Fractal-Based Modeling and Quantitative Analysis of Hydraulic Fracture Complexity in Digital Cores
Abstract
1. Introduction
2. Methodology
2.1. Constitutive Model and Failure Criteria
2.2. Hydro-Mechanical Damage Coupling Algorithm
3. Numerical Model Construction
4. Simulation Results and Analysis
4.1. Quartz Particle Model
4.1.1. Hydraulic Fracture Morphology
4.1.2. Hydraulic Fracture Parameters
4.1.3. Mineral Damage
4.2. Ostracod Laminae Model
4.2.1. Hydraulic Fracture Morphology
4.2.2. Hydraulic Fracture Parameters
4.2.3. Mineral Damage
5. Discussion
6. Conclusions
- (1)
- Fracture morphology is strongly structure-dependent. In the quartz grain model, fractures exhibit frequent deflection, bypassing, and multi-path branching, forming complex fracture networks. In contrast, the ostracod laminae model displays through-fracturing, radial propagation, and “mushroom-shaped” fracture fronts at high injection rates, highlighting the role of its shell-like architecture in directing fracture evolution.
- (2)
- Fracture complexity increases with injection rate, with structure-specific response patterns. While the quartz model shows gradual and steady fracture development, the ostracod model exhibits nonlinear, abrupt increases in complexity at higher flow rates, suggesting that intricate biological structures are more prone to triggering topological transitions in fracture geometry.
- (3)
- Different mineral types respond distinctly to injection rate variations. Hard minerals such as quartz tend to fail in a brittle manner under high stress, whereas weak components like organic matter are more prone to tensile failure, often serving as primary pathways for fracture propagation.
- (4)
- Fracture evolution and mineral response are jointly governed by the interaction between microstructure and injection rate. Quartz grains influence fracture trajectories primarily through energy dissipation optimization, while ostracod laminae exhibit a transition from resistance to cooperative failure with increasing flow rate, reflecting a flow-driven shift in fracture behavior.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Cb | Carbonate minerals |
Cl | Clay minerals |
D | Damage variable, dimensionless |
d | Fractal dimension, dimensionless |
E0 | Initial elastic modulus of the element, Pa |
f | Body force vector, N/m3 |
G | Shear modulus, Pa |
g | Gravitational acceleration, m/s2 |
H | Hydraulic head, m |
Fracture height, m | |
Unit tensor | |
Hydraulic gradient, dimensionless | |
Permeability, m2 | |
NF | Natural Fracture |
OLM | Ostracod laminae model |
Osh | Ostracod shell |
OM | Organic Matter |
Pore pressure, Pa | |
Net pressure, Pa | |
Volume source, s−1 | |
Qtz | Quartz |
QPM | Quartz particle model |
SRA | Stimulated reservoir area, μm2 |
t | Time, s |
UCS | Unconfined compressive strength |
u | Displacement m |
Fracture aperture, m | |
α | Biot’s coefficient, dimensionless |
Strain tensor, dimensionless | |
Equivalent principal strain, dimensionless | |
First principal strain, dimensionless | |
Second principal strain, dimensionless | |
Third principal strain, dimensionless | |
Compressive strain at elastic limit, dimensionless | |
Tensile strain at elastic limit, dimensionless | |
Ultimate tensile strain, dimensionless | |
Ultimate strain coefficient, dimensionless | |
µ | Fluid viscosity (Pa s) |
ν | Poisson’s ratio, dimensionless |
Density of the fracturing fluid, kg/m3 | |
Stress tensor, Pa | |
Residual compressive strength, Pa | |
Residual tensile strength, Pa |
References
