Bayesian Analysis of Bitcoin Volatility Using Minute-by-Minute Data and Flexible Stochastic Volatility Models
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
- = : logarithm of aggregate traded volume; and
- = : signed volume imbalance;
- = : a one-minute change in the mid–price close;
- = : relative buyer intensity;
- = : normalised order–flow imbalance;
- = = 1: A dummy set to 1 if the close price declines.
2.2. Stochastic Volatility Model with Intraday and Intraweek Seasonalities
2.3. Conditional Posterior Distributions
2.3.1. Latent Log Volatility
2.3.2. Regression Coefficients
2.3.3. Leverage Parameter
2.3.4. Variance
2.3.5. AR(1) Coefficient
3. Model Formulation with Skewness and Heavy Tails
3.1. Mean–Variance Mixture of the Normal Distribution
- the exponential distribution ();
- the gamma distribution ();
- the inverse gamma distribution ();
- the inverse Gaussian distribution ().
- the asymmetric Laplace distribution;
- the skew variance gamma (VG) distribution;
- the skew t distribution (),
- SV-N: stochastic volatility model with leverage and normal error;
- SV-L: stochastic volatility model with leverage and Laplace error;
- SV-AL: stochastic volatility model with leverage and asymmetric Laplace error;
- SV-G: stochastic volatility model with leverage and VG error;
- SV-SG: stochastic volatility model with leverage and skew VG error;
- SV-T: stochastic volatility model with leverage and t error.
- SV-ST: stochastic volatility model with leverage and skew t error.
3.2. Conditional Posterior Distributions
3.2.1. Latent Log Volatility
3.2.2. Regression Coefficients
3.2.3. Leverage Parameter
3.2.4. Random Scale
3.2.5. Asymmetry Parameter
3.2.6. Tail Parameter
4. Results and Discussion
4.1. Results
4.2. Discussion
4.3. Evolution of the Best–Fitting Distribution
4.4. Model–Convergence Anomalies
- Week of 22 July 2023. During this week, none of the seven candidate distributions converged. This period coincided with a Federal Open Market Committee meeting and with the lowest recorded volatility in the Bitcoin market, which likely violated the regularity conditions of the MCMC samplers.
- Week of 9 December 2023. In this week, only the AL model successfully converged, further supporting the selection of the AL distribution as the best-fitting specification since 7 October 2023.
4.5. Regression Coefficients
4.5.1. : Trading Volume
4.5.2. : Order Imbalance
4.5.3. : Price Changes
4.5.4. : Buyer Proportion
4.5.5. : Normalized Imbalance
4.5.6. : Price Decline Dummy
4.6. Insights from the Parameters
4.6.1. Leverage Effect ()
4.6.2. Persistence Parameter ()
4.6.3. Asymmetry Parameter ()
- (right-skewed, thicker right tail): price spikes driven by FOMO and short covering; bullish jumps dominate.
- (left-skewed, thicker left tail): episodes of panic selling or large market sell orders trigger sharp downward moves.
- (symmetric): buying and selling pressures are balanced; upside and downside shocks occur with similar frequencies.
4.6.4. Tail–Thickness Parameter ()
- Fat tail (small ): extreme returns occur frequently, reflecting thin order books, temporary liquidity droughts, or large one-off trades; volatility clustering is pronounced.
- Thin tail (large ): extreme moves are rare; ample liquidity and smooth price discovery prevail, leading to more stable volatility and lower-risk measures such as VaR and ES.
4.6.5. Intraday and Intraweek Seasonality
4.6.6. Policy Implications
4.6.7. Applications to Financial Engineering
4.7. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AR | autoregressive |
ARCH | autoregressive conditional heteroskedasticity |
BTC | Bitcoin |
EGARCH | exponential generalized autoregressive conditional heteroskedasticity |
GARCH | generalized autoregressive conditional heteroskedasticity |
MCMC | Markov chain Monte Carlo |
MH | Metropolis–Hastings |
SV | stochastic volatility |
SVG | skew variance gamma |
USD | US Dollar |
VG | variance gamma |
WAIC | Watanabe–Akaike information criterion |
References
- Cont, R. Empirical properties of asset returns: Stylized facts and statistical issues. Quant. Financ. 2001, 1, 223. [Google Scholar] [CrossRef]
- Clark, P.K. A subordinated stochastic process model with finite variance for speculative prices. Econom. J. Econom. Soc. 1973, 41, 135–155. [Google Scholar] [CrossRef]
- Mandelbrot, B. The Variation of Certain Speculative Prices. J. Bus. 1963, 36, 394. [Google Scholar] [CrossRef]
- Ding, Z.; Granger, C.W.; Engle, R.F. A long memory property of stock market returns and a new model. J. Empir. Financ. 1993, 1, 83–106. [Google Scholar] [CrossRef]
- Pagan, A. The econometrics of financial markets. J. Empir. Financ. 1996, 3, 15–102. [Google Scholar] [CrossRef]
- Müller, U.A.; Dacorogna, M.M.; Pictet, O.V. Heavy tails in high-frequency financial data. In A Practical Guide to Heavy Tails: Statistical Techniques and Applications; Birkhäuser: Boston, MA, USA, 1998; pp. 55–78. [Google Scholar]
- Merener, N. Concentrated production and conditional heavy tails in commodity returns. J. Futur. Mark. 2016, 36, 46–65. [Google Scholar] [CrossRef]
- Black, F. Studies of stock price volatility changes. In Proceedings of the 1976 Meeting of the Business and Economic Statistics Section, American Statistical Association, Boston, MA, USA, 23–26 August 1976; pp. 177–181. [Google Scholar]
