Quantum Computing for Intelligent Transportation Systems: VQE-Based Traffic Routing and EV Charging Scheduling
Abstract
1. Introduction
- We describe the VQE computational workflow and implementation details, including the Hamiltonian formulation, ansatz design, HQC optimization, and measurement.
- We apply the VQE framework to two critical optimization case studies within ITSs: optimal traffic routing and EV charging scheduling. The simulation results and comparative analyses demonstrate performance improvements over conventional methods, highlighting the potential of quantum-assisted optimization strategies for transportation networks.
2. Methods
- Problem Formulation as Quantum Optimization:The target optimization problem, which may include task assignment, vehicle routing, or operational scheduling, is transformed into a Hamiltonian (H). The optimization problem’s objective function and constraints are encoded by this Hamiltonian, while quantifying the energy or cost associated with each potential solution configuration. The optimization problem is usually formulated as a binary polynomial and subsequently mapped to an Ising Hamiltonian, a canonical form particularly well suited for quantum computing.
- Quantum Trial State Construction via Ansatz Design:A variational quantum state is constructed through a PQC known as an ansatz. This ansatz comprises quantum gates, including single-qubit rotation operations and two-qubit entangling gates, enabling the coherent exploration of the solution space through quantum superposition. The circuit contains adjustable parameters θ, which determine the quantum state configuration. These variational parameters are initialized through random assignment or heuristic-based methods to create the initial trial state.
- HQC Optimization:In order to prepare the trial state , the quantum computing platform implements the PQC. Then, it measures the expectation value of the problem Hamiltonian, which represents the evaluation of the energy or cost function for the current parameter configuration. The expectation value is computed asThe optimization objective is to minimize this energy functional. A classical optimization algorithm (such as COBYLA or SPSA) systematically adjusts the variational parameters θ to reduce the expectation value through iterative refinement. Through the adoption of this HQC feedback mechanism, configurations that yield minimal energy values—that is, optimal or nearly optimal solutions—can be systematically explored in the parameter space.
- Solution Extraction and Validation:The optimized parameters (θopt) are decoded to produce a binary solution vector that represents the ideal configuration for the initial optimization problem upon algorithmic convergence, which is determined by the stabilization of energy reduction. In relation to the initial problem specification, a thorough validation process confirms constraint satisfaction and solution viability. After this, the quantum-derived solution is analyzed and processed into practical recommendations for real-world application.Figure 1. Quantum computing for ITS: VQE methodology applied to EV charging scheduling.
3. Results
3.1. VQE for Optimal Traffic Routing
3.2. VQE for EV Charging Scheduling
4. Discussion
5. Conclusions and Future Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
EV | electric Vehicle |
HQC | hybrid quantum-classical |
ITS | intelligent transportation system |
NISQ | noisy intermediate-scale quantum |
PQC | parametrized quantum circuit |
VQE | variational quantum eigensolver |
References
- Chen, Z.G.; Zhan, Z.H.; Kwong, S.; Zhang, J. Evolutionary Computation for Intelligent Transportation in Smart Cities: A Survey. IEEE Comput. Intell. Mag. 2022, 17, 83–102. [Google Scholar] [CrossRef]
- Gong, T.; Zhu, L.; Yu, F.R.; Tang, T. Edge Intelligence in Intelligent Transportation Systems: A Survey. IEEE Trans. Intell. Transp. Syst. 2023, 24, 8919–8944. [Google Scholar] [CrossRef]
- Waqar, A.; Alshehri, A.H.; Alanazi, F.; Alotaibi, S.; Almujibah, H.R. Evaluation of Challenges to the Adoption of Intelligent Transportation System for Urban Smart Mobility. Res. Transp. Bus. Manag. 2023, 51, 101060. [Google Scholar] [CrossRef]
