Enhanced Oscillation Criteria of Solutions for Half-Linear Dynamic Equations on Arbitrary Time Scales
Abstract
1. Introduction
- (I)
- All solutions of linear differential equation
- (II)
- All solutions of half-linear differential equation
- (III)
- All solutions of half-linear differential equation
- (IV)
- All solutions of half-linear delay differential equation
- (i)
- (ii)
2. Main Results
3. Discussion and Conclusions
- (I)
- In this paper, the findings presented apply across all time scales without any restrictive conditions, including , and for . Our results extend previous contributions to second-order half-linear differential equations; see the following details:
- (1)
- (2)
- (3)
- (4)
- (5)
- (6)
- (7)
- (II)
- We present sharp Kneser-type oscillation criteria for half-linear second-order dynamic equations, considering both cases and . Our results improve upon previously established Kneser-type criteria, as detailed below:
- (i)
- If , then criterion (19) reduces toBy dint of
- (ii)
- By virtue of
- (III)
- It would be interesting to establish Kneser-type oscillation criteria for a second-order dynamic Equation (1), provided that
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abbas, S.; Negi, S.S.; Grace, S.R.; Agarwal, R.P.; Wang, C. Survey on qualitative theory of dynamic equations on time scale. Mem. Differ. Equ. Math. Phys. 2021, 84, 1–67. [Google Scholar]
- Ishibashi, K. Hille-Nehari type non-oscillation criteria for half-linear dynamic equations with mixed derivatives on a time scale. Electron. J. Differ. Equ. 2021, 1–15. [Google Scholar] [CrossRef]
- Sun, S.; Han, Z.; Zhao, P.; Zhang, C. Oscillation for a class of second-order Emden-Fowler delay dynamic equations on time scales. Adv. Differ. Equ-Ny. 2010, 2010, 642356. [Google Scholar] [CrossRef]
- Baculikova, B. Oscillation of second-order nonlinear noncanonical differential equations with deviating argument. Appl. Math. Lett. 2019, 91, 68–75. [Google Scholar] [CrossRef]
- Zhang, Q.; Gao, L.; Wang, L. Oscillation of second-order nonlinear delay dynamic equations on time scales. Comput. Math. Appl. 2011, 61, 2342–2348. [Google Scholar] [CrossRef]
- Bazighifan, O.; El-Nabulsi, E.M. Different techniques for studying oscillatory behavior of solution of differential equations. Rocky Mt. J. Math. 2021, 51, 77–86. [Google Scholar] [CrossRef]
- Erbe, L.; Hassan, T.S.; Peterson, A. Oscillation criteria for second order sublinear dynamic equations with damping term. J. Differ. Equ. Appl. 2011, 17, 505–523. [Google Scholar]
- Zhu, Y.R.; Mao, Z.X.; Liu, S.P.; Tian, J.F. Oscillation criteria of second-order dynamic equations on time scales. Mathematics 2021, 9, 1867. [Google Scholar] [CrossRef]
- Grace, S.R.; Bohner, M.; Agarwal, R.P. On the oscillation of second-order half-linear dynamic equations. J. Differ. Equ. Appl. 2009, 15, 451–460. [Google Scholar] [CrossRef]
- Erbe, L.; Hassan, T.S. New oscillation criteria for second order sublinear dynamic equations. Dynam. Systems Appl. 2013, 22, 49–63. [Google Scholar]
- Jadlovská, I. Iterative oscillation results for second-order differential equations with advanced argument. Electron. J. Differ. Eq. 2017, 2017, 1–11. [Google Scholar]
- Bohner, M.; Vidhyaa, K.S.; Thandapani, E. Oscillation of noncanonical second-order advanced differential equations via canonical transform. Constr. Math. Anal. 2022, 5, 7–13. [Google Scholar] [CrossRef]