- Engle, R.F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econom. J. Econom. Soc. 1982, 50, 987–1007. [Google Scholar] [CrossRef]
- Bollerslev, T. Generalized autoregressive conditional heteroskedasticity. J. Econom. 1986, 31, 307–327. [Google Scholar] [CrossRef]
- Bollerslev, T. A conditionally heteroskedastic time series model for speculative prices and rates of return. Rev. Econ. Stat. 1987, 69, 542–547. [Google Scholar] [CrossRef]
- Nelson, D.B. Conditional heteroskedasticity in asset returns: A new approach. Econom. J. Econom. Soc. 1991, 59, 347–370. [Google Scholar] [CrossRef]
- Taylor, S.J. Financial returns modelled by the product of two stochastic processes-a study of the daily sugar prices 1961-75. Time Ser. Anal. Theory Pract. 1982, 1, 203–226. [Google Scholar]
- Jacquier, E.; Polson, N.G.; Rossi, P.E. Bayesian analysis of stochastic volatility models. J. Bus. Econ. Stat. 1994, 12, 371–389. [Google Scholar] [CrossRef]
- Jacquier, E.; Polson, N.G.; Rossi, P.E. Bayesian analysis of stochastic volatility models with fat-tails and correlated errors. J. Econom. 2004, 122, 185–212. [Google Scholar] [CrossRef]
- Omori, Y.; Watanabe, T. Block sampler and posterior mode estimation for asymmetric stochastic volatility models. Comput. Stat. Data Anal. 2008, 52, 2892–2910. [Google Scholar] [CrossRef]
- Kim, S.; Shephard, N.; Chib, S. Stochastic volatility: Likelihood inference and comparison with ARCH models. Rev. Econ. Stud. 1998, 65, 361–393. [Google Scholar] [CrossRef]
- Yu, J. Forecasting volatility in the New Zealand stock market. Appl. Financ. Econ. 2002, 12, 193–202. [Google Scholar] [CrossRef]
- Chan, J.C.; Grant, A.L. Modeling energy price dynamics: GARCH versus stochastic volatility. Energy Econ. 2016, 54, 182–189. [Google Scholar] [CrossRef]
- Chan, K.; Chan, K.C.; Karolyi, G.A. Intraday volatility in the stock index and stock index futures markets. Rev. Financ. Stud. 1991, 4, 657–684. [Google Scholar] [CrossRef]
- Jain, P.C.; Joh, G.H. The dependence between hourly prices and trading volume. J. Financ. Quant. Anal. 1988, 23, 269–283. [Google Scholar] [CrossRef]
- Wood, R.A.; McInish, T.H.; Ord, J.K. An investigation of transactions data for NYSE stocks. J. Financ. 1985, 40, 723–739. [Google Scholar] [CrossRef]
- Admati, A.R.; Pfleiderer, P. A theory of intraday patterns: Volume and price variability. Rev. Financ. Stud. 1988, 1, 3–40. [Google Scholar] [CrossRef]
- Becker, K.G.; Finnerty, J.E.; Kopecky, K.J. Economic news and intraday volatility in international bond markets. Financ. Anal. J. 1993, 49, 81–86. [Google Scholar] [CrossRef]
- Ederington, L.; Lee, J.H. Intraday volatility in interest-rate and foreign-exchange markets: ARCH, announcement, and seasonality effects. J. Futur. Mark. Futur. Options Other Deriv. Prod. 2001, 21, 517–552. [Google Scholar] [CrossRef]
- Trolle, A.B.; Schwartz, E.S. Unspanned stochastic volatility and the pricing of commodity derivatives. Rev. Financ. Stud. 2009, 22, 4423–4461. [Google Scholar] [CrossRef]
- Schoene, M.F.; Spinler, S. A four-factor stochastic volatility model of commodity prices. Rev. Deriv. Res. 2017, 20, 135–165. [Google Scholar] [CrossRef]
- Ulm, M.; Hambuckers, J. Do interest rate differentials drive the volatility of exchange rates? Evidence from an extended stochastic volatility model. J. Empir. Financ. 2022, 65, 125–148. [Google Scholar] [CrossRef]
- Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 20 January 2025).
- Christin, N. Traveling the silk road: A measurement analysis of a large anonymous online marketplace. In Proceedings of the 22nd International Conference on World Wide Web (WWW ’13), Rio de Janeiro, Brazil, 13–17 May 2013; pp. 213–224. [Google Scholar] [CrossRef]
- Cheah, E.T.; Fry, J. Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin. Econ. Lett. 2015, 130, 32–36. [Google Scholar] [CrossRef]
- Almeida, J.; Gonçalves, T.C. A systematic literature review of investor behavior in the cryptocurrency markets. J. Behav. Exp. Financ. 2023, 37, 100785. [Google Scholar] [CrossRef]
- McNally, S.; Roche, J.; Caton, S. Predicting the Price of Bitcoin Using Machine Learning. In Proceedings of the 2018 26th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), Cambridge, UK, 21–23 March 2018; pp. 339–343. [Google Scholar] [CrossRef]
- Chen, J. Analysis of Bitcoin Price Prediction Using Machine Learning. J. Risk Financ. Manag. 2023, 16, 51. [Google Scholar] [CrossRef]
- Politis, A.; Doka, K.; Koziris, N. Ether price prediction using advanced deep learning models. In Proceedings of the 2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Virtual, 3–6 May 2021; pp. 1–3. [Google Scholar]
- Tanwar, S.; Patel, N.P.; Patel, S.N.; Patel, J.R.; Sharma, G.; Davidson, I.E. Deep learning-based cryptocurrency price prediction scheme with inter-dependent relations. IEEE Access 2021, 9, 138633–138646. [Google Scholar] [CrossRef]
- Poongodi, M.; Vijayakumar, V.; Chilamkurti, N. Bitcoin price prediction using ARIMA model. Int. J. Internet Technol. Secur. Trans. 2020, 10, 396–406. [Google Scholar] [CrossRef]
- Madan, I.; Saluja, S.; Zhao, A. Automated Bitcoin Trading via Machine Learning Algorithms. 2015, Volume 20. Available online: https://cs229.stanford.edu/proj2014/Isaac%20Madan,%20Shaurya%20Saluja,%20Aojia%20Zhao,Automated%20Bitcoin%20Trading%20via%20Machine%20Learning%20Algorithms.pdf (accessed on 17 February 2024).