- Temizel, C.; Canbaz, C.H.; Palabiyik, Y.; Hosgor, F.B.; Atayev, H.; Ozyurtkan, M.H.; Aydin, H.; Yurukcu, M.; Boppana, N. A Review of Hydraulic Fracturing and Latest Developments in Unconventional Reservoirs. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 2–5 May 2022; p. D011S005R006. [Google Scholar] [CrossRef]
- Xia, Y.; Yao, M.; Li, T.; Yang, H.; Tang, C.A. Numerical analysis of hydraulic fracture propagation in deep shale reservoir with different injection strategies. J. Rock Mech. Geotech. Eng. 2024, 16, 3558–3574. [Google Scholar] [CrossRef]
- Lu, J.; Li, L.; Yang, F.; Zhang, Z.; Lu, M. Finite element simulation and stimulated reservoir volume optimization of hydraulic fracture propagation in heterogeneous formations based on flow-stress-damage coupling. Phys. Fluids 2025, 37, 036604. [Google Scholar] [CrossRef]
- Yu, H.; Xu, W.; Li, B.; Huang, H.; Micheal, M.; Wang, Q.; Huang, M.; Meng, S.; Liu, H.; Wu, H. Hydraulic Fracturing and Enhanced Recovery in Shale Reservoirs: Theoretical Analysis to Engineering Applications. Energy Fuels 2023, 37, 9956–9997. [Google Scholar] [CrossRef]
- Kolawole, O.; Ispas, I. Interaction between hydraulic fractures and natural fractures: Current status and prospective directions. J. Pet. Explor. Prod. Technol. 2020, 10, 1613–1634. [Google Scholar] [CrossRef]
- Kumar, S.; Chandra, D.; Hazra, B.; Vishal, V.; Pathegama Gamage, R. Nanopore Characteristics of Barakar Formation Shales and Their Impact on the Gas Storage Potential of Korba and Raniganj Basins in India. Energy Fuels 2024, 38, 3833–3847. [Google Scholar] [CrossRef]
- Tang, X.; Jiang, Z.; Jiang, S.; Li, Z. Heterogeneous nanoporosity of the Silurian Longmaxi Formation shale gas reservoir in the Sichuan Basin using the QEMSCAN, FIB-SEM, and nano-CT methods. Mar. Pet. Geol. 2016, 78, 99–109. [Google Scholar] [CrossRef]
- Zhu, H.; Huang, C.; Ju, Y.; Bu, H.; Li, X.; Yang, M.; Chu, Q.; Feng, H.; Qiao, P.; Qi, Y.; et al. Multi-scale multi-dimensional characterization of clay-hosted pore networks of shale using FIBSEM, TEM, and X-ray micro-tomography: Implications for methane storage and migration. Appl. Clay Sci. 2021, 213, 106239. [Google Scholar] [CrossRef]
- Tang, H.; Li, S.; Zhang, D. The effect of heterogeneity on hydraulic fracturing in shale. J. Pet. Sci. Eng. 2018, 162, 292–308. [Google Scholar] [CrossRef]
- Wu, M.; Jiang, C.; Song, R.; Liu, J.; Li, M.; Liu, B.; Shi, D.; Zhu, Z.; Deng, B. Comparative study on hydraulic fracturing using different discrete fracture network modeling: Insight from homogeneous to heterogeneity reservoirs. Eng. Fract. Mech. 2023, 284, 109274. [Google Scholar] [CrossRef]
- Huang, L.; Liu, J.; Zhang, F.; Dontsov, E.; Damjanac, B. Exploring the influence of rock inherent heterogeneity and grain size on hydraulic fracturing using discrete element modeling. Int. J. Solids Struct. 2019, 176–177, 207–220. [Google Scholar] [CrossRef]
- Kwok, C.-Y.; Duan, K.; Pierce, M. Modeling hydraulic fracturing in jointed shale formation with the use of fully coupled discrete element method. Acta Geotech. 2020, 15, 245–264. [Google Scholar] [CrossRef]
- Li, T.; Li, L.; Tang, C.A.; Zhang, Z.; Li, M.; Zhang, L.; Li, A. A coupled hydraulic-mechanical-damage geotechnical model for simulation of fracture propagation in geological media during hydraulic fracturing. J. Pet. Sci. Eng. 2019, 173, 1390–1416. [Google Scholar] [CrossRef]
- Tang, C.A.; Tham, L.G.; Lee, P.K.K.; Yang, T.H.; Li, L.C. Coupled analysis of flow, stress and damage (FSD) in rock failure. Int. J. Rock Mech. 2002, 39, 477–489. [Google Scholar] [CrossRef]
- Tang, C.A.; Xu, T.; Yang, T.H.; Liang, Z.Z. Numerical investigation of the mechanical behavior of rock under confining pressure and pore pressure. Int. J. Rock Mech. Min. Sci. 2004, 41, 336–341. [Google Scholar] [CrossRef]