- Asuncion del Cacho Estil-Les, M.; Marcello Mangini, A.; Roccotelli, M.; Fanti, M.P. Electric Vehicle Routing Optimization for Postal Delivery and Waste Collection in Smart Cities. IEEE Trans. Intell. Transp. Syst. 2025, 26, 3307–3323. [Google Scholar] [CrossRef]
- Hosseini, S.; Yassine, A.; Hossain, M.S. Optimizing Electric Vehicle Charging Through an Artificial Intelligence Mechanism for Smart Transportation. IEEE Internet Things J. 2024, 11, 39069–39083. [Google Scholar] [CrossRef]
- Yigit, Y.; Maglaras, L.; Buchanan, W.J.; Canberk, B.; Shin, H.; Duong, T.Q. AI-Enhanced Digital Twin Framework for Cyber-Resilient 6G Internet-of-Vehicles Networks. IEEE Internet Things J. 2024, 11, 36168–36181. [Google Scholar] [CrossRef]
- Duong, T.Q.; Nguyen, L.D.; Narottama, B.; Ansere, J.A.; Huynh, D.V.; Shin, H. Quantum-Inspired Real-Time Optimization for 6G Networks: Opportunities, Challenges, and the Road Ahead. IEEE Open J. Commun. Soc. 2022, 3, 1347–1359. [Google Scholar] [CrossRef]
- Tariq, S.; Arfeto, B.E.; Khalid, U.; Kim, S.; Duong, T.Q.; Shin, H. Deep Quantum-Transformer Networks for Multimodal Beam Prediction in ISAC Systems. IEEE Internet Things J. 2024, 11, 29387–29401. [Google Scholar] [CrossRef]
- Zhuang, Y.; Azfar, T.; Wang, Y.; Sun, W.; Wang, X.C.; Guo, Q.V.; Ke, R. Quantum Computing in Intelligent Transportation Systems: A Survey. arXiv 2024, arXiv:2406.00862. [Google Scholar] [CrossRef]
- Harikrishnakumar, R.; Nannapaneni, S.; Nguyen, N.H.; Steck, J.E.; Behrman, E.C. A Quantum Annealing Approach for Dynamic Multi-Depot Capacitated Vehicle Routing Problem. arXiv 2020, arXiv:2005.12478. [Google Scholar] [CrossRef]
- Fitzek, D.; Ghandriz, T.; Laine, L.; Granath, M.; Kockum, A.F. Applying Quantum Approximate Optimization to the Heterogeneous Vehicle Routing Problem. Sci. Rep. 2024, 14, 25415. [Google Scholar] [CrossRef]
- Borowski, M.; Gora, P.; Karnas, K.; Błajda, M.; Król, K.; Matyjasek, A.; Burczyk, D.; Szewczyk, M.; Kutwin, M. New Hybrid Quantum Annealing Algorithms for Solving Vehicle Routing Problem. In Computational Science—ICCS 2020, Proceedings of the 20th International Conference, Amsterdam, The Netherlands, 3–5 June 2020; Krzhizhanovskaya, V.V., Závodszky, G., Lees, M.H., Dongarra, J.J., Sloot, P.M.A., Brissos, S., Teixeira, J., Eds.; Springer: Cham, Switzerland, 2020; pp. 546–561. [Google Scholar] [CrossRef]
- Singh, A.; Lin, C.Y.; Huang, C.I.; Lin, F.P. Quantum Annealing Approach for the Optimal Real-time Traffic Control using QUBO. In Proceedings of the 2021 IEEE/ACIS 22nd International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), Taichung, Taiwan, 24–26 November 2021; pp. 74–81. [Google Scholar] [CrossRef]
- Azfar, T.; Ke, R.; Raisuddin, O.M.; Holguin-Veras, J. Quantum-Assisted Vehicle Routing: Realizing QAOA-based Approach on Gate-Based Quantum Computer. arXiv 2025, arXiv:2505.01614. [Google Scholar]
- Chen, K.C.; Xu, X.; Burt, F.; Liu, C.Y.; Yu, S.; Leung, K.K. Noise-Aware Distributed Quantum Approximate Optimization Algorithm on Near-term Quantum Hardware. arXiv 2024, arXiv:2407.17325. [Google Scholar]
- Khalid, U.; ur Rehman, J.; Paing, S.N.; Jung, H.; Duong, T.Q.; Shin, H. Quantum Network Engineering in the NISQ Age: Principles, Missions, and Challenges. IEEE Netw. 2024, 38, 112–123. [Google Scholar] [CrossRef]
- Peruzzo, A.; McClean, J.; Shadbolt, P.; Yung, M.H.; Zhou, X.Q.; Love, P.J.; Aspuru-Guzik, A.; O’Brien, J.L. A Variational Eigenvalue Solver on a Photonic Quantum Processor. Nat. Commun. 2014, 5, 4213. [Google Scholar] [CrossRef]
- Alsaiyari, M.; Felemban, M. Variational Quantum Algorithms for Solving Vehicle Routing Problem. In Proceedings of the 2023 International Conference on Smart Computing and Application (ICSCA), Hail, Saudi Arabia, 5–6 February 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Huang, Z.; Li, Q.; Zhao, J.; Song, M. Variational Quantum Algorithm Applied to Collision Avoidance of Unmanned Aerial Vehicles. Entropy 2022, 24, 1685. [Google Scholar] [CrossRef]
- Miháliková, I.; Pivoluska, M.; Plesch, M.; Friák, M.; Nagaj, D.; Šob, M. The Cost of Improving the Precision of the Variational Quantum Eigensolver for Quantum Chemistry. Nanomaterials 2022, 12, 243. [Google Scholar] [CrossRef]
