map and [ e i , s ] = 0 , we have at P,
2 s t E p , q ( F s , t ) | s , t = 0 = s M h d F s , t t , τ p , q ( F s , t ) d v g | s , t = 0 = M h d F s , t t , i = 1 m D ˜ s D ˜ e i ( | d F s , t | p 2 + | d F s , t | q 2 ) d F s , t ( e i ) d v g | s , t = 0 + M h d F s , t t , i = 1 m D ˜ s ( | d F s , t | p 2 + | d F s , t | q 2 ) d F s , t D e i e i d v g | s , t = 0 = M h d F s , t t , i = 1 m D ˜ e i D ˜ s ( | d F s , t | p 2 + | d F s , t | q 2 ) d F s , t ( e i ) d v g | s , t = 0 M h d F s , t t , i = 1 m R N d F s , t s , d F s , t ( e i ) ( | d F s , t | p 2 + | d F s , t | q 2 ) d F s , t ( e i ) d v g | s , t = 0 .
Next, we calculate the first expression on the right-hand side of Equation (15):
h d F s , t t , i = 1 m D ˜ e i D ˜ s ( | d F s , t | p 2 + | d F s , t | q 2 ) d F s , t ( e i ) = i = 1 m e i h d F s , t t , D ˜ s ( | d F s , t | p 2 + | d F s , t | q 2 ) d F s , t ( e i ) i = 1 m h D ˜ e i d F s , t t , D ˜ s ( | d F s , t | p 2 + | d F s , t | q 2 ) d F s , t ( e i ) = i = 1 m ( p 2 ) e i | d F s , t | p 4 h d F s , t t , d F s , t ( e i ) j = 1 m h D ˜ e j d F s , t s , d F s , t ( e j ) + ( q 2 ) i = 1 m e i | d F s , t | q 4 h d F s , t t , d F s , t ( e i ) j = 1 m h D ˜ e j d F s , t s , d F s , t ( e j ) + i = 1 m e i | d F s , t | p 2 + | d F s , t | q 2 h d F s , t t , D ˜ e i d F s , t s ( p 2 ) | d F s , t | p 4 i = 1 m h D ˜ e i d F s , t t , d F s , t ( e i ) j = 1 m h D ˜ e j d F s , t s , d F s , t ( e j ) ( q 2 ) | d F s , t | q 4 i = 1 m h D ˜ e i d F s , t t , d F s , t ( e i ) j = 1 m h D ˜ e j d F s , t s , d F s , t ( e j ) | d F s , t | p 2 + | d F s , t | q 2 i = 1 m h D ˜ e i d F s , t t , D ˜ e i d F s , t s .
For any vector field Z on M, we take compactly supported vector fields Y 1 , Y 2 , and Y 3 on M satisfying
g ( Y 1 , Z ) = | d F | p 4 j = 1 m D ˜ e j V , d F ( e j ) h ( d F ( Z ) , W ) , g ( Y 2 , Z ) = | d F | q 4 h ( W , d F ( Z ) ) j = 1 m h ( D ˜ e j V , d F ( e j ) ) , g ( Y 3 , Z ) = | d F | p 2 + | d F | q 2 h ( W , D ˜ Z V ) .
When s , t = 0 , according to Green’s formula, we have
M i = 1 m ( p 2 ) e i g ( Y 1 , e i ) + ( q 2 ) e i g ( Y 2 , e i ) + e i g ( Y 3 , e i ) d v g = M ( p 2 ) div ( Y 1 ) + ( q 2 ) div ( Y 2 ) + div ( Y 3 ) d v g = 0 ,
hence, the theorem is proved by (15)–(17). □

3. The Results of (Horizontally) Conformal (p,q)-Harmonic Maps

In this section, we get some results for (horizontally) conformal ( p , q ) -harmonic maps by the definition of a (weakly) conformal map (cf. [15]).
Definition 3. 
Let F : ( M , g ) ( N , h ) be a smooth map, so we have the following:
( i )   F is said to be a conformal map if there exists a smooth positive function μ : ( M , g ) R on M such that F h = μ 2 g .
( i i )   F is said to be a weakly conformal map if there exists a smooth non-negative function μ : ( M , g ) R on M such that F h = μ 2 g .
Proposition 2. 
If ( a ) m = p , m q , ( b ) m p , m = q , or ( c ) m p , m q and the map F : M N is a ( p , q ) -harmonic and weakly conformal, then F is homothetic.
Proof. 
Choose a local orthonormal frame { e i } i = 1 m on M such that ( D e j ) P = 0 at P M . Since F : M N is a weakly conformal map, there is a smooth non-negative function μ on M satisfying F h = μ 2 g , so
S p , q ( F ) = | d F | p p + | d F | q q g | d F | p 2 + | d F | q 2 F h = m p / 2 μ p p g m p / 2 1 μ p 2 μ 2 g + m q / 2 μ q q g m q / 2 1 μ q 2 μ 2 g = m p 2 1 ( m p ) p μ p g + m q 2 1 ( m q ) q μ q g .
Using the definition of the ( p , q ) -harmonic map and Equation (18), we have
0 = ( div S p , q ) ( Y ) = i = 1 m D e i m p 2 1 ( m p ) p μ p g ( e i , Y ) + D e i m q 2 1 ( m q ) q μ q g ( e i , Y ) = i = 1 m m p 2 1 ( m p ) p e i ( μ p ) g ( e i , Y ) + i = 1 m m q 2 1 ( m q ) q e i ( μ q ) g ( e i , Y ) = m p 2 1 ( m p ) p Y ( μ p ) + m q 2 1 ( m q ) q Y ( μ q ) ,
where Y is a vector field on M. Thus,
(a)
If m = p , m q , then μ q is constant and F is homothetic;
(b)
If m p , m = q , then μ p is constant and F is homothetic;
(c)
If m p , m q , then μ is constant and F is homothetic.
Remark 2. 
This analog is of a harmonic map due to Eells and Lemaire [22] which states that if m > 2 and F : ( M , g ) ( N , h ) is harmonic and conformal, then F is homothetic.
Rigidity: Homothetic maps scale metrics uniformly. This forbids local shearing or warping—preserving shapes up to global scaling, for example, triangles map to similar triangles.
Next, suppose that the map F : M N is smooth. For each P M satisfying d F P 0 , let H P be the orthogonal complement of V P = Ker d F P T P M . Denote by H P the horizontal space and by V P the vertical space. For Y T P M , Y = Y H + Y V , where Y H H P and Y V V P . A map F is a horizontally conformal if there is positive smooth function μ on M satisfying h ( d F ( Y ) , d F ( Z ) ) = μ 2 g ( Y , Z ) for any two smooth vectors Y , Z H P . The function μ is said to be the dilation of F.
Remark 3. 
A conformal map preserves the angles across the entire tangent space. However, a horizontally conformal map preserves angles only within the horizontal distribution; angles in directions transverse to this distribution may not be preserved. For example, consider the map
u : ( x , y , z ) ( λ x , λ y , a z ) . λ > 0
If a = λ , then this is a conformal map, as it preserves angles by uniformly scaling all directions. If a λ , then the map is horizontally conformal with respect to the given horizontal distribution, since the scaling factor is the same within the horizontal directions; however, in the vertical direction, the scaling factor is not λ, which means that the angles are preserved only in the specific horizontal directions. This illustrates the characteristic property of a horizontally conformal map.
Theorem 4. 
Suppose that F : M N is a horizontally weakly conformal ( p , q ) -harmonic map and F has dilation μ, where m > n > max { p , q } . Then the following results are equivalent:
( i )   The fibers of the map F are minimal submanifolds;
( i i )   grad ( μ p ) and grad ( μ q ) are vertical;
( i i i )   The mean curvature of the horizontal distribution is q n p / 2 g r a d ( μ p ) + p n q / 2 g r a d ( μ q ) p q n p / 2 μ p + n q / 2 μ q .
Proof. 
We take a local orthonormal frame field { e i } i = 1 m near P on M, where e 1 , , e n are horizontal and e n + 1 , , e m are vertical. Given that F is horizontally weakly conformal with dilation μ , and let Y , Z be smooth vector fields on M, then
S p , q ( Y , Z ) = | d F | p p + | d F | q q g ( Y , Z ) | d F | p 2 + | d F | q 2 h ( d F ( Y ) , d F ( Z ) ) = n p / 2 μ p p g ( Y , Z ) n p / 2 1 μ p 2 h ( d F ( Y ) , d F ( Z ) ) + n q / 2 μ q q g ( Y , Z ) n q / 2 1 μ q 2 h ( d F ( Y ) , d F ( Z ) ) ,
Using the definition of the ( p , q ) -harmonic map and Equation (19), we have
0 = ( div S p , q ) ( e j ) = i = 1 m ( D e i S p , q ) ( e i , e j ) = i = 1 m e i n p / 2 μ p p g ( e i , e j ) n p / 2 1 μ p 2 h ( d F ( e i ) , d F ( e j ) ) n p / 2 μ p p g ( D e i e i , e j ) n p / 2 1 μ p 2 h ( d F ( D e i e i ) , d F ( e j ) ) n p / 2 μ p p g ( e i , D e i e j ) n p / 2 1 μ p 2 h ( d F ( e i ) , d F ( D e i e j ) ) + i = 1 m e i n q / 2 μ q q g ( e i , e j ) n q / 2 1 μ q 2 h ( d F ( e i ) , d F ( e j ) ) n q / 2 μ q q g ( D e i e i , e j ) n q / 2 1 μ q 2 h ( d F ( D e i e i ) , d F ( e j ) ) n q / 2 μ q q g ( e i , D e i e j ) n q / 2 1 μ q 2 h ( d F ( e i ) , d F ( D e i e j ) ) = i = 1 m n p / 2 p e i ( μ p ) g ( e i , e j ) + n q / 2 q e i ( μ q ) g ( e i , e j ) n p / 2 1 e i μ p 2 h ( d F ( e i ) , d F ( e j ) ) n q / 2 1 e i μ q 2 h ( d F ( e i ) , d F ( e j ) ) + n p / 2 1 μ p 2 h ( d F ( D e i e i ) , d F ( e j ) ) + h ( d F ( e i ) , d F ( D e i e j ) ) + n q / 2 1 μ q 2 h ( d F ( D e i e i ) , d F ( e j ) ) + h ( d F ( e i ) , d F ( D e i e j ) ) .
On the other hand, for 1 j n , we get
0 = i = 1 m e i g ( e i , e j ) = i = 1 m [ g ( D e i e i , e j ) + g ( e i , D e i e j ) ] = i = 1 m [ g ( ( D e i e i ) H , e j ) + g ( e i , ( D e i e j ) H ) ] = 1 μ 2 i = 1 n [ h ( d F ( D e i e i ) , d F ( e j ) ) + h ( d F ( e i ) , d F ( D e i e j ) ) ] ,
i.e.,
i = 1 n [ h ( d F ( D e i e i ) , d F ( e j ) ) + h ( d F ( e i ) , d F ( D e i e j ) ) ] = 0 .
From (20) and (21), we get
0 = n p / 2 p e j ( μ p ) + n q / 2 q e j ( μ q ) n p / 2 1 e j ( μ p ) n q / 2 1 e j ( μ q ) + n p / 2 1 μ p 2 + n q / 2 1 μ q 2 i = n + 1 m h ( d F ( D e i e i ) , d F ( e j ) ) = n p 2 1 ( n p ) p e j μ p + n q 2 1 ( n q ) q e j μ q + n p / 2 1 μ p + n q / 2 1 μ q i = n + 1 m g ( D e i e i , e j ) ,
that is,
n p q 2 n p p e j μ p e j + μ p i = n + 1 m g ( D e i e i , e j ) e j + n q q e j μ q e j + μ q i = n + 1 m g ( D e i e i , e j ) e j = 0 .
The mean curvature H of the fiber of F is as follows
H = 1 m n j = 1 n i = n + 1 m g ( D e i e i , e j ) e j .
Equations (22) and (23) imply
n p q 2 n p p ( g r a d μ p ) H + ( m n ) H + n q q ( g r a d μ q ) H + ( m n ) H = 0 .
Since the fibers of the map F are minimal submanifolds, H = H = 0 . From (24), ( g r a d μ p ) H = ( g r a d μ q ) H = 0 . Thus, Equation (24) implies that ( i ) ( i i ) .
For n + 1 j m , from (20), we get
0 = n p / 2 p e j ( μ p ) + n q / 2 q e j ( μ q ) + n p / 2 1 μ p 2 + n q / 2 1 μ q 2 i = 1 n h ( d F ( e i ) , d F ( D e i e j ) ) = n p / 2 1 n p e j ( μ p ) + μ p 2 i = 1 n h ( d F ( e i ) , d F ( D e i e j ) ) + n q / 2 1 n q e j ( μ q ) + μ q 2 i = 1 n h ( d F ( e i ) , d F ( D e i e j ) ) .
For 1 i n , we get
h ( d F ( e i ) , d F ( D e i e j ) ) = h ( d F ( e i ) , d F ( ( D e i e j ) H ) ) = μ 2 g ( e i , ( D e i e j ) H ) = μ 2 g ( e i , D e i e j ) = μ 2 g ( D e i e i , e j ) .
From (25) and (26), we have
0 = n p / 2 1 n p e j ( μ p ) μ p i = 1 n g ( D e i e i , e j ) + n q / 2 1 n q e j ( μ q ) μ q i = 1 n g ( D e i e i , e j ) .
The mean curvature H 1 of the horizontal distribution can be expressed as follows:
H 1 = 1 n j = n + 1 m i = 1 n g ( D e i e i , e j ) e j = n p / 2 p n p / 2 μ p + n q / 2 μ q j = n + 1 m e j ( μ p ) e j + n q / 2 q n p / 2 μ p + n q / 2 μ q j = n + 1 m e j ( μ q ) e j = n p / 2 g r a d ( μ p ) ( g r a d ( μ p ) ) H p n p / 2 μ p + n q / 2 μ q + n q / 2 g r a d ( μ q ) ( g r a d ( μ q ) ) H q n p / 2 μ p + n q / 2 μ q .
So ( i i ) ( i i i ) . From the above, ( i ) ( i i ) ( i i i ) .