- Potyondy, D.O.; Cundall, P.A. A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 2004, 41, 1329–1364. [Google Scholar] [CrossRef]
- Molladavoodi, H.; RahimiRezaei, Y. Heterogeneous Rock Simulation Using DIP-Micromechanics-Statistical Methods. Adv. Civ. Eng. 2018, 2018, 7010817. [Google Scholar] [CrossRef]
- Saxena, N.; Hows, A.; Hofmann, R.; Alpak, F.O.; Dietderich, J.; Appel, M.; Freeman, J.; De Jong, H. Rock properties from micro-CT images: Digital rock transforms for resolution, pore volume, and field of view. Adv. Water Resour. 2019, 134, 103419. [Google Scholar] [CrossRef]
- Cao, D.; Hou, Z.; Liu, Q.; Fu, F. Reconstruction of three-dimension digital rock guided by prior information with a combination of InfoGAN and style-based GAN. J. Pet. Sci. Eng. 2022, 208, 109590. [Google Scholar] [CrossRef]
- Yue, Z.Q.; Chen, S.; Tham, L.G. Finite element modeling of geomaterials using digital image processing. Comput. Geotech. 2003, 30, 375–397. [Google Scholar] [CrossRef]
- Li, B.; Nie, X.; Cai, J.; Zhou, X.; Wang, C.; Han, D. U-Net model for multi-component digital rock modeling of shales based on CT and QEMSCAN images. J. Pet. Sci. Eng. 2022, 216, 110734. [Google Scholar] [CrossRef]
- Li, Z.; Li, L.; Huang, B.; Zhang, L.; Li, M.; Zuo, J.; Li, A.; Yu, Q. Numerical investigation on the propagation behavior of hydraulic fractures in shale reservoir based on the DIP technique. J. Pet. Sci. Eng. 2017, 154, 302–314. [Google Scholar] [CrossRef]
- Shi, X.; Qin, Y.; Gao, Q.; Liu, S.; Xu, H.; Yu, T. Experimental study on hydraulic fracture propagation in heterogeneous glutenite rock. Geoenergy Sci. Eng. 2023, 225, 211673. [Google Scholar] [CrossRef]
- Lei, B.; Zuo, J.; Liu, H.; Wang, J.; Xu, F.; Li, H. Experimental and numerical investigation on shale fracture behavior with different bedding properties. Eng. Fract. Mech. 2021, 247, 107639. [Google Scholar] [CrossRef]
- Lei, B.; Li, H.; Zuo, J.; Liu, H.; Yu, M.; Wu, G. Meso-fracture mechanism of Longmaxi shale with different crack-depth ratios: Experimental and numerical investigations. Eng. Fract. Mech. 2021, 257, 108025. [Google Scholar] [CrossRef]
- Ji, W.; Hao, F.; Gong, F.; Zhang, J.; Bai, Y.; Liang, C.; Tian, J. Petroleum migration and accumulation in a shale oil system of the Upper Cretaceous Qingshankou Formation in the Songliao Basin, northeastern China. AAPG Bull. 2024, 108, 1611–1648. [Google Scholar] [CrossRef]
- Liu, C.; Xu, X.; Liu, K.; Bai, J.; Liu, W.; Chen, S. Pore-scale oil distribution in shales of the Qingshankou formation in the Changling Sag, Songliao Basin, NE China. Mar. Pet. Geol. 2020, 120, 104553. [Google Scholar] [CrossRef]
- Cai, Y.; Zhu, R.; Luo, Z.; Wu, S.; Zhang, T.; Liu, C.; Zhang, J.; Wang, Y.; Meng, S.; Wang, H.; et al. Lithofacies and Source Rock Quality of Organic-Rich Shales in the Cretaceous Qingshankou Formation, Songliao Basin, NE China. Minerals 2022, 12, 465. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.; Cong, L.; Zhou, J.; Yang, D.; Zhang, X.; Han, Z. Three-Dimensional Lattice Modeling of Interaction Behavior Between Hydraulic Fractures and Natural Fractures with Varied Morphologies in Hot Dry Rock. Rock Mech. Rock Eng. 2025, 58, 2971–2998. [Google Scholar] [CrossRef]
- Katende, A. The Impact of Rock Lithology and Microstructural Properties on Proppant Embedment and Fracture Conductivity: A Case Study of the Caney Shale, Southern Oklahoma, USA. Ph.D. Dissertation, Oklahoma State University, Stillwater, OK, USA, 2022. Available online: https://hdl.handle.net/20.500.14446/337854 (accessed on 21 June 2025).
