Uncertainty Inequalities for the Linear Canonical Dunkl Transform
Abstract
1. Introduction and Preliminaries
- and are connected by
- We have for any functions in the Schwartz space ,
- The kernel satisfies the following:
- For every we have
- For all ,
- For , we have and
- The LCDT has a unique extension to an isometric isomorphism on , denoted also by .
- For all ,
- For every , such that its LCDT belongs to
2. Uncertainty Principles for the LCDT
2.1. Entropic Uncertainty Inequality
2.2. Sharp Heisenberg-Type Uncertainty Inequality
- 1.
- Letwhere . Then the sequence is an orthonormal basis for .
- 2.
- The sequence of generalized Laguerre functions is the basis of eigenfunctions of , for , such that
- 3.
- The sequence forms a complete set of eigenfunctions on for , such that
- 1.
- The sequences and are two orthonormal bases of such thatand
- 2.
- Each of the sequences and forms a complete set on of eigenfunctions for the operatorssuch thatand
2.3. Heisenberg-Type Inequality Involving the -Norm
2.4. Heisenberg-Type Inequalities Involving the -Norms
- 1.
- For all ,where
- 2.
- For all ,where
- 1.
- For all
- 2.
- For every
- 3.
- For everywhere
2.5. Pitt-Type Inequality
2.6. Donoho–Stark-Type Uncertainty Inequalities
- 1.
- For every nonzero function , , we have
- 2.
- For all nonzero function , we have
- 3.
- For all nonzero function , , we have
- 4.
- For all nonzero function , , we have
2.7. Local Uncertainty Inequalities
- 1.
- If , then
- 2.
- If , then
- 1.
- If , then there is , such that for any ε-bandlimited function f on S,
- 2.
- If , then there is , such that for any ε-bandlimited function f on S,
- 3.
- For all , there there is , such that for any ε-bandlimited function f on S,
3. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dunkl, C.F. Differential-difference operators associated to reflection groups. Trans. Am. Math. Soc. 1989, 311, 7–183. [Google Scholar] [CrossRef]
- Dunkl, C.F. Hankel transforms associated to finite reflection groups. Contemp. Math. 1992, 138, 123–138. [Google Scholar] [CrossRef]
- Trimèche, K. Paley-Wiener theorems for Dunkl transform and Dunkl translation operators. Integral Transforms Spec. Funct. 2002, 13, 17–38. [Google Scholar] [CrossRef]
- Rösler, M.; Voit, M. Markov processes related with Dunkl operators. Adv. Appl. Math. 1998, 21, 575–643. [Google Scholar] [CrossRef]
- Collins, S.A.J. Lens-system diffraction integral written in terms of matrix optics. J. Opt. Soc. Am. A 1970, 60, 1168–1177. [Google Scholar] [CrossRef]
- Moshinsky, M.; Quesne, C. Linear canonical transformations and their unitary representations. J. Math. Phys. 1971, 12, 1772–1780. [Google Scholar] [CrossRef]
- Barshan, B.; Kutay, M.A.; Ozaktas, H.M. Optimal filtering with linear canonical transformations. Opt. Commun. 1997, 135, 32–36. [Google Scholar] [CrossRef]
- Ozaktas, H.M.; Zalevsky, Z.; Kutay, M.A. The Fractional Fourier Transform with Applications in Optics and Signal Processing; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Hennelly, B.M.; Sheridan, J.T. Fast numerical algorithm for the linear canonical transform. J. Opt. Soc. Am. A 2005, 22, 928–937. [Google Scholar] [CrossRef]
- Bultheel, A.; Marlínez-Sulbaran, H. Recent development in the theory of the fractional Fourier and linear canonical transforms. Bull. Belg. Math. Soc. Simon Stevin. 2007, 13, 971–1005. [Google Scholar] [CrossRef]
- Stern, A. Uncertainty principles in linear canonical transform domains and some of their implications in optics. J. Opti. Soc. Am. A 2008, 25, 647–652. [Google Scholar] [CrossRef]
- Xu, T.Z.; Li, B.Z. Linear Canonical Transform and Its Applications; Science Press: Beijing, China, 2013. [Google Scholar]
- Ghazouani, S.; Soltani, E.A.; Fitouhi, A. A unified class of integral transforms related to the Dunkl transform. J. Math. Anal. Appl. 2017, 449, 1797–1849. [Google Scholar] [CrossRef]
- Shah, F.A.; Tantary, A.Y. Linear canonical Stockwell transform. J. Math. Anal. Appl. 2020, 484, 123673. [Google Scholar] [CrossRef]
- Shah, F.A.; Tantary, A.Y. Linear canonical ripplet transform: Theory and localization operators. J. Pseudo-Differ. Oper. Appl. 2022, 13, 1–24. [Google Scholar] [CrossRef]