4. Liouville-Type Theorem

Suppose that M, equipped with the pole P 0 , is complete. Let r ( P ) = d i s t g ( P , P 0 ) , B ( r ) = { P M m : r ( P ) r } . It is well-known that r is an eigenvector of H e s s g ( r 2 ) with respect to eigenvalue 2. λ max (or λ min ) denotes the maximum (or minimum) eigenvalue of H e s s g ( r 2 ) 2 d r d r at any point of M { P 0 } .
Theorem 5. 
Suppose that the map F : M N is smooth between manifolds and satisfies Equation (12) for any Y Γ ( T M ) . If there is a positive constant ϱ satisfying
1 + m 1 2 λ min max { p , q } 2 max { 2 , λ max } ϱ ,
then, for any 0 < ρ 1 ρ 2 , we have
B ( ρ 1 ) | d F | p p + | d F | q q d v g ρ 1 ϱ B ( ρ 2 ) | d F | p p + | d F | q q d v g ρ 2 ϱ .
Proof. 
Set Y = ζ ( r ) r r = ζ ( r ) 1 2 D r 2 , where ζ ( r ) is a non-negative function. Let { e 1 , · · · , e m } be an orthonormal basis associated with g and e m = r . Suppose that H e s s g ( r 2 ) is a diagonal matrix associated with { e i } i = 1 m . Now let us calculate
S p , q , L ζ ( r ) r r g = i , j = 1 m S p , q ( e i , e j ) L ζ ( r ) r r g ( e i , e j ) = i , j = 1 m | d F | p p + | d F | q q g ( e i , e j ) L ζ ( r ) r r g ( e i , e j ) | d F | p 2 + | d F | q 2 h ( d F ( e i ) , d F ( e j ) ) L ζ ( r ) r r g ( e i , e j ) = ζ ( r ) | d F | p p + | d F | q q i = 1 m H e s s g ( r 2 ) ( e i , e i ) + 2 ζ ( r ) r | d F | p p + | d F | q q ζ ( r ) | d F | p 2 + | d F | q 2 i , j = 1 m h ( d F ( e i ) , d F ( e j ) ) H e s s g ( r 2 ) ( e i , e j ) 2 ζ ( r ) r | d F | p 2 + | d F | q 2 h d F r , d F r ζ ( r ) | d F | p p + | d F | q q [ 2 + ( m 1 ) λ min ] ζ ( r ) max { 2 , λ max } | d F | p 2 + | d F | q 2 i = 1 m h ( d F ( e i ) , d F ( e i ) ) + 2 ζ ( r ) r | d F | p p + | d F | q q | d F | p 2 + | d F | q 2 h d F r , d F r ζ ( r ) | d F | p p + | d F | q q [ 2 + ( m 1 ) λ min max { p , q } · max { 2 , λ max } ] + 2 ζ ( r ) r | d F | p p + | d F | q q | d F | p 2 + | d F | q 2 h d F r , d F r .
By (28) and (29), we have
S p , q , 1 2 L ζ ( r ) r r g ϱ ζ ( r ) | d F | p p + | d F | q q + ζ ( r ) r | d F | p p + | d F | q q | d F | p 2 + | d F | q 2 h d F r , d F r .
By (12) and (30), we have
0 M ϱ ζ ( r ) | d F | p p + | d F | q q + ζ ( r ) r | d F | p p + | d F | q q | d F | p 2 + | d F | q 2 h d F r , d F r d v g .
Take a positive number κ and fix it. Let ξ be a smooth function on [ 0 , ) such that
ξ ( r ) = ξ κ ( r ) = 1 , i f 0 r 1 , 0 , i f 1 + κ r ,
and d d t ξ ( r ) 0 . Define ζ ( r ) = ζ ρ ( r ) = ξ r ρ . It is easy to see that
ζ ( r ) r = ρ d ζ ρ ( r ) d ρ , ζ ( r ) = 1 ρ ξ r ρ 0 .
By (31) and (33), we have
0 M ϱ ζ ( r ) | d F | p p + | d F | q q + ζ ( r ) r | d F | p p + | d F | q q ζ ( r ) r | d F | p 2 + | d F | q 2 d F r 2 d v g M ϱ ζ ( r ) | d F | p p + | d F | q q + ζ ( r ) r | d F | p p + | d F | q q d v g = ϱ M ζ ρ ( r ) | d F | p p + | d F | q q d v g ρ d d ρ M ζ ρ ( r ) | d F | p p + | d F | q q d v g ,
so we have
d d ρ M ζ ρ ( r ) | d F | p p + | d F | q q d v g ρ ϱ 0 .
Hence, for any 0 < ρ 1 ρ 2 , we have
B ( ( 1 + κ ) ρ 1 ) ζ ρ 1 | d F | p p + | d F | q q d v g ρ 1 ϱ B ( ( 1 + κ ) ρ 2 ) ζ ρ 2 | d F | p p + | d F | q q d v g ρ 2 ϱ .
Let κ 0 and note that ζ ρ = 1 on B ( ρ ) , then
B ( ρ 1 ) | d F | p p + | d F | q q d v g ρ 1 ϱ B ( ρ 2 ) | d F | p p + | d F | q q d v g ρ 2 ϱ .
From [23,24,25,26,27], we have the following corollary.
Corollary 2. 
Suppose that M, equipped with a pole P 0 , is complete. Let K r denote the radial curvature of M.
(1) 
If β 2 K r α 2 with α β 0 , and if ( m 1 ) β max { p , q } α > 0 , then
1 + m 1 2 λ min max { p , q } 2 max { 2 , λ max } m max { p , q } α β .
(2) 
If B ( 1 + r 2 ) 1 + ϵ K r A ( 1 + r 2 ) 1 + ϵ with ϵ > 0 , A 0 , and B [ 0 , 2 ϵ ] , then
1 + m 1 2 λ min max { p , q } 2 max { 2 , λ max } 1 + ( m 1 ) 1 B 2 ϵ max { p , q } e A 2 ϵ .
(3) 
If b 2 1 + r 2 K r a 2 1 + r 2 with a 0 and b 2 0 , 1 4 , then
1 + m 1 2 λ min max { p , q } 2 max { 2 , λ max } 1 + ( m 1 ) 1 + 1 4 b 2 2 max { p , q } 1 + 1 + 4 a 2 2 .
From Theorem 5 and Corollary 2, we obtain the following proposition.
Proposition 3. 
Let F : ( M , g ) ( R n , h ) be a ( p , q ) -harmonic map. If F ( M ) S n 1 and r ( P ) satisfies ( 28 ) , then as R , we have
B ( R ) | d F | p p + | d F | q q d v g c ( F ) R ϱ ,
where c ( F ) > 0 is a constant determined by F.
Proof. 
Since F satisfies the condition in Theorem 5, for any 0 < ρ < R , we have
B ( ρ ) | d F | p p + | d F | q q d v g ρ ϱ B ( R ) | d F | p p + | d F | q q d v g R ϱ .
Since F ( M ) S n 1 , there exists ρ > 0 such that
B ( ρ ) | d F | p p + | d F | q q d v g > 0 .
Let
c ( F ) = B ( ρ ) | d F | p p + | d F | q q d v g ρ ϱ ,
then
B ( R ) | d F | p p + | d F | q q d v g c ( F ) R ϱ .
Following the approach in [6], we require F to satisfy ( f 1 ) . There exists 0 < ϱ ˜ < ϱ (where ϱ is defined in (28)) such that
max r ( P ) = R h 2 ( F ( P ) , X 0 ) 2 R ϱ ˜ R d r [ vol ( B ( r ) ) ] 1 y 1 y 1 for r ( P ) 1 ,
where X 0 S n 1 is a point, and y { p , q } . For simplicity, in Section 4, y is taken to be either p or q.
Theorem 6. 
Suppose that the ( p , q ) -harmonic map F : ( M , g ) ( R n , h ) is smooth and r ( P ) satisfies ( 28 ) . If F ( P ) X 0 S n 1 as r ( P ) and F satisfies ( f 1 ) , then the map F is necessarily constant, or there exist R 0 > 0 such that
E p , q R ( F ) C ( p , q ) R ϱ ˜ ϱ + c ( F ) R ϱ R ϱ for R R 0 .
Proof. 
Suppose F is non-constant, then Proposition 3 implies
lim R E p , q R ( F ) = lim R B ( R ) | d F | p p + | d F | q q d v g = .
Given X 0 = ( ε 1 , , ε n ) S n 1 with α = 1 n ε α 2 = 1 , there exists an orthogonal matrix A such that A X 0 = X ˜ 0 = ( ε ˜ 1 , , ε ˜ n ) and ε ˜ α 0 for α = 1 , , n . If F is a ( p , q ) -harmonic map, then so is A F . Thus, we may assume F ( P ) X 0 = ( ε 1 , , ε n ) (where ε α 0 for α = 1 , , n ) as r ( P ) .
