A Fokker–Planck Model for Optical Flow Estimation and Image Registration
Abstract
1. Introduction
- (P)
- Given , find the velocity field such that .
2. The Optimal Control Problem
3. The Euler–Lagrange Optimality System
4. The Gradient Algorithm
5. Numerical Approximation
5.1. The Finite Difference Method
5.2. 2D Explicit Difference Method
Algorithm 1: Algorithm OCP_FP_EDM (Optimal Control Problem—FokkerPlanck_EDM 2D) |
P0. Set ; Choose and compute (see (33)); Choose and compute ; Choose and compute ; Choose , , ; Choose (see (29)); Choose and compute , , (see (34)); P1. Determine , , , (see (38)); P2. Determine , , , (see (42)); P3. Compute (see (4.4)); P4. Compute solution of the minimization process: Set P5. If /* the stopping criterion */ then STOP else iter iter ; Go to P1. |
6. Numerical Experiments
6.1. Discrete Setting and Algorithmic Details
6.2. Benchmark Configuration
6.3. Results
7. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barbu, T. Digital Image Processing, Analysis and Computer Vision Using Nonlinear Partial Differential Equations; Springer Nature: Berlin/Heidelberg, Germany, 2025; Volume 1211. [Google Scholar]
- Barbu, V.; Marinoschi, G. An optimal control approach to the optimal flow problem. Syst. Control Lett. 2016, 87, 1–6. [Google Scholar] [CrossRef]
- Barron, J.L.; Fleet, D.J.; Beauchemin, S.S. Performance of optical flow techniques. Int. J. Comput. Vis. 1994, 12, 43–77. [Google Scholar] [CrossRef]
- Borzi, A.; Itô, K.; Kunish, K. Optimal control formulation for determining optical flow. SIAM J. Comput. 2002, 34, 818–847. [Google Scholar] [CrossRef]
- Horn, B.P.K.; Schunk, B.G. Determining optical flow. Artif. Intell. 1981, 17, 185–203. [Google Scholar] [CrossRef]
- Barbu, T. Deep learning-based multiple moving vehicle detection and tracking using a nonlinear fourth-order reaction-diffusion based multi-scale video object analysis. Discret. Contin. Dyn.-Syst.-Ser. S AIMS J. 2023, 16, 16–32. [Google Scholar] [CrossRef]
- Lee, E.; Gunzburger, M. An optimal control formulation of an image registration problem. J. Math. Vision 2010, 36, 69–80. [Google Scholar] [CrossRef]
- Mang, A.; Gholami, A.; Davatzikos, C.; Biros, G. CLAIRE: A Distributed-Memory Solver for Constrained Large Deformation Diffeomorphic Image Registration. SIAM J. Sci. Comput. 2019, 41, C548–C584. [Google Scholar] [CrossRef] [PubMed]
- Mang, A.; Gholami, A.; Davatzikos, C.; Biros, G. PDE-constrained optimization in medical image analysis. Optim. Eng. 2018, 19, 765–812. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y. Diffeomorphic image registration with an optimal control relaxation and its implementation. SIAM J. Imaging Sci. 2021, 14, 1890–1931. [Google Scholar] [CrossRef]
- Barbu, V.; Röckner, M. Nonlinear Fokker–Planck Flows and their Probabilistic Counterparts; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2024; Volume 2353. [Google Scholar]
- Jordan, R.; Kinderlehrer, D.; Otto, F. The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 1998, 29, 1–17. [Google Scholar] [CrossRef]
- Benincasa, T.; Favini, A.; Moroşanu, C. A Product Formula Approach to a Non-homogeneous Boundary Optimal Control Problem Governed by Nonlinear Phase-field Transition System. PART II: Lie-Trotter Product Formula. J. Optim. Theory Appl. 2011, 148, 31–45. [Google Scholar] [CrossRef]
- Hömberg, D.; Krumbiegel, K.; Rehberg, J. Optimal control of a parabolic equation with dynamic boundary conditions. Appl. Math. Optim. 2013, 67, 3–31. [Google Scholar] [CrossRef]
- Moroşanu, C. Boundary optimal control problem for the phase-field transition system using fractional steps method. Control Cybern. 2003, 32, 5–32. [Google Scholar]
- Moroşanu, C. Analysis and Optimal Control of Phase-Field Transition System: Fractional Steps Methods; Bentham Science Publishers: Potomac, MD, USA, 2012. [Google Scholar] [CrossRef]
- Lee, J.; Bertr, N.P.; Rozell, C.J. Unbalanced Optimal Transport Regularization for Imaging Problems. IEEE Trans. Comput. Imaging 2020, 6, 1219–1232. [Google Scholar] [CrossRef]
- Lions, J.L. Quelques Méthods de Résolution des Problèmes aux Limites Nonlinéaires; Dunod. Gauthier-Villars: Paris, France, 1969. [Google Scholar]
- Simon, J. Compact sets in the space Lp(O,T;B). Ann. Mat. Pura Appl. 1986, 146, 65–96. [Google Scholar] [CrossRef]
- Boole, G. Calculus of Finite Differences; BoD–Books on Demand; Salzwasser-Verlag: Bremen, Germany, 2022. [Google Scholar]
Parameter | Symbol | Value | Parameter | Symbol | Value |
---|---|---|---|---|---|
grid size | 64 | final time | T | 1 | |
diffusion | gradient step | ||||
regularization | outer iterations | 100 | |||
CFL safety factor |
Iter | ||
---|---|---|
1 | 5.922 × | 1.116 × |
2 | 6.815 × | 3.883 × |
3 | 2.995 × | 2.637 × |
4 | 1.412 × | 1.850 × |
6 | 8.185 × | 1.468 × |
10 | 3.701 × | 1.050 × |
15 | 1.210 × | 5.391 × |
20 | 1.185 × | 4.803 × |
50 | 1.002 × | 4.736 × |
100 | 1.000 × | 4.632 × |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbu, T.; Moroşanu, C.; Pavăl, S.-D. A Fokker–Planck Model for Optical Flow Estimation and Image Registration. Mathematics 2025, 13, 2807. https://doi.org/10.3390/math13172807
Barbu T, Moroşanu C, Pavăl S-D. A Fokker–Planck Model for Optical Flow Estimation and Image Registration. Mathematics. 2025; 13(17):2807. https://doi.org/10.3390/math13172807
Chicago/Turabian StyleBarbu, Tudor, Costică Moroşanu, and Silviu-Dumitru Pavăl. 2025. "A Fokker–Planck Model for Optical Flow Estimation and Image Registration" Mathematics 13, no. 17: 2807. https://doi.org/10.3390/math13172807
APA StyleBarbu, T., Moroşanu, C., & Pavăl, S.-D. (2025). A Fokker–Planck Model for Optical Flow Estimation and Image Registration. Mathematics, 13(17), 2807. https://doi.org/10.3390/math13172807