- Tran, M.; Pham-Hi, D.; Bui, M. Optimizing automated trading systems with deep reinforcement learning. Algorithms 2023, 16, 23. [Google Scholar] [CrossRef]
- Seetharaman, A.; Saravanan, A.; Patwa, N.; Mehta, J. Impact of Bitcoin as a World Currency. Account. Financ. Res. 2017, 6, 230. [Google Scholar] [CrossRef]
- Al-Mansouri, E. Bitcoin vs. the US Dollar: Unveiling Resilience Through Wavelet Analysis of Price Dynamics. J. Risk Financ. Manag. 2025, 18, 259. [Google Scholar] [CrossRef]
- Petti, D.; Sergio, I. Bank Crisis Boosts Bitcoin Price. J. Risk Financ. Manag. 2024, 17, 134. [Google Scholar] [CrossRef]
- Gurrib, I.; Kamalov, F.; Starkova, O.; Elshareif, E.E.; Contu, D. Drivers of the next-minute Bitcoin price using sparse regressions. Stud. Econ. Financ. 2023, 41, 410–431. [Google Scholar] [CrossRef]
- Giannopoulos, K.; Nekhili, R.; Christodoulou-Volos, C. Estimating Tail Risk in Ultra-High-Frequency Cryptocurrency Data. Int. J. Financ. Stud. 2024, 12, 99. [Google Scholar] [CrossRef]
- Akouaouch, I.; Bouayad, A. A new deep learning approach for predicting high-frequency short-term cryptocurrency price. Bull. Electr. Eng. Inform. 2025, 14, 513–523. [Google Scholar] [CrossRef]
- Kochergin, D.; Pokrovskaia, N. International Experience of Taxation of Crypto-assets. High. Sch. Econ. Econ. J. 2020, 24, 53–84. [Google Scholar] [CrossRef]
- Wang, G.; Hausken, K. Governmental Taxation of Households Choosing between a National Currency and a Cryptocurrency. Games 2021, 12, 34. [Google Scholar] [CrossRef]
- Caliskan, K. The Elephant in the Dark: A New Framework for Cryptocurrency Taxation and Exchange Platform Regulation in the US. J. Risk Financ. Manag. 2022, 15, 118. [Google Scholar] [CrossRef]
- Baur, D.G.; Dimpfl, T. The volatility of Bitcoin and its role as a medium of exchange and a store of value. Empir. Econ. 2021, 61, 2663–2683. [Google Scholar] [CrossRef]
- Dehouche, N. Revisiting the volatility of bitcoin with approximate entropy. Cogent Econ. Financ. 2021, 10, 2013588. [Google Scholar] [CrossRef]
- Bakas, D.; Magkonis, G.; Oh, E.Y. What drives volatility in Bitcoin market? Financ. Res. Lett. 2022, 50, 103237. [Google Scholar] [CrossRef]
- Hayek, M.R.; Naimy, V.Y. Modelling and predicting the Bitcoin volatility using GARCH models. Int. J. Math. Model. Numer. Optim. 2018, 8, 197. [Google Scholar] [CrossRef]
- Asante Gyamerah, S. Modelling the volatility of Bitcoin returns using GARCH models. Quant. Financ. Econ. 2019, 3, 739–753. [Google Scholar] [CrossRef]
- Kahraman, İ.K.; Küçükşahin, H.; Çağlak, E. The Volatility Structure of Cryptocurrencies: The Comparison of GARCH Models. Fiscaoeconomia 2019, 3, 21–45. [Google Scholar] [CrossRef]
- Phillip, A.; Chan, J.S.; Peiris, S. A new look at cryptocurrencies. Econ. Lett. 2018, 163, 6–9. [Google Scholar] [CrossRef]
- Phillip, A.; Chan, J.; Peiris, S. On long memory effects in the volatility measure of cryptocurrencies. Financ. Res. Lett. 2019, 28, 95–100. [Google Scholar] [CrossRef]
- Kim, J.M.; Jun, C.; Lee, J. Forecasting the volatility of the cryptocurrency market by GARCH and Stochastic Volatility. Mathematics 2021, 9, 1614. [Google Scholar] [CrossRef]
- Yu, Y.; Meng, X.L. To Center or Not to Center: That Is Not the Question–An Ancillarity-Sufficiency Interweaving Strategy (ASIS) for Boosting MCMC Efficiency. J. Comput. Graph. Stat. 2011, 20, 531–570. [Google Scholar] [CrossRef]
- Nakakita, M.; Nakatsuma, T. Bayesian Analysis of Intraday Stochastic Volatility Models of High-Frequency Stock Returns with Skew Heavy-Tailed Errors. J. Risk Financ. Manag. 2021, 14, 145. [Google Scholar] [CrossRef]