This asymptotic behavior guarantees that there exists an R 1 > 0 and a neighborhood U of X 0 such that for r ( P ) > R 1 , F ( P ) U and F α 0 for α = 1 , , n . The proof has four steps.
Step 1:
Construct a perturbation map and select a specific perturbation function.
For G C 0 2 ( M B ( R 1 ) , U ) , we define the perturbed map as follows:
( F + t G ) ( Q ) = F ( Q ) , if Q B ( R 1 ) ( F + t G ) ( Q ) , if Q M B ( R 1 )
for sufficiently small t. Since F is a ( p , q ) -harmonic map, we have
d d t E p , q ( F + t G ) | t = 0 = 0 .
Using Einstein notation, we have
M B ( R 1 ) | d F | p 2 i , j , α g i j F α x i G α x j d v g + M B ( R 1 ) | d F | q 2 k , l , β g k l F β x k G β x l d v g = 0 .
To ensure that the perturbation term G satisfies the compact support condition while preserving the functional structure, and given that the cut-off function η localizes the global analysis problem to asymptotic regions before recovering the original global properties via a limiting process, we therefore now set G ( P ) = η ( r ( P ) ) F ˜ ( P ) in (36) for η ( r ) C 0 ( R 1 , ) , where F ˜ α = F α 2 ε α 2 F α . We get
M B ( R 1 ) | d F | p 2 i , j , α g i j F α x i F ˜ α x j η ( r ( P ) ) d v g + M B ( R 1 ) | d F | p 2 i , j , α g i j η ( r ( P ) ) x j F α x i F ˜ α d v g + M B ( R 1 ) | d F | q 2 k , l , β g k l F β x k F ˜ β x l η ( r ( P ) ) d v g + M B ( R 1 ) | d F | q 2 k , l , β g k l η ( r ( P ) ) x l F β x k F ˜ β d v g = 0 .
Step 2:
Define a cut-off function to localize the integration region.
By a standard approximation argument, the validity of (37) extends to all Lipschitz functions η having compact support. In order to further analyze the integral equation, for 0 < ϵ 1 , we define
η ϵ ( t ) = 1 , t 1 , 1 + 1 t ϵ , 1 < t < 1 + ϵ , 0 , t 1 + ϵ ,
and take η ( r ( P ) ) as follows:
η ( r ( P ) ) = η ϵ r ( P ) R 1 η 1 r ( P ) R 1 , R > 2 R 1 .
From (38) and (39), and letting R 2 = 2 R 1 , we have
η ( r ( P ) ) = η ϵ r ( P ) R 1 η 1 r ( P ) R 1 = 0 , r ( P ) R 1 , 1 η 1 r ( P ) R 1 , R 1 < r ( P ) R 2 , 1 , R 2 < r ( P ) R , η ϵ r ( P ) R , R < r ( P ) < ( 1 + ϵ ) R , 0 , r ( P ) ( 1 + ϵ ) R .
Substituting (40) into (37), we can obtain each term on the left-hand side of Equation (37) as follows:
M B ( R 1 ) | d F | p 2 i , j , α g i j F α x i F ˜ α x j η ( r ( P ) ) d v g = B ( R 2 ) B ( R 1 ) | d F | p 2 i , j , α g i j F α x i F ˜ α x j 1 η 1 r ( P ) R 1 d v g + B ( R ) B ( R 2 ) | d F | p 2 i , j , α g i j F α x i F ˜ α x j d v g + B ( ( 1 + ϵ ) R ) B ( R ) | d F | p 2 i , j , α g i j F α x i F ˜ α x j η ϵ r ( P ) R d v g
and
M B ( R 1 ) | d F | q 2 k , l , β g k l F β x k F ˜ β x l η ( r ( P ) ) d v g = B ( R 2 ) B ( R 1 ) | d F | q 2 k , l , β g k l F β x k F ˜ β x l 1 η 1 r ( P ) R 1 d v g + B ( R ) B ( R 2 ) | d F | q 2 k , l , β g k l F β x k F ˜ β x l d v g + B ( ( 1 + ϵ ) R ) B ( R ) | d F | q 2 k , l , β g k l F β x k F ˜ β x l η ϵ r ( P ) R d v g
and
M B ( R 1 ) | d F | p 2 i , j , α g i j η ( r ( P ) ) x j F α x i F ˜ α d v g = B ( R 2 ) B ( R 1 ) | d F | p 2 i , j , α g i j 1 η 1 r ( P ) R 1 x j F α x i F ˜ α d v g + B ( ( 1 + ϵ ) R ) B ( R ) | d F | p 2 i , j , α g i j η ϵ r ( P ) R x j F α x i F ˜ α d v g = B ( R 2 ) B ( R 1 ) | d F | p 2 i , j , α g i j η 1 r ( P ) R 1 x j F α x i F ˜ α d v g 1 R ϵ B ( ( 1 + ϵ ) R ) B ( R ) | d F | p 2 i , j , α g i j F α x i r ( P ) x j F ˜ α d v g ,
similarly,
M B ( R 1 ) | d F | q 2 k , l , β g k l η ( r ( P ) ) x l F β x k F ˜ β d v g = B ( R 2 ) B ( R 1 ) | d F | q 2 k , l , β g k l η 1 r ( P ) R 1 x l F β x k F ˜ β d v g 1 R ϵ B ( ( 1 + ϵ ) R ) B ( R ) | d F | q 2 k , l , β g k l F β x k r ( P ) x l F ˜ β d v g .
Letting ϵ 0 , we have
1 R ϵ B ( ( 1 + ϵ ) R ) B ( R ) | d F | p 2 i , j , α g i j F α x i r ( P ) x j F ˜ α d v g B ( R ) | d F | p 2 i , j , α g i j F α x i r ( P ) x j F ˜ α d s g
and
B ( ( 1 + ϵ ) R ) B ( R ) | d F | p 2 i , j , α g i j F α x i F ˜ α x j η ϵ r ( P ) R d v g ϵ R B ( R ) | d F | p 2 i , j , α g i j F α x i F ˜ α x j η ϵ r ( P ) R d s g = 0 .
From (37)–(46), we have
B ( R ) B ( R 2 ) | d F | p 2 i , j , α g i j F α x i F ˜ α x j d v g + B ( R ) B ( R 2 ) | d F | q 2 k , l , β g k l F β x k F ˜ β x l d v g + Φ ( R 1 ) = B ( R ) | d F | p 2 i , j , α g i j F α x i r ( P ) x j F ˜ α d s g + B ( R ) | d F | q 2 k , l , β g k l F β x k r ( P ) x l F ˜ β d s g ,
where
Φ ( R 1 ) = B ( R 2 ) B ( R 1 ) | d F | p 2 i , j , α g i j F α x i F ˜ α x j 1 η 1 r ( P ) R 1 d v g B ( R 2 ) B ( R 1 ) | d F | p 2 i , j , α g i j η 1 r ( P ) R 1 x j F α x i F ˜ α d v g + B ( R 2 ) B ( R 1 ) | d F | q 2 k , l , β g k l F β x k F ˜ β x l 1 η 1 r ( P ) R 1 d v g B ( R 2 ) B ( R 1 ) | d F | q 2 k , l , β g k l η 1 r ( P ) R 1 x l F β x k F ˜ β d v g : = Φ p ( R 1 ) + Φ q ( R 1 ) .
Note that F ˜ α = F α 2 ε α 2 F α . Thus, we have
F ˜ α x j = 1 + ε α 2 F α 2 F α x j .
From (47) and (49), we have
B ( R ) B ( R 2 ) | d F | p 2 i , j , α g i j F α x i F α x j 1 + ε α 2 F α 2 d v g + B ( R ) B ( R 2 ) | d F | q 2 k , l , β g k l F β x k F β x l 1 + ε β 2 F β 2 d v g + Φ ( R 1 ) = B ( R ) | d F | p 2 i , j , α g i j F α x i r ( P ) x j F ˜ α d s g + B ( R ) | d F | q 2 k , l , β g k l F β x k r ( P ) x l F ˜ β d s g .
Since the term
| d F | p 2 i , j , α g i j F α x i r ( P ) x j F ˜ α + | d F | q 2 k , l , β g k l F β x k r ( P ) x l F ˜ β
is coordinate-independent. At any boundary point P B ( R ) , we simplify the calculations using the adapted coordinates, where g i j ( P ) = δ i j , g i j ( P ) = δ i j . Using | D r | 2 = 1 , we evaluate the expression at P.
| d F | p 2 i , j , α g i j F α x i r ( P ) x j F ˜ α + | d F | q 2 k , l , β g k l F β x k r ( P ) x l F ˜ β = | d F | p 2 + | d F | q 2 i , j = 1 m α = 1 n g i j F α x i r ( P ) x j F ˜ α = | d F | p 2 + | d F | q 2 i , α F α x i r ( P ) x i F ˜ α | d F | p 2 + | d F | q 2 i = 1 m α = 1 n F α x i F ˜ α r ( P ) x i 2 1 2 = | d F | p 2 + | d F | q 2 i = 1 m α = 1 n F α x i F ˜ α 2 1 2 i = 1 m r ( P ) x i 2 1 2 = | d F | p 2 + | d F | q 2 i = 1 m α = 1 n F α x i F ˜ α 2 1 2 | d F | p 2 + | d F | q 2 i = 1 m α = 1 n F α x i F α x i α = 1 n ( F ˜ α ) 2 1 2 = | d F | p 2 + | d F | q 2 i = 1 m α = 1 n F α x i F α x i 1 2 α = 1 n ( F ˜ α ) 2 1 2 = | d F | p 2 + | d F | q 2 i = 1 m h d F x i , d F x i 1 2 α = 1 n ( F ˜ α ) 2 1 2 = | d F | p 1 + | d F | q 1 α = 1 n ( F ˜ α ) 2 1 2 ,