- Huang, L.; Lu, M.; Sheng, G.; Gong, J.; Ruan, J. Research Advance on Prediction and Optimization for Fracture Propagation in Stimulated Unconventional Reservoirs. Lithosphere 2022, 2021, 4442001. [Google Scholar] [CrossRef]
- Li, T.; Tang, C.; Rutqvist, J.; Hu, M.; Li, L.; Zhang, L.; Huang, B. The Influence of an Interlayer on Dual Hydraulic Fractures Propagation. Energies 2020, 13, 555. [Google Scholar] [CrossRef]
- Yao, M.; Yang, H.; Xia, Y.; Chen, J.; Tang, C.A. Optimization of multiple hydraulic fracture initiation and propagation in deep tight reservoirs considering fracture macro/micro characteristics. Int. J. Rock Mech. Min. Sci. 2025, 191, 106126. [Google Scholar] [CrossRef]
- Wang, M.; Gan, Q.; Wang, T.; Ma, Y.; Yan, C.; Benson, P.; Wang, X.; Elsworth, D. Propagation and complex morphology of hydraulic fractures in lamellar shales based on finite-discrete element modeling. Geomech. Geophys. Geo-Energy Geo-Resour. 2024, 10, 71. [Google Scholar] [CrossRef]
- Ran, Q.; Zhou, X.; Dong, J.; Xu, M.; Ren, D.; Li, R. Numerical Simulation of Multi-Fracture Propagation Based on the Extended Finite Element Method. Processes 2023, 11, 2032. [Google Scholar] [CrossRef]
- Chu, J.; Li, M.; Huang, G.; Guo, T.; Zhou, F. Numerical simulation of the simultaneous propagation of multiple hydraulic fractures based on expanded finite element method. Phys. Fluids 2024, 36, 047118. [Google Scholar] [CrossRef]
- Liang, Z.Z.; Tang, C.A.; Li, H.X.; Zhang, Y.B. Numerical simulation of the 3-D failure process in heterogeneous rocks. Int. J. Rock Mech. Min. Sci. 2004, 41, 323–328. [Google Scholar] [CrossRef]
- Liang, Z.Z.; Xing, H.; Wang, S.Y.; Williams, D.J.; Tang, C.A. A three-dimensional numerical investigation of the fracture of rock specimens containing a pre-existing surface flaw. Comput. Geotech. 2012, 45, 19–33. [Google Scholar] [CrossRef]
- Li, L.C.; Tang, C.A.; Wang, S.Y.; Yu, J. A coupled thermo-hydrologic-mechanical damage model and associated application in a stability analysis on a rock pillar. Tunn. Undergr. Space Technol. 2013, 34, 38–53. [Google Scholar] [CrossRef]
- Li, T.; Yao, M.; Xia, Y.; Feng, X.; Cong, W.; Shi, Y.; Tang, C.A. The Influences of Mineral Components and Pore Structure on Hydraulic Fracture Propagation in Shale. Rock Mech. Rock Eng. 2024, 58, 2929–2952. [Google Scholar] [CrossRef]
- Lemaitre, J. How to use damage mechanics. Nucl. Eng. Des. 1984, 80, 233–245. [Google Scholar] [CrossRef]
- Rankine, W.J.M. A Manual of Applied Mechanics; Hoar Press: London, UK, 2008; pp. 1–672. ISBN 978-1443718158. [Google Scholar]
- Zhou, L.; Hou, M.Z. A new numerical 3D-model for simulation of hydraulic fracturing in consideration of hydro-mechanical coupling effects. Int. J. Rock Mech. Min. Sci. 2013, 60, 370–380. [Google Scholar] [CrossRef]
- Freeze, R.A.; Cherry, J.A. Groundwater; Prentice-Hall: Hoboken, NJ, USA, 1980; Volume 13, pp. 455–458. [Google Scholar]
- Ferronato, M.; Castelletto, N.; Gambolati, G. A fully coupled 3-D mixed finite element model of Biot consolidation. J. Comput. Phys. 2010, 229, 4813–4830. [Google Scholar] [CrossRef]
- David, C.; Menendez, B.; Zhu, W.; Wong, T.F. Mechanical compaction, microstructures and permeability evolution in sandstones. Phys. Chem. Earth Part A Solid Earth Geod. 2001, 26, 45–51. [Google Scholar] [CrossRef]
- Li, L.C.; Tang, C.A.; Li, G.; Wang, S.Y.; Liang, Z.Z.; Zhang, Y.B. Numerical Simulation of 3D Hydraulic Fracturing Based on an Improved Flow-Stress-Damage Model and a Parallel FEM Technique. Rock Mech. Rock Eng. 2012, 45, 801–818. [Google Scholar] [CrossRef]