- Barndorff-Nielsen, O. Exponentially Decreasing Distributions for the Logarithm of Particle Size. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1977, 353, 401–419. [Google Scholar]
- Liu, J.S.; Sabatti, C. Generalised Gibbs Sampler and Multigrid Monte Carlo for Bayesian Computation. Biometrika 2000, 87, 353–369. [Google Scholar] [CrossRef]
- Takaishi, T. Time-varying properties of asymmetric volatility and multifractality in Bitcoin. PLoS ONE 2021, 16, e0246209. [Google Scholar] [CrossRef] [PubMed]
- Kao, Y.S.; Zhao, K.; Chuang, H.L.; Ku, Y.C. The asymmetric relationships between the Bitcoin futures’ return, volatility, and trading volume. Int. Rev. Econ. Financ. 2024, 89, 524–542. [Google Scholar] [CrossRef]
- Punzo, A.; Bagnato, L. Asymmetric Laplace scale mixtures for the distribution of cryptocurrency returns. Adv. Data Anal. Classif. 2024, 19, 275–322. [Google Scholar] [CrossRef]
- Komarentsev, Y.A. Legal Approaches to Taxation of Cryptocurrency in Foreign Countries. Financ. Law 2022, 10, 32–35. [Google Scholar] [CrossRef]
- Wu, X.; Yin, X.; Umar, Z.; Iqbal, N. Volatility forecasting in the Bitcoin market: A new proposed measure based on the VS-ACARR approach. N. Am. J. Econ. Financ. 2023, 67, 101948. [Google Scholar] [CrossRef]
- Bouri, E.; Gil-Alana, L.A.; Gupta, R.; Roubaud, D. Modelling long memory volatility in the Bitcoin market: Evidence of persistence and structural breaks. Int. J. Financ. Econ. 2018, 24, 412–426. [Google Scholar] [CrossRef]
- Yaya, O.S.; Lukman, A.F.; Vo, X.V. Persistence and volatility spillovers of bitcoin price to gold and silver prices. Resour. Policy 2022, 79, 103011. [Google Scholar] [CrossRef]
- Baur, D.G.; Jha, K. Volatility-Dependent Good and Bad Volatility of Bitcoin. SSRN Electron. J. 2019. [Google Scholar] [CrossRef]
- Abakah, E.J.A.; Gil-Alana, L.A.; Madigu, G.; Romero-Rojo, F. Volatility persistence in cryptocurrency markets under structural breaks. Int. Rev. Econ. Financ. 2020, 69, 680–691. [Google Scholar] [CrossRef]
- Eross, A.; McGroarty, F.; Urquhart, A.; Wolfe, S. The Intraday Dynamics of Bitcoin. SSRN Electron. J. 2017. [Google Scholar] [CrossRef]
- Kunimoto, N.; Kakamu, K. Is Bitcoin really a currency? A viewpoint of a stochastic volatility model. Appl. Econ. 2022, 54, 6536–6550. [Google Scholar] [CrossRef]
Date | Model | Gamma | Phi | Tau | Alpha | Nu | Rho |
---|---|---|---|---|---|---|---|
1 April 2023 | Skew t | −0.1938 (0.0600) | 0.9969 (0.0008) | 0.2194 (0.0016) | 0.0162 (0.0089) | 8.3953 (0.3857) | – |
8 April 2023 | Variance Gamma | −0.0299 (0.0316) | 0.9981 (0.0006) | 0.2599 (0.0019) | – | 2.2980 (0.1032) | – |
15 April 2023 | Skew t | −0.1287 (0.0608) | 0.9970 (0.0008) | 0.2079 (0.0015) | −0.0191 (0.0087) | 8.9505 (0.4132) | – |
22 April 2023 | Asymmetric Laplace | 10.1447 (0.6100) | 0.3779 (0.0702) | 0.0604 (0.0038) | −0.0350 (0.0158) | – | – |
29 April 2023 | Asymmetric Laplace | 0.0056 (0.1212) | 0.3392 (0.2271) | 0.0578 (0.0055) | −0.0335 (0.0139) | – | – |
6 May 2023 | Asymmetric Laplace | 13.4845 (0.9612) | −0.8653 (0.0257) | 0.0402 (0.0025) | −0.0389 (0.0155) | – | – |
13 May 2023 | Asymmetric Laplace | 0.0046 (0.0792) | 0.0693 (0.1154) | 0.0693 (0.0046) | −0.0542 (0.0138) | – | – |
20 May 2023 | Skew Variance Gamma | 0.2112 (0.0522) | 0.9982 (0.0006) | 0.2192 (0.0015) | 0.0122 (0.0125) | 3.6051 (0.2405) | – |
27 May 2023 | Skew Variance Gamma | −0.0285 (0.0233) | 0.9972 (0.0007) | 0.2342 (0.0017) | −0.0182 (0.0107) | 2.6176 (0.0000) | – |
3 June 2023 | Skew t | 0.0241 (0.0379) | 0.9944 (0.0011) | 0.3642 (0.0025) | 0.0554 (0.0112) | 12.0888 (0.9164) | – |
10 June 2023 | Asymmetric Laplace | 0.0002 (0.0929) | −0.0203 (0.1223) | 0.0723 (0.0047) | −0.0046 (0.0143) | – | – |
17 June 2023 | Skew t | −0.0799 (0.0347) | 0.9957 (0.0009) | 0.3195 (0.0023) | −0.0033 (0.0091) | 7.7869 (0.3313) | – |