- Le, T.V.; Kekatos, V. Solving Constrained Optimization Problems via the Variational Quantum Eigensolver with Constraints. Phys. Rev. A 2024, 110, 022430. [Google Scholar] [CrossRef]
- Mizuta, K.; Fujii, M.; Fujii, S.; Ichikawa, K.; Imamura, Y.; Okuno, Y.; Nakagawa, Y.O. Deep Variational Quantum Eigensolver for Excited States and its Application to Quantum Chemistry Calculation of Periodic Materials. Phys. Rev. Res. 2021, 3, 043121. [Google Scholar] [CrossRef]
- Yan, Z.; Zhou, H.; Pei, J.; Kaushik, A.; Tabassum, H.; Wang, P. CVaR-Based Variational Quantum Optimization for User Association in Handoff-Aware Vehicular Networks. arXiv 2025, arXiv:2501.08418. [Google Scholar]
- Mohanty, N.; Behera, B.K.; Ferrie, C. Solving The Vehicle Routing Problem via Quantum Support Vector Machines. Quantum Mach. Intell. 2024, 6, 34. [Google Scholar] [CrossRef]
- Pollard, N.; Choudhary, K. BenchQC: A Benchmarking Toolkit for Quantum Computation. arXiv 2025, arXiv:2502.09595. [Google Scholar] [CrossRef]
- Le, D.T.; Nguyen, V.L.; Nguyen, C.H.; Nguyen, Q.H.; Nguyen, V.D. Variational Quantum Eigensolver: A Comparative Analysis of Classical and Quantum Optimization Methods. arXiv 2024, arXiv:2412.19176. [Google Scholar]
- Wang, S.; Li, G.; Chen, Z.; Wang, P.; Dou, M.; Zheng, H.; Wang, Z.; Gu, Y.; Wu, Y.C.; Guo, G.P. Improving the Trainability of VQE on NISQ Computers for Solving Portfolio Optimization using Convex Interpolation. arXiv 2024, arXiv:2407.05589. [Google Scholar] [CrossRef]
- Álvaro, N.; León, I.D.; Arias, D.; Mamedaliev, E.; Molina, M.E.; Martín-Cordero, M.; Hernández-Santana, S.; Serrano, P.; Arranz, M.; Mentxaka, O.; et al. Scaling the Variational Quantum Eigensolver for Dynamic Portfolio Optimization. arXiv 2025, arXiv:2412.19150. [Google Scholar]
- Landete, M.; Leal, M.; Monge, J.F.; Rodríguez-Martín, I. The Capacitated Vehicle Routing Problem with Planned Downtime. Comput. Optim. Appl. 2025, 19, 1573–2894. [Google Scholar] [CrossRef]
- Ma, H.; Yang, T. Improved Adaptive Large Neighborhood Search Combined with Simulated Annealing (IALNS-SA) Algorithm for Vehicle Routing Problem with Simultaneous Delivery and Pickup and Time Windows. Electronics 2025, 14, 2375. [Google Scholar] [CrossRef]
- Wang, Z.; Zheng, F.; Liu, M. Charging Scheduling of Electric Vehicles Considering Uncertain Arrival Times and Time-of-Use Price. Sustainability 2025, 17, 1100. [Google Scholar] [CrossRef]
- Maciejunes, A.; Stenger, J.; Gunlycke, D.; Chrisochoides, N. Solving Large-Scale Vehicle Routing Problems with Hybrid Quantum-Classical Decomposition. arXiv 2025, arXiv:2507.05373. [Google Scholar]
- Huang, W.H.; Matsuyama, H.; Yamashiro, Y. Solving Capacitated Vehicle Routing Problem with Quantum Alternating Operator Ansatz and Column Generation. arXiv 2025, arXiv:2503.17051. [Google Scholar]
- Otoom, S. Risk Auditing for Digital Twins in Cyber Physical Systems: A Systematic Review. J. Cyber Secur. Risk Audit. 2025, 2025, 22–35. [Google Scholar] [CrossRef]
- Addula, S.R.; Ali, A. A Novel Permissioned Blockchain Approach for Scalable and Privacy-Preserving IoT Authentication. J. Cyber Secur. Risk Audit. 2025, 2025, 222–237. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalid, U.; Paracha, U.I.; Rizvi, S.M.A.; Shin, H. Quantum Computing for Intelligent Transportation Systems: VQE-Based Traffic Routing and EV Charging Scheduling. Mathematics 2025, 13, 2761. https://doi.org/10.3390/math13172761
Khalid U, Paracha UI, Rizvi SMA, Shin H. Quantum Computing for Intelligent Transportation Systems: VQE-Based Traffic Routing and EV Charging Scheduling. Mathematics. 2025; 13(17):2761. https://doi.org/10.3390/math13172761
Chicago/Turabian StyleKhalid, Uman, Usama Inam Paracha, Syed Muhammad Abuzar Rizvi, and Hyundong Shin. 2025. "Quantum Computing for Intelligent Transportation Systems: VQE-Based Traffic Routing and EV Charging Scheduling" Mathematics 13, no. 17: 2761. https://doi.org/10.3390/math13172761
APA StyleKhalid, U., Paracha, U. I., Rizvi, S. M. A., & Shin, H. (2025). Quantum Computing for Intelligent Transportation Systems: VQE-Based Traffic Routing and EV Charging Scheduling. Mathematics, 13(17), 2761. https://doi.org/10.3390/math13172761