- Hassan, T.S.; El-Nabulsi, R.A.; Iqbal, N.; Abdel Menaem, A. New criteria for oscillation of advanced noncanonical nonlinear dynamic equations. Mathematics 2024, 12, 824. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Džurina, J.; Jadlovská, I. New oscillation criteria for second-order half-linear advanced differential equations. Appl. Math. Comput. 2019, 347, 404–416. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Moaaz, O.; Li, T.; Qaraad, B. Some oscillation theorems for nonlinear second-order differential equations with an advanced argument. Adv. Differ. Equ. 2020, 2020, 160. [Google Scholar] [CrossRef]
- Kac, V.; Chueng, P. Quantum Calculus; Universitext; Springer: New York, NY, USA, 2002. [Google Scholar]
- Hilger, S. Analysis on measure chains—A unified approach to continuous and discrete calculus. Results Math. 1990, 18, 18–56. [Google Scholar] [CrossRef]
- Bohner, M.; Peterson, A. Advances in Dynamic Equations on Time Scales; Birkhäuser: Boston, MA, USA, 2003. [Google Scholar]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications; Birkhäuser: Boston, MA, USA, 2001. [Google Scholar]
- Agarwal, R.P.; Hazarika, B.; Tikare, S. Dynamic Equations on Time Scales and Applications; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Frassu, S.; Viglialoro, G. Boundedness in a chemotaxis system with consumed chemoattractant and produced chemorepellent. Nonlinear Anal. 2021, 213, 112505. [Google Scholar] [CrossRef]
- Li, T.; Viglialoro, G. Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime. Differ. Integral Equ. 2021, 34, 315–336. [Google Scholar] [CrossRef]
- Li, T.; Acosta-Soba, D.; Columbu, A.; Viglialoro, G. Dissipative Gradient Nonlinearities Prevent δ-Formations in Local and Nonlocal Attraction–Repulsion Chemotaxis Models. Stud. Appl. Math. 2025, 154, e70018. [Google Scholar] [CrossRef]
- Hassan, T.S.; Cesarano, C.; El-Nabulsi, R.A.; Anukool, W. Improved Hille-Type Oscillation Criteria for Second-Order Quasilinear Dynamic Equations. Mathematics 2022, 10, 3675. [Google Scholar] [CrossRef]
- Wu, X. Some Oscillation Criteria for a Class of Higher Order Nonlinear Dynamic Equations with a Delay Argument on Time Scales. Acta Math. Sci. 2021, 41, 1474–1492. [Google Scholar] [CrossRef]
- Bohner, M.; Grace, S.R.; Jadlovská, I. Sharp results for oscillation of second-order neutral delay differential equations. Electron. J. Qual. Theory Differ. Equ. 2023, 4, 1–23. [Google Scholar] [CrossRef]
- Li, T.; Pintus, N.; Viglialoro, G. Properties of solutions to porous medium problems with different sources and boundary conditions. Z. Angew. Math. Phys. 2019, 70, 86. [Google Scholar] [CrossRef]
- Zhang, C.; Agarwal, R.P.; Bohner, M.; Li, T. Oscillation of second-order nonlinear neutral dynamic equations with noncanonical operators. Bull. Malays. Math. Sci. Soc. 2015, 38, 761–778. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Li, T.; Zhang, C. Oscillation criteria for second-order dynamic equations on time scales. Appl. Math. Lett. 2014, 31, 34–40. [Google Scholar] [CrossRef]
- Baculikova, B. Oscillation and asymptotic properties of second order half-linear differential equations with mixed deviating arguments. Mathematics 2021, 9, 2552. [Google Scholar] [CrossRef]
- Demidenko, G.V.; Matveeva, I.I. Asymptotic stability of solutions to a class of second-order delay differential equations. Mathematics 2021, 9, 1847. [Google Scholar] [CrossRef]
- Saker, S.H.; Mohammed, N.; Rezk, H.M.; Saied, A.I.; Aldwoah, K.; Alahmade, A. Unified Framework for Continuous and Discrete Relations of Gehring and Muckenhoupt Weights on Time Scales. Axioms 2024, 13, 754. [Google Scholar] [CrossRef]
- Kneser, A. Untersuchungen über die reellen Nullstellen der Integrale linearer Differentialgleichungen. Math. Ann. 1893, 42, 409–435. [Google Scholar] [CrossRef]