24 June 2023 | Asymmetric Laplace | −0.0129 (0.1551) | −0.3315 (0.1055) | 0.0578 (0.0073) | −0.0050 (0.0131) | – | – |
1 July 2023 | Normal | −0.3386 (0.0396) | 0.9959 (0.0009) | 0.2904 (0.0021) | – | – | −0.0979 (0.0114) |
8 July 2023 | Variance Gamma | −0.0167 (0.0232) | 0.9947 (0.0010) | 0.3435 (0.0024) | – | 2.1427 (0.0821) | – |
15 July 2023 | Skew Variance Gamma | −0.0104 (0.0125) | 0.9916 (0.0013) | 0.4401 (0.0032) | 0.0909 (0.0138) | 2.0067 (0.0064) | – |
29 July 2023 | Skew Variance Gamma | −0.0160 (0.0102) | 0.9806 (0.0021) | 0.7038 (0.0052) | 0.0551 (0.0134) | 2.0163 (0.0159) | – |
5 August 2023 | Student t | −0.0140 (0.0121) | 0.9579 (0.0032) | 1.2001 (0.0084) | – | 4.2870 (0.1585) | – |
12 August 2023 | Laplace | −0.0259 (0.0081) | 0.9676 (0.0028) | 0.9488 (0.0067) | – | – | – |
19 August 2023 | Normal | 0.1913 (0.0408) | 0.9952 (0.0010) | 0.2961 (0.0022) | – | – | 0.0566 (0.0121) |
26 August 2023 | Variance Gamma | −0.0260 (0.0130) | 0.9874 (0.0017) | 0.5679 (0.0040) | – | 2.0341 (0.0301) | – |
2 September 2023 | Skew Variance Gamma | 0.0237 (0.0135) | 0.9936 (0.0011) | 0.3992 (0.0028) | 0.0512 (0.0132) | 2.0193 (0.0188) | – |
9 September 2023 | Skew Variance Gamma | 0.0032 (0.0121) | 0.9886 (0.0016) | 0.5789 (0.0042) | 0.0590 (0.0141) | 2.0213 (0.0203) | – |
16 September 2023 | Skew Variance Gamma | −0.0038 (0.0619) | 0.3763 (0.1917) | 0.0665 (0.0070) | 0.0225 (0.0134) | 2.0076 (0.0074) | – |
23 September 2023 | Asymmetric Laplace | −0.0081 (0.0095) | 0.9828 (0.0019) | 0.6777 (0.0047) | 0.1033 (0.0138) | – | – |
30 September 2023 | Skew t | −0.1136 (0.0423) | 0.9945 (0.0011) | 0.3093 (0.0022) | 0.0265 (0.0114) | 12.8041 (1.0435) | – |
7 October 2023 | Skew Variance Gamma | −0.0020 (0.0692) | 0.3427 (0.1129) | 0.0683 (0.0061) | 0.0118 (0.0137) | 2.0093 (0.0091) | – |
14 October 2023 | Asymmetric Laplace | −0.0091 (0.0138) | 0.9936 (0.0012) | 0.3473 (0.0025) | 0.0231 (0.0138) | – | – |
21 October 2023 | Asymmetric Laplace | −0.0117 (0.1809) | −0.0803 (0.1284) | 0.0592 (0.0046) | 0.0196 (0.0149) | – | – |
28 October 2023 | Asymmetric Laplace | 0.0028 (0.1495) | 0.3421 (0.0653) | 0.0619 (0.0068) | −0.0030 (0.0144) | – | – |
4 November 2023 | Asymmetric Laplace | −7.2247 (0.1215) | 0.9994 (0.0003) | 0.0796 (0.0006) | 0.0048 (0.0137) | – | – |
11 November 2023 | Asymmetric Laplace | −0.0255 (0.1627) | −0.1859 (0.1385) | 0.0546 (0.0021) | 0.0047 (0.0138) | – | – |
18 November 2023 | Asymmetric Laplace | −0.0124 (0.1423) | 0.3553 (0.0859) | 0.0599 (0.0032) | −0.0385 (0.0141) | – | – |
25 November 2023 | Asymmetric Laplace | −0.0111 (0.0852) | 0.4516 (0.1054) | 0.0700 (0.0085) | −0.0074 (0.0137) | – | – |
2 December 2023 | Asymmetric Laplace | −0.9621 (0.3984) | −0.1204 (0.1057) | 0.0551 (0.0028) | 0.0045 (0.0139) | – | – |
9 December 2023 | Asymmetric Laplace | 0.0015 (0.1057) | −0.0161 (0.0924) | 0.0579 (0.0031) | −0.0355 (0.0135) | – | – |
16 December 2023 | Asymmetric Laplace | 10.9611 (1.7421) | 0.3495 (0.0613) | 0.0607 (0.0078) | −0.0380 (0.0175) | – | – |
23 December 2023 | Asymmetric Laplace | −0.0363 (0.2285) | −0.0318 (0.1030) | 0.0679 (0.0061) | −0.0163 (0.0141) | – | – |
30 December 2023 | Asymmetric Laplace | −9.2337 (0.9112) | 0.3621 (0.0693) | 0.0650 (0.0045) | −0.0387 (0.0159) | – | – |
6 January 2024 | Asymmetric Laplace | −8.0833 (0.3543) | 0.2194 (0.0552) | 0.0725 (0.0029) | −0.0296 (0.0162) | – | – |
13 January 2024 | Asymmetric Laplace | 11.4016 (0.7040) | −0.5694 (0.0544) | 0.0572 (0.0030) | −0.0300 (0.0165) | – | – |
20 January 2024 | Asymmetric Laplace | 0.0012 (0.1186) | −0.1640 (0.1146) | 0.0540 (0.0025) | −0.0089 (0.0142) | – | – |