- Bahri, M.; Karim, S.A.A. Novel uncertainty principles concerning linear canonical wavelet transform. Mathematics 2022, 10, 3502. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Tantary, A.Y.; Shah, F.A.; Zayed, A.I. An interplay of Ridgelet and linear canonical transforms. Mathematics 2022, 10, 1986. [Google Scholar] [CrossRef]
- Urynbassarova, D.; Teali, A.A. Convolution, correlation, and uncertainty principles for the quaternion offset linear canonical transform. Mathematics 2023, 11, 2201. [Google Scholar] [CrossRef]
- Kaur, N.; Gupta, B.; Verma, A.K.; Agarwal, R.P. Offset linear canonical Stockwell transform for Boehmians. Mathematics 2024, 12, 2379. [Google Scholar] [CrossRef]
- Yang, H.; Feng, Q.; Wang, X.; Urynbassarova, D.; Teali, A.A. Reduced biquaternion windowed linear canonical transform: Properties and applications. Mathematics 2024, 12, 743. [Google Scholar] [CrossRef]
- Dhaouadi, L.; Sahbani, J.; Fitouhi, A. Harmonic analysis associated to the canonical Fourier Bessel transform. Integral Transforms Spec. Funct. 2021, 32, 290–315. [Google Scholar] [CrossRef]
- Mejjaoli, H.; Negzaoui, S. Linear canonical deformed Hankel transform and the associated uncertainty principles. J. Pseudo-Differ. Oper. Appl. 2023, 14, 29. [Google Scholar] [CrossRef]
- Shi, J.; Liu, X.; Zhang, N. Generalized convolution and product theorems associated with linear canonical transform. SIViP 2014, 8, 967–974. [Google Scholar] [CrossRef]
- Wolf, K.B. Canonical transforms. II, complex radial transforms. J. Math. Phys. 1974, 15, 1295–1301. [Google Scholar] [CrossRef]
- Gao, W.B. New uncertainty principles in the linear canonical transform domains based on hypercomplex functions. Axioms 2025, 14, 415. [Google Scholar] [CrossRef]
- Guanlei, X.; Xiaotong, W.; Xiaogang, X. Uncertainty inequalities for linear canonical transform. IET Signal Process. 2009, 3, 392–402. [Google Scholar] [CrossRef]
- Bahri, M.; Abdul Karim, S.A. Fractional Fourier transform: Main properties and inequalities. Mathematics 2023, 11, 1234. [Google Scholar] [CrossRef]
- Mai, W.; Dang, P.; Pan, W.; Chen, X. Uncertainty principles for linear canonical transform. J. Math. Anal. Appl. 2025, 548, 129414. [Google Scholar] [CrossRef]
- Dang, P.; Deng, G.T.; Qian, T. A tighter uncertainty principle for linear canonical transform in terms of phase derivative. IEEE Trans. Signal Process. 2013, 61, 5153–5164. [Google Scholar] [CrossRef]
- Sharma, K.; Joshi, S. Uncertainty principle for real signals in the linear canonical transform domains. IEEE Trans. Signal Process. 2008, 56, 2677–2683. [Google Scholar] [CrossRef]
- Xu, G.L.; Wang, X.T.; Xu, X.G. On uncertainty principle for the linear canonical transform of complex signals. IEEE Trans. Signal Process. 2010, 58, 4916–4918. [Google Scholar] [CrossRef]
- Zhao, J.; Tao, R.; Li, Y.L.; Wang, Y. Uncertainty principles for linear canonical transform. IEEE Trans. Signal Process. 2009, 5, 2856–2858. [Google Scholar] [CrossRef]
- Zhao, J.; Tao, R.; Wang, Y. On signal moments and uncertainty relations associated with linear canonical transform. Signal Process. 2010, 90, 2686–2689. [Google Scholar] [CrossRef]
- Chen, X.; Dang, P.; Mai, W.X. Lp-theory of linear canonical transforms and related uncertainty principles. Math. Methods Appl. Sci. 2024, 47, 6272–6300. [Google Scholar] [CrossRef]
- Dias, N.C.; de Gosson, M.; Prata, J.N. A metaplectic perspective of uncertainty principles in the linear canonical transform domain. J. Funct. Anal. 2024, 287, 110494. [Google Scholar] [CrossRef]
- Zhang, Z.C. Uncertainty principle for real functions in free metaplectic transformation domains. J. Fourier Anal. Appl. 2019, 25, 2899–2922. [Google Scholar] [CrossRef]
- Zhang, Z.C. Uncertainty principle of complex-valued functions in specific free metaplectic transformation domains. J. Fourier Anal. Appl. 2021, 27, 68. [Google Scholar] [CrossRef]
- Zhang, Z.C. Uncertainty principle for free metaplectic transformation. J. Fourier Anal. Appl. 2023, 29, 71. [Google Scholar] [CrossRef]
- Jing, R.; Liu, B.; Li, R.; Liu, R. The N-dimensional uncertainty principle for the free metaplectic transformation. Mathematics 2020, 8, 1685. [Google Scholar] [CrossRef]