thus
B ( R ) | d F | p 2 i , j , α g i j F α x i r ( P ) x j F ˜ α + | d F | q 2 k , l , β g k l F β x k r ( P ) x l F ˜ β d s g B ( R ) | d F | p 1 + | d F | q 1 α = 1 n ( F ˜ α ) 2 1 2 d s g B ( R ) | d F | p d s g p 1 p B ( R ) α = 1 n ( F ˜ α ) 2 p 2 d s g 1 p + B ( R ) | d F | q d s g q 1 q B ( R ) α = 1 n ( F ˜ α ) 2 q 2 d s g 1 q .
On the other hand, we obtain
B ( R ) B ( R 2 ) | d F | p 2 i , j , α g i j F α x i F α x j 1 + ε α 2 F α 2 d v g + B ( R ) B ( R 2 ) | d F | q 2 k , l , β g k l F β x k F β x l 1 + ε β 2 F β 2 d v g + Φ ( R 1 ) B ( R ) B ( R 2 ) | d F | p 2 i , j , α g i j F α x i F α x j d v g + Φ p ( R 1 ) + B ( R ) B ( R 2 ) | d F | q 2 k , l , β g k l F β x k F β x l d v g + Φ q ( R 1 ) = B ( R ) B ( R 2 ) | d F | p d v g + Φ p ( R 1 ) + B ( R ) B ( R 2 ) | d F | q d v g + Φ q ( R 1 ) .
Step 3:
Construct an auxiliary function to facilitate calculations.
Setting
Ψ ( R ) = B ( R ) B ( R 2 ) | d F | p d v g + Φ p ( R 1 ) + B ( R ) B ( R 2 ) | d F | q d v g + Φ q ( R 1 ) : = Ψ p ( R ) + Ψ q ( R ) ,
then, we have
Ψ y ( R ) Φ y ( R 1 ) = B ( R ) B ( R 2 ) | d F | y d v g ,
and
Ψ y ( R ) = d d R Ψ y ( R ) = B ( R ) | d F | y d s g .
Therefore,
Ψ ( R ) = d d R Ψ ( R ) = B ( R ) | d F | p + | d F | q d s g .
Combining (50), (52)–(55), we have
Ψ ( R ) = Ψ p ( R ) + Ψ q ( R ) Ψ p ( R ) p 1 p B ( R ) α = 1 n ( F ˜ α ) 2 p 2 d s g 1 p + Ψ q ( R ) q 1 q B ( R ) α = 1 n ( F ˜ α ) 2 q 2 d s g 1 q .
Given that E p , q R ( F ) = , it follows from the definition of Ψ ( R ) that there exists R 3 R 2 such that Ψ y ( R ) > 0 for all R > R 3 . Set
M ( R ) = B ( R ) α = 1 n ( F ˜ α ) 2 p 2 d s g 1 p 1 + B ( R ) α = 1 n ( F ˜ α ) 2 q 2 d s g 1 q 1 : = M p ( R ) + M q ( R ) .
Then
[ Ψ y ( R ) ] y y 1 Ψ y ( R ) M y ( R ) .
Step 4:
Restore the original global properties through a limiting process.
For any R 4 > R > R 3 , the following holds:
R R 4 Ψ y ( r ) [ Ψ y ( r ) ] y y 1 d r R R 4 1 M y ( r ) d r .
Letting R 4 and using Ψ y ( R ) > 0 ,
1 [ Ψ y ( R ) ] 1 y 1 1 y 1 R 1 M y ( r ) d r ,
so
Ψ ( R ) = Ψ p ( R ) + Ψ q ( R ) ( p 1 ) p 1 1 R 1 M ( r ) d r p 1 + ( q 1 ) q 1 1 R 1 M ( r ) d r q 1 ,
where R > R 3 . Since F ( P ) X 0 as r ( P ) ,
M y ( R ) B ( R ) ϕ y ( R ) d s g 1 y 1 = [ ϕ ( R ) ] y y 1 [ v o l ( B ( R ) ) ] 1 y 1 ,
where ϕ ( R ) is a function satisfying the following conditions:
(1)
ϕ ( R ) is non-increasing on ( R 3 , ) and lim R ϕ ( R ) = 0 ;
(2)
ϕ ( R ) max r ( P ) = R α = 1 n ( F ˜ α ) 2 1 / 2 ;
(3)
[ ϕ ( R ) ] y y 1 C ( y ) R ϱ ˜ y 1 R d r [ v o l ( B ( r ) ) ] 1 y 1 .
Here, C ( y ) is a constant determined by X 0 , so we get
R 1 M y ( r ) d r 1 [ ϕ ( R ) ] y y 1 R 1 [ v o l ( B ( r ) ) ] 1 y 1 d r 1 C ( y ) R ϱ ˜ y 1 .
Then, we have
Ψ y ( R ) C ( y ) ( y 1 ) y 1 R ϱ ˜ , for R > R 3 .
In conclusion, we obtain
E p , q R ( F ) = B ( R ) B ( R 2 ) | d F | p p + | d F | q q d v g + B ( R 2 ) | d F | p p + | d F | q q d v g = Ψ p ( R ) p + Ψ q ( R ) q + B ( R 2 ) | d F | p p + | d F | q q d v g Φ p ( R 1 ) p Φ q ( R 1 ) q C ( p , q ) R ϱ ˜ ϱ + c ( F ) R ϱ R ϱ ,
where C ( p , q ) = ( C ( p ) ( p 1 ) ) p 1 / p + ( C ( q ) ( q 1 ) ) q 1 / q . □
Remark 4. 
(1) Let M be a complete noncompact Riemannian manifold with non-negative Ricci curvature and N be a Riemannian manifold with non-positive sectional curvature. Cheng [5] used gradient estimates to show that any harmonic map F : M N with compact image is constant. Takeuchi [21] further proved that each p-harmonic map F satisfying M | d F | 2 p 2 d v g < must be constant. (2) Let M be a complete noncompact Riemannian m-manifold ( m 2 ) supporting a weighted Poincaré inequality with Ricci curvature R i c M τ ρ ( x ) , where ρ ( x ) is a positive function. Chang-Chen-Wei [4] proved that every weakly p-harmonic function with finite p-energy E p is constant, and a strongly p-harmonic function with finite q-energy E q is constant.
Corollary 3. 
Consider a ( p , q ) -harmonic map F : ( M m , g ) ( R n , h ) , where m > { p , q } . For the curvature tensor K r of M, assume the following conditions:
(1) B ( 1 + r 2 ) 1 + ϵ K r A ( 1 + r 2 ) 1 + ϵ for some constants ϵ > 0 , A 0 , B [ 0 , 2 ϵ ] with 1 + ( m 1 ) 1 B 2 ϵ max { p , q } e A 2 ϵ > ϱ ˜ > 0 , and
max r ( P ) = R h 2 ( F ( P ) , X 0 ) 2 y 1 m y y 1 R ϱ ˜ ( m y ) v m e ( m 1 ) A 2 ϵ ,
where v m is the ( m 1 ) -volume of the unit sphere in R m .
Or (2) b 2 1 + r 2 K r a 2 1 + r 2 for some constants a 0 , b 2 [ 0 , 1 4 ] with 1 + ( m 1 ) 1 + 1 4 b 2 2 max { p , q } 1 + 1 + 4 a 2 2 > ϱ ˜ > 0 , and
max r ( P ) = R h 2 ( F ( P ) , X 0 ) 2 C 1 y 1 ( m 1 ) 1 + 1 + 4 a 2 ( y 1 ) 2 y 1 R ϱ ˜ ( m 1 ) 1 + 1 + 4 a 2 2 + y 1 ,
If r ( P ) , F ( P ) X 0 S n 1 , then F is necessarily constant.
Proof. 
For case (1), by the assumption, the Ricci curvature satisfies the lower bound
Ric M ( P ) ( m 1 ) A ( 1 + r 2 ( P ) ) 1 + ϵ , P M m .
Since
0 A r ( 1 + r 2 ) 1 + ϵ d r = A 2 ϵ ,
the volume comparison theorem (cf. [28]) yields
vol ( B ( R ) ) v m e ( m 1 ) A 2 ϵ R m 1 .
By combining the previous volume estimate and some integral inequalities, we can show that
R d r ( vol ( B ( r ) ) ) 1 y 1 ( y 1 ) m y y 1 y 1 v m e ( m 1 ) A 2 ϵ R m y , R 1 .
Similarly, for case (2), we have
vol ( B ( R ) ) C R ( m 1 ) 1 + 1 + 4 a 2 2 ,
and
Ric M ( P ) ( m 1 ) a 2 1 + r 2 ( P ) , P M m .
Therefore, for R 1 , we have
R d r ( vol ( B ( r ) ) ) 1 y 1 ( y 1 ) C ( m 1 ) 1 + 1 + 4 a 2 2 ( y 1 ) y 1 y 1 R ( m 1 ) 1 + 1 + 4 a 2 2 ( y 1 ) ,
where C is a constant. The conclusion follows by applying Corollary 2 and Theorem 6. □