27 January 2024 | Asymmetric Laplace | 0.0087 (0.1603) | 0.4203 (0.1377) | 0.0535 (0.0038) | −0.0260 (0.0133) | – | – |
3 February 2024 | Asymmetric Laplace | 0.0133 (0.2243) | 0.0530 (0.1113) | 0.0517 (0.0032) | 0.0079 (0.0132) | – | – |
10 February 2024 | Asymmetric Laplace | 11.0248 (0.6504) | 0.0184 (0.0877) | 0.0588 (0.0025) | −0.0003 (0.0160) | – | – |
17 February 2024 | Asymmetric Laplace | −3.7797 (4.2423) | 0.5738 (0.1756) | 0.0607 (0.0060) | −0.0301 (0.0168) | – | – |
24 February 2024 | Asymmetric Laplace | −2.4906 (0.0536) | 0.9860 (0.0018) | 0.5889 (0.0042) | −0.1950 (0.0207) | – | – |
2 March 2024 | Asymmetric Laplace | −9.5323 (0.7461) | −0.1388 (0.0611) | 0.0731 (0.0051) | 0.0022 (0.0181) | – | – |
9 March 2024 | Asymmetric Laplace | −7.4220 (0.4976) | 0.5811 (0.0681) | 0.0751 (0.0035) | −0.0418 (0.0165) | – | – |
16 March 2024 | Asymmetric Laplace | 16.4480 (1.4871) | −0.4310 (0.0532) | 0.0510 (0.0032) | −0.0627 (0.0174) | – | – |
23 March 2024 | Asymmetric Laplace | 14.3389 (1.0391) | −0.8258 (0.0263) | 0.0452 (0.0031) | −0.0712 (0.0172) | – | – |
Date | Model | ||||||
---|---|---|---|---|---|---|---|
1 April 2023 | Skew t | 0.0840 (0.0022) | 0.0758 (0.0023) | 1.0948 (0.0124) | −0.5181 (0.0060) | 0.1602 (0.0045) | −0.0111 (0.1012) |
8 April 2023 | Variance Gamma | 0.0577 (0.0148) | 0.0992 (0.0137) | 0.9380 (0.0649) | −0.4929 (0.0312) | 0.4029 (0.0323) | −0.0087 (0.1024) |
15 April 2023 | Skew t | −0.0410 (0.0022) | −0.0442 (0.0023) | 1.1504 (0.0095) | −0.6703 (0.0050) | −0.0035 (0.0045) | −0.0132 (0.0996) |
22 April 2023 | Asymmetric Laplace | −0.0187 (0.0111) | −0.0252 (0.0094) | −0.2656 (0.0338) | 0.1902 (0.0216) | −0.2124 (0.0338) | −1.0674 (0.0656) |
29 April 2023 | Asymmetric Laplace | −0.0039 (0.0118) | −0.0142 (0.0115) | −0.3181 (0.0368) | 0.1825 (0.0243) | −0.1628 (0.0391) | −0.9781 (0.0654) |
6 May 2023 | Asymmetric Laplace | 0.0164 (0.0108) | −0.0336 (0.0108) | −0.3005 (0.0378) | 0.1462 (0.0220) | −0.2303 (0.0331) | −1.0783 (0.0649) |
13 May 2023 | Asymmetric Laplace | 0.0073 (0.0133) | 0.0190 (0.0130) | −0.1614 (0.0301) | 0.0788 (0.0238) | −0.0545 (0.0420) | −1.0112 (0.0609) |
20 May 2023 | Skew Variance Gamma | 0.0674 (0.0156) | 0.0729 (0.0135) | 0.7886 (0.0358) | −0.6761 (0.0263) | 0.4420 (0.0339) | −0.0098 (0.0959) |
27 May 2023 | Skew Variance Gamma | 0.1547 (0.0025) | 0.0811 (0.0026) | 0.7707 (0.0070) | −0.6971 (0.0051) | 0.3440 (0.0051) | −0.0012 (0.1042) |
3 June 2023 | Skew t | 0.0544 (0.0133) | 0.0580 (0.0115) | 0.6193 (0.0303) | −0.5725 (0.0243) | 0.4239 (0.0308) | −0.0185 (0.1000) |
10 June 2023 | Asymmetric Laplace | 0.0507 (0.0133) | 0.0060 (0.0112) | −0.2076 (0.0296) | 0.0784 (0.0227) | −0.0236 (0.0394) | −1.3039 (0.0631) |
17 June 2023 | Skew t | 0.1081 (0.0033) | 0.1354 (0.0034) | 0.9552 (0.0100) | −0.5906 (0.0067) | 0.2454 (0.0067) | −0.0050 (0.1014) |
24 June 2023 | Asymmetric Laplace | 0.0119 (0.0133) | −0.0233 (0.0125) | −0.1322 (0.0299) | 0.0511 (0.0230) | −0.0518 (0.0355) | −1.0353 (0.0634) |
1 July 2023 | Normal | 0.0169 (0.0032) | 0.0477 (0.0031) | 0.7033 (0.0074) | −0.5821 (0.0058) | 0.3917 (0.0058) | −0.0049 (0.1007) |
8 July 2023 | Variance Gamma | 0.0402 (0.0167) | 0.0604 (0.0135) | 0.6257 (0.0348) | −0.5980 (0.0274) | 0.4611 (0.0336) | −0.0159 (0.0971) |
15 July 2023 | Skew Variance Gamma | 0.0148 (0.0179) | 0.0324 (0.0145) | 0.6043 (0.0367) | −0.6550 (0.0305) | 0.6031 (0.0406) | −0.0314 (0.0995) |
29 July 2023 | Skew Variance Gamma | 0.0889 (0.0203) | 0.0930 (0.0154) | 0.4321 (0.0325) | −0.5805 (0.0302) | 0.7434 (0.0367) | −0.0701 (0.1018) |
5 August 2023 | Student t | 0.0775 (0.0188) | 0.0948 (0.0160) | 0.3104 (0.0334) | −0.4850 (0.0328) | 0.6642 (0.0359) | −0.1227 (0.1002) |