- Liang, P.; Dang, P.; Mai, W. Uncertainty principles for free metaplectic transformation and associated metaplectic operators. arXiv 2025, arXiv:2506.03724. [Google Scholar] [CrossRef]
- Rösler, M. An uncertainty principle for the Dunkl transform. Bull. Aust. Math. Soc. 1999, 59, 353–360. [Google Scholar] [CrossRef]
- Shimeno, N. A note on the uncertainty principle for the Dunkl transform. J. Math. Sci. Univ. Tokyo 2001, 8, 33–42. [Google Scholar]
- Ghobber, S. Shapiro’s uncertainty principle in the Dunkl setting. Bull. Aust. Math. Soc. 2015, 92, 98–110. [Google Scholar] [CrossRef]
- Soltani, F. Heisenberg-Pauli-Weyl uncertainty inequality for the Dunkl transform on Rd. Bull. Aust. Math. Soc. 2013, 87, 316–325. [Google Scholar] [CrossRef]
- Soltani, F. A general form of Heisenberg-Pauli-Weyl uncertainty inequality for the Dunkl transform. Integral Transforms Spec. Funct. 2013, 24, 401–409. [Google Scholar] [CrossRef]
- Soltani, F. Pitt’s inequalities for the Dunkl transform on Rd. Integral Transforms Spec. Funct. 2014, 25, 686–696. [Google Scholar] [CrossRef]
- Fei, M.; Wang, Q.; Yang, L. Sharper uncertainty principle and Paley–Wiener theorem for the Dunkl transform. Math. Meth. Appl. Sci. 2022, 45, 882–898. [Google Scholar] [CrossRef]
- Kawazoe, T.; Mejjaoli, H. Uncertainty principles for the Dunkl transform. Hiroshima Math. J. 2010, 40, 241–268. [Google Scholar] [CrossRef]
- Gallardo, L.; Trimèche, K. An Lp version of Hardy’s theorem for the Dunkl transform. Bull. Aust. Math. Soc. 2004, 77, 371–385. [Google Scholar] [CrossRef]
- Ghobber, S. Uncertainty principles involving L1-norms for the Dunkl transform. Integral Transforms Spec. Funct. 2013, 24, 491–501. [Google Scholar] [CrossRef]
- Ghobber, S.; Jaming, P. Uncertainty principles for integral operators. Studia Math. 2014, 220, 197–220. [Google Scholar] [CrossRef]
- Gorbachev, D.; Ivanov, V.; Tikhonov, S. Sharp Pitt inequality and logarithmic uncertainty principle for Dunkl transform in L2. J. Approx. Theory 2016, 202, 109–118. [Google Scholar] [CrossRef]
- Ghobber, S. A variant of the Hankel multiplier. Banach J. Math. Anal. 2018, 12, 144–166. [Google Scholar] [CrossRef]
- Donoho, D.L.; Stark, P.B. Uncertainty principles and signal recovery. SIAM J. Appl. Math. 1989, 49, 906–931. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Ben Saïd, S.; Kobayashi, T.; Ørsted, B. Laguerre semigroup and Dunkl operators. Compos. Math. 2012, 148, 1265–1336. [Google Scholar] [CrossRef]
- Ciatti, P.; Ricci, F.; Sundari, M. Heisenberg-Pauli-Weyl uncertainty inequalities and polynomial volume growth. Adv. Math. 2007, 215, 616–625. [Google Scholar] [CrossRef]
- Whittaker, E.T.; Watson, G.N. A Course of Modern Analysis; Cambridge University Press: London, UK, 1927. [Google Scholar]
- Mejjaoli, H.; Sraeib, N.; Trimèche, K. Lp local uncertainty principles for the Dunkl Gabor transform on Rd. Bol. Soc. Mat. Mex. 2020, 26, 1163–1182. [Google Scholar] [CrossRef]
- Faris, W.G. Inequalities and uncertainty inequalities. J. Math. Phys. 1978, 19, 461–466. [Google Scholar] [CrossRef]
- Price, J.F. Inequalities and local uncertainty principles. J. Math. Phys. 1983, 24, 1711–1714. [Google Scholar] [CrossRef]
- Price, J.F. Sharp local uncertainty principles. Studia Math. 1987, 85, 37–45. [Google Scholar] [CrossRef]
- Umamaheswari, S.; Verma, S.K. Uncertainty principles associated with the linear canonical Dunkl transform. arXiv 2025, arXiv:2507.00530. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghobber, S.; Mejjaoli, H. Uncertainty Inequalities for the Linear Canonical Dunkl Transform. Mathematics 2025, 13, 2729. https://doi.org/10.3390/math13172729
Ghobber S, Mejjaoli H. Uncertainty Inequalities for the Linear Canonical Dunkl Transform. Mathematics. 2025; 13(17):2729. https://doi.org/10.3390/math13172729
Chicago/Turabian StyleGhobber, Saifallah, and Hatem Mejjaoli. 2025. "Uncertainty Inequalities for the Linear Canonical Dunkl Transform" Mathematics 13, no. 17: 2729. https://doi.org/10.3390/math13172729
APA StyleGhobber, S., & Mejjaoli, H. (2025). Uncertainty Inequalities for the Linear Canonical Dunkl Transform. Mathematics, 13(17), 2729. https://doi.org/10.3390/math13172729