5. Examples of (p,q)-SSU Manifolds

In this section, we obtain some examples of ( p , q ) - S S U manifolds.
Theorem 7. 
Let M m R m + 1 , ( m max { p , q } ) be the compact hypersurface. Assume that the principal curvatures μ i of M m satisfy 0 < μ 1 μ 2 μ m and μ m < 1 max { ( p 1 ) , ( q 1 ) } [ μ 1 + μ 2 + + μ m 1 ] . Then M is ( p , q ) - S S U manifold.
Proof. 
Similar to the proof of Theorem 3.3 in [29], using the definition of the ( p , q ) - S S U manifolds and taking z = e j , we have
max { ( p 2 ) , ( q 2 ) } H ( z , z ) , H ( z , z ) + i = 1 m 2 H ( z , e i ) , H ( z , e i ) H ( z , z ) , H ( e i , e i ) = max { ( p 2 ) , ( q 2 ) } μ j 2 + 2 μ j 2 μ j i = 1 m μ i μ j max { ( p 1 ) , ( q 1 ) } μ m i = 1 m 1 μ i < 0 .
This completes the proof. □
Using Theorem 7, we have the following corollary.
Corollary 4. 
The standard sphere S m is ( p , q ) - S S U if and only if m > max { p , q } .
Proof. 
S m is a compact convex hypersurface in R m + 1 . By Theorem 7 and its principal curvatures satisfy
μ 1 = μ 2 = = μ m = 1 .
That is, m > max { p , q } . This completes the proof. □
Corollary 5. 
The graph of f ( x ) = x 1 2 + + x m 2 , x = ( x 1 , , x m ) R m is ( p , q ) - S S U if and only if m > max { p , q } .
Theorem 8. 
Let M ˜ R d be a compact convex hypersurface and its principal curvatures satisfy
0 < μ 1 μ 2 μ d 1 .
If
R i c M ( z ) , z > max { ( p 1 ) , ( q 1 ) } max { p , q } k μ d 1 2 ,
then M is ( p , q ) - S S U manifold, where M M ˜ is a compact connected minimal k-submanifold and z is any unit tangent vector to M.
Proof. 
Let H , H 1 , and H ˜ denote the second fundamental form of M R d , M M ˜ , and M ˜ R d , respectively. According to the Gauss equation, we obtain
H ( Y , Z ) = H 1 ( Y , Z ) + H ˜ ( Y , Z ) ν ,
where ν is the unit normal field of M ˜ R d . By the definition of minimal k-submanifold, we have
i = 1 k H ( e i , e i ) = i = 1 k H 1 ( e i , e i ) + i = 1 k H ˜ ( e i , e i ) ν = i = 1 k H ˜ ( e i , e i ) ν ,
where { e i } i = 1 k is a local orthonormal frame on M. Let H ˜ ( e i , e j ) = μ i δ i j . Hence,
max { ( p 2 ) , ( q 2 ) } H ( z , z ) , H ( z , z ) + i = 1 k 2 H ( z , e i ) , H ( z , e i ) H ( z , z ) , H ( e i , e i ) max { ( p 2 ) , ( q 2 ) } i = 1 k H ( z , e i ) , H ( z , e i ) + i = 1 k 2 H ( z , e i ) , H ( z , e i ) H ( z , z ) , H ( e i , e i ) = i = 1 k max { p , q } H ( z , e i ) , H ( z , e i ) H ( z , z ) , H ( e i , e i ) = max { p , q } R i c M ( z ) , z + i = 1 k max { p , q } H ( z , z ) , H ( e i , e i ) i = 1 k H ( z , z ) , H ( e i , e i ) = max { p , q } R i c M ( z ) , z + i = 1 k max { ( p 1 ) , ( q 1 ) } H ( z , z ) , H ( e i , e i ) = max { p , q } R i c M ( z ) , z + max { ( p 1 ) , ( q 1 ) } i = 1 k H ˜ ( z , z ) , H ˜ ( e i , e i ) max { p , q } R i c M ( z ) , z + max { ( p 1 ) , ( q 1 ) } i = 1 k μ i μ d 1 max { p , q } R i c M ( z ) , z + max { ( p 1 ) , ( q 1 ) } k μ d 1 2 < 0 ,
where we use the Gauss equation. This completes the proof. □