12 August 2023 | Laplace | 0.0119 (0.0189) | 0.0328 (0.0163) | 0.3446 (0.0420) | −0.4516 (0.0339) | 0.4594 (0.0321) | −0.1036 (0.1007) |
19 August 2023 | Normal | 0.0334 (0.0143) | 0.0553 (0.0116) | 0.6799 (0.0309) | −0.6789 (0.0236) | 0.4539 (0.0295) | −0.0199 (0.0973) |
26 August 2023 | Variance Gamma | 0.0468 (0.0149) | 0.0689 (0.0143) | 0.5080 (0.0366) | −0.5290 (0.0291) | 0.3997 (0.0316) | −0.0385 (0.0990) |
2 September 2023 | Skew Variance Gamma | 0.0832 (0.0178) | 0.0951 (0.0146) | 0.6376 (0.0371) | −0.7024 (0.0299) | 0.6604 (0.0368) | −0.0247 (0.1002) |
9 September 2023 | Skew Variance Gamma | 0.0475 (0.0173) | 0.0814 (0.0158) | 0.6576 (0.0381) | −0.6408 (0.0289) | 0.6647 (0.0392) | −0.0390 (0.0989) |
16 September 2023 | Skew Variance Gamma | 0.0249 (0.0149) | 0.0257 (0.0127) | −0.0432 (0.0313) | −0.0302 (0.0264) | 0.1923 (0.0395) | −1.1715 (0.0620) |
23 September 2023 | Asymmetric Laplace | 0.0473 (0.0182) | 0.0428 (0.0158) | 0.5505 (0.0382) | −0.5527 (0.0305) | 0.6116 (0.0376) | −0.0604 (0.0998) |
30 September 2023 | Skew t | 0.0315 (0.0132) | 0.0581 (0.0120) | 0.6320 (0.0346) | −0.4853 (0.0239) | 0.4217 (0.0310) | −0.0248 (0.0968) |
7 October 2023 | Skew Variance Gamma | 0.0132 (0.0140) | 0.0080 (0.0120) | −0.0743 (0.0285) | −0.0396 (0.0255) | 0.1746 (0.0411) | −1.1079 (0.0635) |
14 October 2023 | Asymmetric Laplace | 0.0660 (0.0147) | 0.0687 (0.0131) | 0.5755 (0.0409) | −0.4966 (0.0276) | 0.4930 (0.0340) | −0.0263 (0.1024) |
21 October 2023 | Asymmetric Laplace | 0.0057 (0.0116) | 0.0107 (0.0094) | −0.2816 (0.0352) | 0.1114 (0.0223) | 0.1204 (0.0385) | −0.8340 (0.0650) |
28 October 2023 | Asymmetric Laplace | 0.0083 (0.0131) | −0.0120 (0.0125) | −0.0933 (0.0315) | 0.0037 (0.0241) | 0.0280 (0.0403) | −1.1566 (0.0652) |
4 November 2023 | Asymmetric Laplace | 0.0008 (0.0102) | −0.0082 (0.0108) | 0.6459 (0.0447) | −0.3359 (0.0247) | 0.1185 (0.0293) | −0.0057 (0.1015) |
11 November 2023 | Asymmetric Laplace | 0.0015 (0.0095) | −0.0135 (0.0099) | −0.1442 (0.0379) | 0.0940 (0.0230) | −0.0766 (0.0367) | −0.6882 (0.0648) |
18 November 2023 | Asymmetric Laplace | −0.0123 (0.0119) | −0.0126 (0.0114) | −0.0467 (0.0310) | −0.0011 (0.0229) | −0.0467 (0.0387) | −1.0642 (0.0644) |
25 November 2023 | Asymmetric Laplace | 0.0147 (0.0128) | −0.0014 (0.0127) | 0.0459 (0.0305) | −0.1187 (0.0247) | 0.1200 (0.0407) | −1.1969 (0.0668) |
2 December 2023 | Asymmetric Laplace | −0.0136 (0.0111) | 0.0099 (0.0123) | −0.2616 (0.0380) | 0.0967 (0.0249) | 0.1249 (0.0389) | −1.4022 (0.0656) |
9 December 2023 | Asymmetric Laplace | 0.0063 (0.0134) | −0.0262 (0.0107) | −0.1026 (0.0354) | 0.0353 (0.0243) | −0.1456 (0.0401) | −0.9739 (0.0629) |
16 December 2023 | Asymmetric Laplace | −0.0182 (0.0108) | −0.0308 (0.0112) | −0.0155 (0.0348) | 0.0120 (0.0219) | −0.1448 (0.0366) | −1.0040 (0.0632) |
23 December 2023 | Asymmetric Laplace | 0.0286 (0.0141) | −0.0112 (0.0123) | −0.0354 (0.0381) | 0.0017 (0.0261) | −0.1042 (0.0407) | −1.0721 (0.0639) |
30 December 2023 | Asymmetric Laplace | 0.0321 (0.0100) | 0.0011 (0.0092) | −0.0706 (0.0353) | 0.0424 (0.0219) | −0.1192 (0.0318) | −0.9861 (0.0669) |
6 January 2024 | Asymmetric Laplace | −0.0141 (0.0096) | −0.0443 (0.0088) | −0.2978 (0.0386) | 0.1630 (0.0206) | −0.2362 (0.0331) | −0.6122 (0.0652) |
13 January 2024 | Asymmetric Laplace | 0.0017 (0.0091) | −0.0269 (0.0100) | −0.1518 (0.0388) | 0.0795 (0.0208) | −0.1773 (0.0336) | −1.0469 (0.0653) |
20 January 2024 | Asymmetric Laplace | 0.0055 (0.0125) | −0.0071 (0.0116) | −0.0395 (0.0354) | 0.0078 (0.0238) | −0.0322 (0.0387) | −0.8384 (0.0654) |
27 January 2024 | Asymmetric Laplace | −0.0143 (0.0136) | −0.0288 (0.0128) | −0.0770 (0.0289) | 0.0279 (0.0235) | −0.0798 (0.0382) | −0.9145 (0.0620) |