- Došly, O.; Řehák, P. Half-Linear Differential Equations; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Agarwal, R.P.; Grace, S.R.; O’Regan, D. Oscillation Theory for Second Order Linear, Half-Linear Superlinear and Sublinear Dynamic Equations; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Jadlovská, I.; Džurina, J. Kneser-type oscillation criteria for second-order half-linear delay differential equations. Appl. Math. Comput. 2020, 380, 125289. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Grace, S.R.; Jadlovská, I. A sharp oscillation criterion for second-order half-linear advanced differential equations. Acta Math. Hungar. 2021, 163, 552–562. [Google Scholar] [CrossRef]
- Hassan, T.S.; Abdel Menaem, A.; Jawarneh, Y.; Iqbal, N.; Ali, A. Oscillation criterion of Kneser type for half-linear second-order dynamic equations with deviating arguments. AIMS Math. 2024, 9, 19446–19458. [Google Scholar] [CrossRef]
- Grace, S.R.; Chhatria, G.N. Improved oscillation criteria for second order quasilinear dynamic equations of noncanonical type. Rend. Circ. Mat. Palermo, II. Ser. 2024, 73, 127–140. [Google Scholar] [CrossRef]
- Hassan, T.S.; Agarwal, R.P.; Mohammed, W.W. Oscillation criteria for third-order functional half-linear dynamic equations. Adv. Difference Equ. 2017, 2017, 111. [Google Scholar] [CrossRef]
- Džurina, J. Oscillation of second order advanced differential equations. Electron. J. Qual. Theo. 2018, 1–9. [Google Scholar] [CrossRef]
- Hassan, T.S.; Sun, Y.; Abdel Menaem, A. Improved oscillation results for functional nonlinear dynamic equations of second order. Mathematics 2020, 8, 1897. [Google Scholar] [CrossRef]
- Affan, S.E.; Elabbasy, E.M.; El-Matary, B.M.; Hassan, T.S.; Hassan, A.M. Second-order advanced dynamic equations on time scales: Oscillation analysis via monotonicity properties. AIMS Math. 2025, 10, 4473–4491. [Google Scholar] [CrossRef]
- Hassan, T.S.; El-Nabulsi, R.A.; Abdel Menaem, A. Amended criteria of oscillation for nonlinear functional dynamic equations of second-order. Mathematics 2021, 9, 1191. [Google Scholar] [CrossRef]
- Džurina, J.; Jadlovská, I. A sharp oscillation result for second-order half-linear noncanonical delay differential equations. Electron. J. Qual. Theo. 2020, 46, 1–14. [Google Scholar] [CrossRef]
- Grace, S.R.; Hassan, T.S. Oscillation criteria for higher order nonlinear dynamic equations. Math. Nachrichten 2014, 287, 1659–1673. [Google Scholar] [CrossRef]
- Jadlovská, I. Oscillation criteria of Kneser-type for second-order half-linear advanced differential equations. Appl. Math. Lett. 2020, 106, 106354. [Google Scholar] [CrossRef]
- Erbe, L.; Hassan, T.S.; Peterson, A. Oscillation criteria for nonlinear damped dynamic equations on time scales. Appl. Math. Comput. 2008, 203, 343–357. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, T.S.; Iambor, L.F.; Mesmouli, M.B.; Hassan, E.I.; Aldwoah, K.; Ali, A. Enhanced Oscillation Criteria of Solutions for Half-Linear Dynamic Equations on Arbitrary Time Scales. Mathematics 2025, 13, 2743. https://doi.org/10.3390/math13172743
Hassan TS, Iambor LF, Mesmouli MB, Hassan EI, Aldwoah K, Ali A. Enhanced Oscillation Criteria of Solutions for Half-Linear Dynamic Equations on Arbitrary Time Scales. Mathematics. 2025; 13(17):2743. https://doi.org/10.3390/math13172743
Chicago/Turabian StyleHassan, Taher S., Loredana Florentina Iambor, Mouataz Billah Mesmouli, Eltigani I. Hassan, Khaled Aldwoah, and Akbar Ali. 2025. "Enhanced Oscillation Criteria of Solutions for Half-Linear Dynamic Equations on Arbitrary Time Scales" Mathematics 13, no. 17: 2743. https://doi.org/10.3390/math13172743
APA StyleHassan, T. S., Iambor, L. F., Mesmouli, M. B., Hassan, E. I., Aldwoah, K., & Ali, A. (2025). Enhanced Oscillation Criteria of Solutions for Half-Linear Dynamic Equations on Arbitrary Time Scales. Mathematics, 13(17), 2743. https://doi.org/10.3390/math13172743