6. Stability of (p,q)-Harmonic Maps

We begin by recalling key concepts in submanifold geometry (cf. [12]), which will underpin the subsequent results.
Consider an isometric immersion M m R d . Let D and D ¯ denote the Riemannian connection on M and the standard flat connection on R d , respectively. The second fundamental form H relates these connections via
D ¯ Y Z = D Y Z + H ( Y , Z ) , for Y , Z Γ ( T M ) .
Let T M denote the normal bundle of M in R d . Given a smooth section X T M , the Weingarten map A ξ and H satisfy
A ξ Y , Z = H ( Y , Z ) , ξ .
Fix a point P M , and let { e α } α = m + 1 d be an orthonormal basis for T P M . The Ricci tensor R i c M : T P ( M ) T P ( M ) is given by
R i c M ( z ) = i = 1 m R ( z , e i ) e i , z T P ( M ) .
The Gauss equation then yields
R i c M = α = m + 1 d trace A α A α α = m + 1 d A α A α .
For the subsequent proof, we require the following Weitzenböck formula:
Lemma 1 
([30]). Let ω be an r-form with values in a vector bundle. Then
Δ ω = 2 ω + S ,
where 2 denotes the trace-Laplace operator introduced in the last section and for any Y 1 , , Y r Γ ( T M )
S ( Y 1 , , Y r ) = a = 1 r ( 1 ) a ( R ( e i , Y a ) ω ) ( e i , Y 1 , , Y ^ a , , Y r ) .
Theorem 9. 
Suppose that F : M N is a ( p , q ) -harmonic map, where M is a compact Riemannian manifold and N is a compact ( p , q ) - S S U manifold. Then, a non-constant stable map F does not exist.
Proof. 
Consider a local orthonormal frame field { e i } i = 1 d for R d , such that { e 1 , , e n } are tangent to N n , and { e α } α = n + 1 d are normal. At a fixed point P 0 N n , we impose the local condition D e i e j | P 0 = 0 . Fix an orthonormal basis { E A } A = 1 d for R d , and define
W A = i = 1 n W A i e i , W A i = E A , e i , W A α = E A , e α .
The index ranges are as follows: i , j , k , l , s , t { 1 , , n } , a , b { 1 , , m } , α , β , { n + 1 , , d } , A { 1 , , d } . Taking V = W = W A in (13), we have
A I ( W A , W A ) = ( p 2 ) M | d F | p 4 a , b , A D ˜ ϵ a W A , d F ( ϵ a ) D ˜ ϵ b W A , d F ( ϵ b ) d v g + ( q 2 ) M | d F | q 4 a , b , A D ˜ ϵ a W A , d F ( ϵ a ) D ˜ ϵ b W A , d F ( ϵ b ) d v g + M | d F | p 2 + | d F | q 2 a , A h ( D ˜ ϵ a W A , D ˜ ϵ a W A ) d v g + M | d F | p 2 + | d F | q 2 a , A h ( R N ( W A , d F ( ϵ a ) ) W A , d F ( ϵ a ) ) d v g ,
where { ϵ a } a = 1 m is a locally orthogonal frame field on M m . Using the components H i j α = H ( e i , e j ) , e α of the second fundamental form of N n in R d and defining d F ( ϵ a ) = i F a i e i , we observe that the product matrix ( F a i ) · ( F a i ) is symmetric:
a = 1 m F a i F a j i , j = 1 , , n ,
where ( F a i ) is the transpose of ( F a i ) . Consequently, at P 0 , we choose { e 1 , , e n } to diagonalize this matrix, so that
a = 1 m F a i F a j = μ i 2 δ i j .
The covariant derivatives simplify to
D ˜ ϵ a W A = N n D d F ( ϵ a ) W A = i N n D e i W A · F a i , D e i W A = W A α H i k α e k .
From Equation (68), we see that each term on the right-hand side of Equation (66) is, respectively, given by
| d F | p 4 a , b , A D ˜ ϵ a W A , d F ( ϵ a ) D ˜ ϵ b W A , d F ( ϵ b ) = | d F | p 4 a , b , A , i , j , s , t F a i h ( D e i W A , F a s e s ) F b j h ( D e j W A , F b t e t ) = | d F | p 4 a , b , A , i , j , k , l , s , t , α , β F a i W A α H i k α F a s h ( e k , e s ) F b j W A β H j l β F b t h ( e l , e t ) = | d F | p 4 i , j , k , l , s , t H ( e i , e k ) , H ( e j , e l ) μ i 2 δ i s μ j 2 δ j t δ k s δ l t = | d F | p 4 i , j H ( e i , e i ) , H ( e j , e j ) μ i 2 μ j 2 | d F | p 2 i H ( e i , e i ) , H ( e i , e i ) μ i 2
and
| d F | q 4 a , b , A h ( D ˜ ϵ a W A , d F ( ϵ a ) ) h ( D ˜ ϵ b W A , d F ( ϵ b ) ) | d F | q 2 i H ( e i , e i ) , H ( e i , e i ) μ i 2
and
| d F | p 2 + | d F | q 2 a , A h ( D ˜ ϵ a W A , D ˜ ϵ a W A ) = | d F | p 2 + | d F | q 2 a , i , j , A F a i F a j h ( D e i W A , D e j W A ) = | d F | p 2 + | d F | q 2 α , β , A , i , j , k , l , a F a i F a j h ( W A α H i k α e k , W A β H j l β e l ) = | d F | p 2 + | d F | q 2 i , j , k , l μ i 2 δ i j δ k l H ( e i , e k ) , H ( e j , e l ) = | d F | p 2 + | d F | q 2 i , j μ i 2 H ( e i , e j ) , H ( e i , e j )
and
| d F | p 2 + | d F | q 2 a , A m h ( R N ( W A , d F ( ϵ a ) ) W A , d F ( ϵ a ) ) = | d F | p 2 + | d F | q 2 a , A , i , j , k , l W A i W A j F a k F a l h ( R N ( e i , e k ) e j , e l ) = | d F | p 2 + | d F | q 2 a , A , i , j , k , l W A i W A j F a k F a l [ H ( e j , e k ) , H ( e i , e l ) H ( e i , e j ) , H ( e k , e l ) ] = | d F | p 2 + | d F | q 2 i , k [ H ( e i , e k ) , H ( e i , e k ) H ( e i , e i ) , H ( e k , e k ) ] μ k 2 = | d F | p 2 + | d F | q 2 i , j [ H ( e i , e j ) , H ( e i , e j ) H ( e i , e i ) , H ( e j , e j ) ] μ i 2 .
By (66)–(72), we can obtain
A I ( W A , W A ) M | d F | p 2 + | d F | q 2 i μ i 2 { max { ( p 2 ) , ( q 2 ) } H ( e i , e i ) , H ( e i , e i ) + j ( 2 H ( e i , e j ) , H ( e i , e j ) H ( e i , e i ) , H ( e j , e j ) ) } d v g .
Since N is a ( p , q ) - S S U manifold, we see that if F is not constant, then
A I ( W A , W A ) < 0 .
This implies that F cannot be a stable ( p , q ) -harmonic map. Hence, a stable ( p , q ) -harmonic map must be constant. □
Remark 5. 
Take the target manifold as a complete orientable hypersurface in R n + 1 . When q = p , condition
max { ( p 2 ) , ( q 2 ) } H ( e i , e i ) , H ( e i , e i ) + j ( 2 H ( e i , e j ) , H ( e i , e j ) H ( e i , e i ) , H ( e j , e j ) )
becomes
( p 1 ) λ 2 < ( n 1 ) K ( y ) ,
where K ( y ) is the minimum of all sectional curvatures at y N , λ i is the principal curvatures of N, and λ 2 = max { λ i 2 } i = 1 n . In [21], Takeuchi proved that under condition (73) above, each stable p-harmonic map from any compact Riemannian manifold into the hypersurface is constant.
Theorem 10. 
Suppose that F : M N is a ( p , q ) -harmonic map, where M is a compact ( p , q ) - S S U manifold and N is a Riemannian manifold. Then a non-constant stable map F does not exist.
Proof. 
We take a local orthonormal frame field { e i } i = 1 d on R d , so that { e i } i = 1 m are tangent to M, and { e α } α = m + 1 d are normal to M. Meanwhile, we choose a fixed orthonormal basis { E A } A = 1 d on R d , and let
W A = i = 1 m W A i e i , W A i = E A , e i , W A α = E A , e α , α = m + 1 , , d .
Therefore, we have d F ( W A ) Γ ( F 1 T N ) . Using the components H i j α of the second fundamental form of M m in R d , we have
A = 1 d W A i W A j = A = 1 d E A , e i E A , e j = δ i j ,
D e i W A = α = m + 1 d j = 1 m H i j α W A α e j ,
D ˜ e i d F ( W A ) = α = m + 1 d k = 1 m W A α B i k α d F ( e k ) + k = 1 m W A k D ˜ e i d F ( e k ) .
Substituting V = W = d F ( W A ) into (13), we obtain