- Witherspoon, P.A.; Wang, J.S.Y.; Iwai, K.; Gale, J.E. Validity of Cubic Law for fluid flow in a deformable rock fracture. Water Resour. Res. 1980, 16, 1016–1024. [Google Scholar] [CrossRef]
- Sneddon, I.N.; Elliott, H.A. The opening of A griffith crack under internal pressure. Q. Appl. Math. 1946, 4, 262–267. [Google Scholar] [CrossRef]
- Chen, T.; Feng, X.; Zhang, X.; Cao, W.; Fu, C. Experimental study on mechanical and anisotropic properties of black shale. Chin. J. Rock Mech. Eng. 2014, 33, 1772–1779. [Google Scholar] [CrossRef]
- He, J.; Li, X.; Yin, C.; Zhang, Y.; Lin, C. Propagation and characterization of the micro cracks induced by hydraulic fracturing in shale. Energy 2020, 191, 116449. [Google Scholar] [CrossRef]
- Sharafisafa, M.; Sato, A.; Sainoki, A.; Shen, L.; Aliabadian, Z. Combined finite-discrete element modelling of hydraulic fracturing in deep geologically complex reservoirs. Int. J. Rock Mech. Min. Sci. 2023, 167, 105406. [Google Scholar] [CrossRef]
- Xia, X.; Wu, Z.; Song, H.; Wang, W.; Cui, H.; Tang, M. Numerical study of hydraulic fracturing on single-hole shale under fluid–solid coupling. Geomech. Geophys. Geo-Energy Geo-Resour. 2024, 10, 23. [Google Scholar] [CrossRef]
- Yan, D.; Zhao, L.; Song, X.; Tang, J.; Zhang, F. Fracability evaluation model for unconventional reservoirs: From the perspective of hydraulic fracturing performance. Int. J. Rock Mech. Min. Sci. 2024, 183, 105912. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, S.; Li, L.; Tang, Y.; Xu, G. A 3D Voronoi clump based model for simulating failure behavior of brittle rock. Eng. Fract. Mech. 2021, 248, 107720. [Google Scholar] [CrossRef]
Mineral Type | (GPa) | (MPa) | k (m2) | |||
---|---|---|---|---|---|---|
Qtz | 102.44 | 10.43 | 507.68 | 9.84 | 0.07 | 6.2 × 1020 |
Cb | 58.45 | 6.38 | 315.44 | 4.21 | 0.28 | 6.2 × 1019 |
Osh | 85.13 | 8.25 | 471.68 | 8.31 | 0.18 | 6.2 × 1019 |
Cl | 35.86 | 6.09 | 143.85 | 1.73 | 0.34 | 6.2 × 1018 |
OM | 8.05 | 2.15 | 94.48 | 2.09 | 0.14 | 6.2 × 1017 |
Fluid Parameter | Symbol | Reference Value | Unit |
---|---|---|---|
Fluid density | 1000 | kg/m3 | |
Storage coefficient | Ss | 7.3 × 10−6 | m−1 |
Dynamic viscosity | 0.001 | ||
Volumetric source | 0.012 | m3/s |
Model Type | dOM | VOM (%) | dCl | VCl (%) | dCb | VCb (%) | dQtz/Osh | VQtz/Osh (%) |
---|---|---|---|---|---|---|---|---|
QPM | 1.46 | 6.94 | 1.78 | 56.63 | 1.73 | 20.49 | 1.33 | 15.94 |
OLM | 1.37 | 2.56 | 1.7 | 23.07 | 1.72 | 56.01 | 1.3 | 18.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Wang, Y.; Li, T.; Liang, Z.; Meng, S.; Zheng, L.; Wu, N. Fractal-Based Modeling and Quantitative Analysis of Hydraulic Fracture Complexity in Digital Cores. Mathematics 2025, 13, 2700. https://doi.org/10.3390/math13172700
Liu X, Wang Y, Li T, Liang Z, Meng S, Zheng L, Wu N. Fractal-Based Modeling and Quantitative Analysis of Hydraulic Fracture Complexity in Digital Cores. Mathematics. 2025; 13(17):2700. https://doi.org/10.3390/math13172700
Chicago/Turabian StyleLiu, Xin, Yuepeng Wang, Tianjiao Li, Zhengzhao Liang, Siwei Meng, Licai Zheng, and Na Wu. 2025. "Fractal-Based Modeling and Quantitative Analysis of Hydraulic Fracture Complexity in Digital Cores" Mathematics 13, no. 17: 2700. https://doi.org/10.3390/math13172700
APA StyleLiu, X., Wang, Y., Li, T., Liang, Z., Meng, S., Zheng, L., & Wu, N. (2025). Fractal-Based Modeling and Quantitative Analysis of Hydraulic Fracture Complexity in Digital Cores. Mathematics, 13(17), 2700. https://doi.org/10.3390/math13172700