3 February 2024 | Asymmetric Laplace | 0.0266 (0.0121) | −0.0017 (0.0117) | −0.0016 (0.0286) | −0.0804 (0.0232) | 0.1352 (0.0384) | −1.1753 (0.0629) |
10 February 2024 | Asymmetric Laplace | −0.0142 (0.0113) | −0.0262 (0.0108) | −0.1254 (0.0337) | 0.0800 (0.0215) | −0.0711 (0.0334) | −0.9954 (0.0634) |
17 February 2024 | Asymmetric Laplace | −0.0001 (0.0141) | −0.0210 (0.0121) | −0.1348 (0.0414) | 0.0726 (0.0239) | −0.1553 (0.0401) | −1.0019 (0.1193) |
24 February 2024 | Asymmetric Laplace | −0.1990 (0.0139) | −0.1035 (0.0099) | 0.5571 (0.0468) | −0.2459 (0.0235) | 0.2487 (0.0279) | 0.0143 (0.1003) |
2 March 2024 | Asymmetric Laplace | 0.0082 (0.0101) | −0.0329 (0.0088) | −0.5444 (0.0479) | 0.2255 (0.0218) | −0.1394 (0.0310) | −0.6718 (0.0672) |
9 March 2024 | Asymmetric Laplace | 0.0015 (0.0111) | −0.0090 (0.0109) | −0.5221 (0.0469) | 0.2243 (0.0217) | −0.1744 (0.0385) | −0.7830 (0.0656) |
16 March 2024 | Asymmetric Laplace | −0.0041 (0.0107) | −0.0437 (0.0114) | −0.4849 (0.0495) | 0.2051 (0.0213) | −0.3327 (0.0344) | −0.8736 (0.0657) |
23 March 2024 | Asymmetric Laplace | −0.0214 (0.0115) | −0.0377 (0.0105) | 0.0045 (0.0395) | 0.0239 (0.0213) | −0.2625 (0.0340) | −0.9507 (0.0636) |
Date | Normal | Laplace | Asym Laplace | VG | SVG | Student t | Skew t |
---|---|---|---|---|---|---|---|
1 April 2023 | – | ||||||
8 April 2023 | |||||||
15 April 2023 | |||||||
22 April 2023 | |||||||
29 April 2023 | |||||||
6 May 2023 | |||||||
13 May 2023 | |||||||
20 May 2023 | – | ||||||
27 May 2023 | |||||||
3 June 2023 | – | ||||||
10 June 2023 | – | ||||||
17 June 2023 | |||||||
24 June 2023 | |||||||
1 July 2023 | – | – | – | ||||
8 July 2023 | – | ||||||
15 July 2023 | – | – | |||||
29 July 2023 | – | ||||||
5 August 2023 | – | – | – | ||||
12 August 2023 | – | – | – | – | – | – | |
19 August 2023 | – | – | – | ||||
26 August 2023 | – | – | |||||
2 September 2023 | – | ||||||
9 September 2023 | – | – | |||||
16 September 2023 | – | ||||||
23 September 2023 | – | – | – | ||||
30 September 2023 | |||||||
7 October 2023 | – | – | |||||
14 October 2023 | |||||||
21 October 2023 | |||||||
28 October 2023 | |||||||
4 November 2023 | |||||||
11 November 2023 | |||||||
18 November 2023 | |||||||
25 November 2023 | |||||||
2 December 2023 | |||||||
9 December 2023 | – | – | – | – | – | – | |
16 December 2023 | |||||||
23 December 2023 | – | ||||||
30 December 2023 | |||||||
6 January 2024 | |||||||
13 January 2024 | |||||||
20 January 2024 | |||||||
27 January 2024 | |||||||
3 February 2024 | |||||||
10 February 2024 | |||||||
17 February 2024 | |||||||
24 February 2024 | |||||||
2 March 2024 | |||||||
9 March 2024 | |||||||
16 March 2024 | |||||||
23 March 2024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakakita, M.; Toyabe, T.; Nakatsuma, T. Bayesian Analysis of Bitcoin Volatility Using Minute-by-Minute Data and Flexible Stochastic Volatility Models. Mathematics 2025, 13, 2691. https://doi.org/10.3390/math13162691
Nakakita M, Toyabe T, Nakatsuma T. Bayesian Analysis of Bitcoin Volatility Using Minute-by-Minute Data and Flexible Stochastic Volatility Models. Mathematics. 2025; 13(16):2691. https://doi.org/10.3390/math13162691
Chicago/Turabian StyleNakakita, Makoto, Tomoki Toyabe, and Teruo Nakatsuma. 2025. "Bayesian Analysis of Bitcoin Volatility Using Minute-by-Minute Data and Flexible Stochastic Volatility Models" Mathematics 13, no. 16: 2691. https://doi.org/10.3390/math13162691
APA StyleNakakita, M., Toyabe, T., & Nakatsuma, T. (2025). Bayesian Analysis of Bitcoin Volatility Using Minute-by-Minute Data and Flexible Stochastic Volatility Models. Mathematics, 13(16), 2691. https://doi.org/10.3390/math13162691