A = 1 d I ( d F ( W A ) , d F ( W A ) ) = ( p 2 ) M | d F | p 4 A , i , j D ˜ e i d F ( W A ) , d F ( e i ) D ˜ e j d F ( W A ) , d F ( e j ) d v g + ( q 2 ) M | d F | q 4 A , i , j D ˜ e i d F ( W A ) , d F ( e i ) D ˜ e j d F ( W A ) , d F ( e j ) d v g + M | d F | p 2 + | d F | q 2 A , i h ( D ˜ e i d F ( W A ) , D ˜ e i d F ( V A ) ) d v g + M | d F | p 2 + | d F | q 2 A , i h ( R N ( d F ( V A ) , d F ( e i ) ) d F ( V A ) , d F ( e i ) ) d v g .
Next, we can take an orthonormal basis { e i } i = 1 m such that D e i e j | P 0 = 0 for a fixed point P 0 . In the following, we adopt the index following conventions: i , j , k , l , { 1 , , m } , α , β , { m + 1 , , d } , A { 1 , , d } . Because the matrix h ( d F ( e i ) , d F ( e j ) ) is symmetric, we can take a local orthonormal basis { e i } i = 1 m such that h ( d F ( e i ) , d F ( e j ) ) = μ i 2 δ i j , i , j = 1 , , m . So we have | d F | 2 = i m μ i 2 . At P 0 , using the symmetry of D d F , we obtain
A , i , j D ˜ e i d F ( W A ) , d F ( e i ) D ˜ e j d F ( W A ) , d F ( e j ) = A , α , β W A α W A β i , k , j , l H i k α H j l β h ( d F ( e k ) , d F ( e i ) ) h ( d F ( e l ) , d F ( e j ) ) + A i , k , j , l W A k W A l h ( D ˜ e i d F ( e k ) , d F ( e i ) ) h ( D ˜ e j d F ( e l ) , d F ( e j ) ) = i , k , j , l , α H i k α H j l α h ( d F ( e k ) , d F ( e i ) ) h ( d F ( e l ) , d F ( e j ) ) + i , j , k h ( ( D e k d F ) ( e i ) , d F ( e i ) ) h ( ( D e k d F ) ( e j ) , d F ( e j ) ) ,
where
i , k , j , l , α H i k α H j l α h ( d F ( e k ) , d F ( e i ) ) h ( d F ( e l ) , d F ( e j ) ) = i , j , k , l H ( e i , e k ) , H ( e j , e l ) μ k 2 δ k i μ l 2 δ l j = i , j H ( e i , e i ) , H ( e j , e j ) μ i 2 μ j 2 i , j μ i 2 μ j 2 1 2 H ( e i , e i ) , H ( e i , e i ) + H ( e j , e j ) , H ( e j , e j ) = | d F | 2 i μ i 2 H ( e i , e i ) , H ( e i , e i ) .
Therefore, the first and second terms on the right-hand side of Equation (78) are as follows:
| d F | p 4 A , i , j D ˜ e i d F ( W A ) , d F ( e i ) D ˜ e j d F ( W A ) , d F ( e j ) | d F | p 2 i μ i 2 H ( e i , e i ) , H ( e i , e i ) + | d F | p 4 i , j , k h ( ( D e k d F ) ( e i ) , d F ( e i ) ) h ( ( D e k d F ) ( e j ) , d F ( e j ) )
and
| d F | q 4 A , i , j D ˜ e i d F ( W A ) , d F ( e i ) D ˜ e j d F ( W A ) , d F ( e j ) | d F | q 2 i H ( e i , e i ) , H ( e i , e i ) μ i 2 + | d F | q 4 i , j , k h ( ( D e k d F ) ( e i ) , d F ( e i ) ) h ( ( D e k d F ) ( e j ) , d F ( e j ) ) .
Next, we compute the third term of (78),
| d F | p 2 + | d F | q 2 i , A h ( D ˜ e i d F ( W A ) , D ˜ e i d F ( W A ) ) = | d F | p 2 + | d F | q 2 i , A h k , α W A α H i k α d F ( e k ) + k W A k D ˜ e i d F ( e k ) , l , β W A β H i l β d F ( e l ) + l W A l D ˜ e i d F ( e l ) = | d F | p 2 + | d F | q 2 i , k , l , α H i k α H i l α h ( d F ( e k ) , d F ( e l ) ) + i , k h ( ( D e k d F ) ( e i ) , ( D e k d F ) ( e i ) ) ,
where
| d F | p 2 + | d F | q 2 i , k , l , α H i k α H i l α h ( d F ( e k ) , d F ( e l ) ) = | d F | p 2 + | d F | q 2 i , k , l H ( e i , e k ) , H ( e i , e l ) μ k 2 δ k l = | d F | p 2 + | d F | q 2 i , j H ( e i , e j ) , H ( e i , e j ) μ i 2 .
Finally, we compute the last term of (78). Setting ω = d F Γ ( T M F 1 T N ) in Lemma 1, we have
k = 1 m R N ( d F ( Y ) , d F ( e k ) ) d F ( e k ) + d F ( R i c M m ( Y ) ) = ( Δ d F ) ( Y ) + ( D 2 d F ) ( Y ) .
Therefore, we obtain
| d F | p 2 + | d F | q 2 A , i h ( R N ( d F ( W A ) , d F ( e i ) ) d F ( W A ) , d F ( e i ) ) = | d F | p 2 + | d F | q 2 A h ( ( Δ d F ) ( W A ) , d F ( W A ) ) + | d F | p 2 + | d F | q 2 A h ( ( D 2 d F ) ( W A ) , d F ( W A ) ) | d F | p 2 + | d F | q 2 A h ( d F ( R i c M m ( W A ) ) , d F ( W A ) ) .
Using τ p , q ( F ) = δ | d F | p 2 + | d F | q 2 d F = 0 , (75), and (64), we see that each term on the right-hand side of Equation (83) is, respectively, given by
M | d F | p 2 + | d F | q 2 A ( Δ d F ) ( W A ) , d F ( W A ) d v g = M | d F | p 2 + | d F | q 2 A , i , j W A i W A j ( Δ d F ) ( e i ) , d F ( e j ) d v g = M δ d F , δ | d F | p 2 + | d F | q 2 d F d v g = 0
and
| d F | p 2 + | d F | q 2 A h ( ( D 2 d F ) ( W A ) , d F ( W A ) ) = | d F | p 2 + | d F | q 2 i h ( ( D 2 d F ) ( e i ) , d F ( e i ) ) = k e k | d F | p 2 + | d F | q 2 i h ( D e k d F ( e i ) , d F ( e i ) ) ( p 2 ) | d F | p 4 i , j , k h ( ( D e k d F ) ( e i ) , d F ( e i ) ) h ( ( D e k d F ) ( e j ) , d F ( e j ) ) ( q 2 ) | d F | q 4 i , j , k h ( ( D e k d F ) ( e i ) , d F ( e i ) ) h ( ( D e k d F ) ( e j ) , d F ( e j ) ) | d F | p 2 + | d F | q 2 i , k h ( ( D e k d F ) ( e i ) , ( D e k d F ) ( e i ) )
and
| d F | p 2 + | d F | q 2 A h ( d F ( R i c M ( W A ) ) , d F ( W A ) ) = | d F | p 2 + | d F | q 2 i , α h d F trace A α A α ( e i ) , d F ( e i ) h d F A α A α ( e i ) , d F ( e i ) ,
Using (63), the first and second terms on the right-hand side of Equation (86) are as follows:
| d F | p 2 + | d F | q 2 i , α h d F trace A α A α ( e i ) , d F ( e i ) = | d F | p 2 + | d F | q 2 i , k , l , α A α ( e k ) , e k A α ( e i ) , e l h ( d F ( e l ) , d F ( e i ) ) = | d F | p 2 + | d F | q 2 i , k , l H ( e k , e k ) , H ( e i , e l ) μ l 2 δ l i = | d F | p 2 + | d F | q 2 i , j H ( e i , e i ) , H ( e j , e j ) μ i 2
and
| d F | p 2 + | d F | q 2 i , α h ( d F ( A α ( A α ( e i ) ) ) , d F ( e i ) ) = | d F | p 2 + | d F | q 2 i , k , l , α A α ( e i ) , e k A α ( e k ) , e l h ( d F ( e l ) , d F ( e i ) ) = | d F | p 2 + | d F | q 2 i , k , l H ( e i , e k ) , H ( e l , e k ) μ l 2 δ l i = | d F | p 2 + | d F | q 2 i , j H ( e i , e j ) , H ( e i , e j ) μ i 2 .
By (78)–(88), we have
A I ( d F ( W A ) , d F ( W A ) ) M ( p 2 ) | d F | p 2 + ( q 2 ) | d F | q 2 i μ i 2 H ( e i , e i ) , H ( e i , e i ) d v g + M | d F | p 2 + | d F | q 2 i μ i 2 j ( 2 H ( e i , e j ) , H ( e i , e j ) H ( e i , e i ) , H ( e j , e j ) ) d v g M | d F | p 2 + | d F | q 2 i μ i 2 { max { ( p 2 ) , ( q 2 ) } H ( e i , e i ) , H ( e i , e i ) + j ( 2 H ( e i , e j ) , H ( e i , e j ) H ( e i , e i ) , H ( e j , e j ) ) } d v g .
Since M is a ( p , q ) - S S U manifold, we see that if F is not constant, then
A I ( d F ( W A ) , d F ( W A ) ) < 0 .
This implies that F cannot be a stable ( p , q ) -harmonic map. Hence, a stable ( p , q ) -harmonic map must be constant. □
Remark 6. 
Take the source manifold as a unit sphere S m in R m + 1 . When q = p , Takeuchi [21] proved that each stable p-harmonic map from a unit sphere S m into any Riemannian manifold N is constant.
From Theorem 9 and Theorem 10, we have the following corollary:
Corollary 6. 
A stable ( p , q ) -harmonic map F from S m ( m > max { p , q } ) into a Riemannian manifold N, or from any compact Riemannian manifold into S n ( n > max { p , q } ), is necessarily constant.

Author Contributions

Writing—original draft, Y.W.; Writing—review & editing, Y.W. and K.J.; Funding acquisition, K.J. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (12571056), the Natural Science Foundation of Henan (252300421497, 242300420657) and the Scientific Research Fund from the Shangqiu Normal University (7001121).

Data Availability Statement

Data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.

Acknowledgments

The authors would like to thank Yingbo Han for their help and suggestions.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Baird, P.; Eells, J. A conservation law for harmonic maps. In Geometry Symposium, Utrecht 1980; Lecture Notes in Math; Springer: Berlin, NY, USA, 1981; Volume 894, pp. 1–25. [Google Scholar] [CrossRef]
  2. Eells, J.; Sampson, J.H. Harmonic mappings of Riemannian manifolds. Am. J. Math. 1964, 86, 109–160. [Google Scholar] [CrossRef]
  3. Hildebrandt, S.O.W. Liouville theorems for harmonic mappings, and an approach to Bernstein theorems. In Seminar on Differential Geometry; Princeton Univ. Press: Princeton, NJ, USA, 1982; Volume 102, pp. 107–131. [Google Scholar] [CrossRef]
  4. Chang, S.-C.; Chen, J.-T.R.; Wei, S.W. Liouville properties for p-harmonic maps with finite q-energy. Trans. Am. Math. Soc. 2016, 368, 787–825. [Google Scholar] [CrossRef]
  5. Cheng, S.Y. Liouville theorem for harmonic maps, Geometry of the Laplace operator. Proc. Sym. Pure Math. 1980, 36, 147–151. [Google Scholar] [CrossRef]
  6. Feng, S.; Han, Y. Liouville theorems for generalized symphonic maps. J. Korean Math. Soc. 2019, 56, 669–688. [Google Scholar] [CrossRef]
  7. Dong, Y.X.; Wei, S.W. On vanishing theorems for vector bundle valued p-forms and their applications. Comm. Math. Phys. 2011, 304, 329–368. [Google Scholar] [CrossRef]
  8. Kawai, S.; Nakauchi, N. Stability of stationary maps of a functional related to pullbacks of metrics. Differ. Geom. Appl. 2016, 44, 161–177. [Google Scholar] [CrossRef]
  9. Kawai, S.; Nakauchi, N. Some results for stationary maps of a functional related to pullback metrics. Nonlinear Anal. 2011, 74, 2284–2295. [Google Scholar] [CrossRef]
  10. Wei, S.W. An average process in the calculus of variations and the stability of harmonic maps. Bull. Inst. Math. Acad. Sin. 1983, 11, 469–474. [Google Scholar]
  11. Wei, S.W. An extrinsic average variational method. In Recent Developments in Geometry, Proceedings of the AMS Special Session in Geometry, Los Angeles, CA, USA, 14–15 November 1987; University of California: Los Angeles, CA, USA, 1989. [Google Scholar] [CrossRef]
  12. Han, Y.; Wei, S.W. Φ-harmonic maps and Φ-superstrongly unstable manifolds. J. Geom. Anal. 2022, 32, 3. [Google Scholar] [CrossRef]
  13. Feng, S.; Han, Y.; Jiang, K.; Wei, S.W. The geometry of Φ(3)-harmonic maps. Nonlinear Anal. 2023, 234, 113318. [Google Scholar] [CrossRef]
  14. Feng, S.; Han, Y.; Wei, S.W. Liouville type theorems and stability of ΦS,p-harmonic maps. Nonlinear Anal. 2021, 212, 112468. [Google Scholar] [CrossRef]
  15. Feng, S.; Han, Y.; Li, X.; Wei, S.W. The geometry of ΦS-harmonic maps. J. Geom. Anal. 2021, 31, 9469–9508. [Google Scholar] [CrossRef]
  16. Cherif, A.M. Stability of generalized P-harmonic maps. Carpathian J. Math. 2025, 41, 299–311. [Google Scholar] [CrossRef]
  17. Nakauchi, N. A variational problem related to conformal maps. Osaka J. Math. 2011, 48, 719–741. [Google Scholar]
  18. Takeuchi, H. Some conformal properties of p-harmonic maps and a regularity for sphere-valued p-harmonic maps. J. Math. Soc. Jpn. 1994, 46, 217–234. [Google Scholar] [CrossRef]
  19. Colombo, M.; Mingione, G. Regularity for double phase variational problems. Arch. Ration. Mech. Anal. 2015, 215, 443–496. [Google Scholar] [CrossRef]
  20. Jin, Z.R. Liouville theorems for harmonic maps. Invent. Math. 1992, 108, 1–10. [Google Scholar] [CrossRef]
  21. Takeuchi, H. Stability and Liouville theorems of p-harmonic maps. Japan. J. Math. (N.S.) 1991, 17, 317–332. [Google Scholar] [CrossRef]
  22. Eells, J.; Lemaire, L. A report on harmonic maps. Bull. Lond. Math. Soc. 1978, 10, 1–68. [Google Scholar] [CrossRef]
  23. Dong, Y.X. Monotonicity formulae and holomorphicity of harmonic maps between Kähler manifolds. Proc. Lond. Math. Soc. 2013, 107, 1221–1260. [Google Scholar] [CrossRef]
  24. Escobar, J.F.; Freire, A. The spectrum of the Laplacian of manifolds of positive curvature. Duke Math. J. 1992, 65, 1–21. [Google Scholar] [CrossRef]
  25. Greene, R.E.; Wu, H.H. Function Theory on Manifolds Which Possess a Pole; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1979; Volume 699. [Google Scholar] [CrossRef]
  26. Han, Y.; Li, Y.; Ren, Y.; Wei, S.W. New comparison theorems in Riemannian geometry. Bull. Inst. Math. Acad. Sin. (N.S.) 2014, 9, 163–186. [Google Scholar]
  27. Wei, S.W. Dualities in comparison theorems and bundle-valued generalized harmonic forms on noncompact manifolds. Sci. China Math. 2021, 64, 1649–1702. [Google Scholar] [CrossRef]
  28. Pigola, S.; Rigoli, M.; Setti, A.G. Vanishing and Finiteness Results in Geometric Analysis; Progress in Mathematics; Birkhäuser: Basel, Switzerland, 2008; Volume 266. [Google Scholar] [CrossRef]
  29. Wei, S.W.; Yau, C.-M. Regularity of p-energy minimizing maps and p-superstrongly unstable indices. J. Geom. Anal. 1994, 4, 247–272. [Google Scholar] [CrossRef]
  30. Xin, Y.L. Geometry of Harmonic Maps; Progress in Nonlinear Differential Equations and Their Applications; Birkhäuser Boston: Boston, MA, USA, 1996; Volume 23. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Wang, Y.; Jiang, K. The Geometry of (p,q)-Harmonic Maps. Mathematics 2025, 13, 2827. https://doi.org/10.3390/math13172827

AMA Style

Wang Y, Jiang K. The Geometry of (p,q)-Harmonic Maps. Mathematics. 2025; 13(17):2827. https://doi.org/10.3390/math13172827

Chicago/Turabian Style

Wang, Yan, and Kaige Jiang. 2025. "The Geometry of (p,q)-Harmonic Maps" Mathematics 13, no. 17: 2827. https://doi.org/10.3390/math13172827

APA Style

Wang, Y., & Jiang, K. (2025). The Geometry of (p,q)-Harmonic Maps. Mathematics, 13(17), 2827. https://doi.org/10.3390/math13172827

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop