Precision Tracking of Industrial Manipulators via Adaptive Nonsingular Fixed-Time Sliding Mode Control
Abstract
1. Introduction
- An adaptive law is developed to ensure rapid and stable gain reduction by utilizing the current parameter values, maintaining positivity, and preventing sign reversals. This approach effectively reduces chattering and guarantees fixed-time convergence, which is not ensured in the study [9].
- An SF-FxTSF is designed to ensure fast fixed-time convergence, robust, and singularity-free convergence.
- A modified TOSMO is integrated into the control framework to estimate both internal uncertainties and external disturbances with improved estimation speed, thereby enabling effective compensation.
- A Lyapunov-based analysis is conducted to rigorously verify the stability of the proposed AFxTSMC.
- The proposed method is evaluated via simulations conducted on the SAMSUNG FARA AT2 robot. The results highlight its enhanced capability in terms of precise trajectory tracking, rapid response, and smooth control effort, outperforming the ATDC, FTSMC, and NTSMC techniques.
2. Preliminaries and Formulation
2.1. Preliminaries
2.2. Overview of Robot Manipulator Dynamic Modeling
3. Control Method Design
3.1. Design of an Observer for Disturbance Estimation in Robot Manipulators
3.2. Novel Singularity-Free Fixed-Time Sliding Function
3.3. Design of the Proposed Control Method
3.4. Closed-Loop System Stability Analysis
4. Simulation
4.1. System Configuration and Simulation Environment
- Example 1: This scenario evaluates the estimation capability of the proposed observer (Observer 3). Its performance is compared with that of the conventional TOSMO (Observer 1) and the fixed-time disturbance observer (FxTDO) (Observer 2), emphasizing differences in convergence speed and estimation accuracy.
- Example 2: This case assesses the tracking performance of four different control schemes. The comparison includes metrics such as tracking accuracy, peak overshoot, and steady-state error, demonstrated through MATLAB-generated plots and quantified using the RMSE metric. The analysis also considers the level of chattering in the control signals for each approach.
- Root Mean Square Error (RMSE): This measure captures both the transient phase (0–1.5 s) and the steady-state tracking error, computed over the interval from 1.5 s to 30 s.
4.2. Performance Analysis
4.2.1. Analysis of Example 1
4.2.2. Analysis of Example 2
Tracking Performance Evaluation and Justification
Chattering Evaluation and Justification
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ghodsian, N.; Benfriha, K.; Olabi, A.; Gopinath, V.; Arnou, A. Mobile manipulators in industry 4.0: A review of developments for industrial applications. Sensors 2023, 23, 8026. [Google Scholar] [CrossRef]
- Keshvarparast, A.; Battini, D.; Battaia, O.; Pirayesh, A. Collaborative robots in manufacturing and assembly systems: Literature review and future research agenda. J. Intell. Manuf. 2024, 35, 2065–2118. [Google Scholar] [CrossRef]
- Incremona, G.P.; Rubagotti, M.; Ferrara, A. Sliding mode control of constrained nonlinear systems. IEEE Trans. Autom. Control 2016, 62, 2965–2972. [Google Scholar] [CrossRef]
- Utkin, V.I.; Vadim, I. Sliding mode control. Var. Struct. Syst. Princ. Implement. 2004, 66, 1. [Google Scholar]
- Utkin, V.; Poznyak, A.; Orlov, Y.V.; Polyakov, A.; Utkin, V.; Poznyak, A.; Orlov, Y.V.; Polyakov, A. Chattering Problem. In Road Map for Sliding Mode Control Design; Springer: Cham, Switzerland, 2020; pp. 73–82. [Google Scholar]
- Amer, A.F.; Sallam, E.A.; Elawady, W.M. Adaptive fuzzy sliding mode control using supervisory fuzzy control for 3 DOF planar robot manipulators. Appl. Soft Comput. 2011, 11, 4943–4953. [Google Scholar] [CrossRef]
- Chiang, C.J.; Chen, Y.C. Neural network fuzzy sliding mode control of pneumatic muscle actuators. Eng. Appl. Artif. Intell. 2017, 65, 68–86. [Google Scholar] [CrossRef]
- Baek, S.; Baek, J.; Han, S. An adaptive sliding mode control with effective switching gain tuning near the sliding surface. IEEE Access 2019, 7, 15563–15572. [Google Scholar] [CrossRef]
- Baek, J.; Jin, M.; Han, S. A new adaptive sliding-mode control scheme for application to robot manipulators. IEEE Trans. Ind. Electron. 2016, 63, 3628–3637. [Google Scholar] [CrossRef]
- Chen, S.Y.; Lin, F.J. Robust nonsingular terminal sliding-mode control for nonlinear magnetic bearing system. IEEE Trans. Control Syst. Technol. 2010, 19, 636–643. [Google Scholar] [CrossRef]
- Rsetam, K.; Cao, Z.; Man, Z. Design of robust terminal sliding mode control for underactuated flexible joint robot. IEEE Trans. Syst. Man Cybern. Syst. 2021, 52, 4272–4285. [Google Scholar] [CrossRef]
- Wang, H.; Man, Z.; Kong, H.; Zhao, Y.; Yu, M.; Cao, Z.; Zheng, J.; Do, M.T. Design and implementation of adaptive terminal sliding-mode control on a steer-by-wire equipped road vehicle. IEEE Trans. Ind. Electron. 2016, 63, 5774–5785. [Google Scholar] [CrossRef]
- Truong, T.N.; Vo, A.T.; Kang, H.J. Neural network-based sliding mode controllers applied to robot manipulators: A review. Neurocomputing 2023, 562, 126896. [Google Scholar] [CrossRef]
- Zhai, J.; Xu, G. A novel non-singular terminal sliding mode trajectory tracking control for robotic manipulators. IEEE Trans. Circuits Syst. II Express Briefs 2020, 68, 391–395. [Google Scholar] [CrossRef]
- Le, Q.D.; Kang, H.J. Finite-time fault-tolerant control for a robot manipulator based on synchronous terminal sliding mode control. Appl. Sci. 2020, 10, 2998. [Google Scholar] [CrossRef]
- Zhang, L.; Tao, R.; Zhang, Z.X.; Chien, Y.R.; Bai, J. PMSM non-singular fast terminal sliding mode control with disturbance compensation. Inf. Sci. 2023, 642, 119040. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, J. Continuous nonsingular terminal sliding mode control for nonlinear systems subject to mismatched terms. Asian J. Control 2022, 24, 885–894. [Google Scholar] [CrossRef]
- Wang, H.; Shi, L.; Man, Z.; Zheng, J.; Li, S.; Yu, M.; Jiang, C.; Kong, H.; Cao, Z. Continuous fast nonsingular terminal sliding mode control of automotive electronic throttle systems using finite-time exact observer. IEEE Trans. Ind. Electron. 2018, 65, 7160–7172. [Google Scholar] [CrossRef]
- Hu, R.; Deng, H.; Zhang, Y. Novel dynamic-sliding-mode-manifold-based continuous fractional-order nonsingular terminal sliding mode control for a class of second-order nonlinear systems. IEEE Access 2020, 8, 19820–19829. [Google Scholar] [CrossRef]
- Rguigui, H.; Elghribi, M. Finite-time stability for fractional-order systems with respect to another function. Asian J. Control 2025. [Google Scholar] [CrossRef]
- Mtiri, F. Finite time stability for a class of Hadamard fractional Itô–Doob stochastic time-delayed systems. Asian J. Control 2025. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Lu, R.; Zuo, Z.; Li, X. An overview of finite/fixed-time control and its application in engineering systems. IEEE/CAA J. Autom. Sin. 2022, 9, 2106–2120. [Google Scholar] [CrossRef]
- Anjum, Z.; Zhou, H.; Ahmed, S.; Guo, Y. Fixed time sliding mode control for disturbed robotic manipulator. J. Vib. Control 2024, 30, 1580–1593. [Google Scholar] [CrossRef]
- Zhang, L.; Su, Y.; Wang, Z.; Wang, H. Fixed-time terminal sliding mode control for uncertain robot manipulators. ISA Trans. 2024, 144, 364–373. [Google Scholar] [CrossRef]
- Cao, Y.; Wen, H.; Zhang, X.; Zhou, H.; Yao, B.; Lian, L. A novel flexible fixed-time stability result and its application in sliding-mode controller design. Nonlinear Dyn. 2025, 113, 15243–15256. [Google Scholar] [CrossRef]
- Truong, T.N.; Vo, A.T.; Kang, H.J.; Hong, I.P. A Novel Model-Free Nonsingular Fixed-Time Sliding Mode Control Method for Robotic Arm Systems. Mathematics 2025, 13, 1579. [Google Scholar] [CrossRef]
- Zhang, D.; Hu, J.; Cheng, J.; Wu, Z.G.; Yan, H. A novel disturbance observer based fixed-time sliding mode control for robotic manipulators with global fast convergence. IEEE/CAA J. Autom. Sin. 2024, 11, 661–672. [Google Scholar] [CrossRef]
- Pan, H.; Zhang, G.; Ouyang, H.; Mei, L. Novel fixed-time nonsingular fast terminal sliding mode control for second-order uncertain systems based on adaptive disturbance observer. IEEE Access 2020, 8, 126615–126627. [Google Scholar] [CrossRef]
- Rguigui, H.; Elghribi, M. Separation principle for Caputo–Hadamard fractional-order fuzzy systems. Asian J. Control 2025. [Google Scholar] [CrossRef]
- Rguigui, H.; Elghribi, M. Practical stabilization for a class of tempered fractional-order nonlinear fuzzy systems. Asian J. Control 2025. [Google Scholar] [CrossRef]
- Park, J.; Kwon, W.; Park, P. An improved adaptive sliding mode control based on time-delay control for robot manipulators. IEEE Trans. Ind. Electron. 2022, 70, 10363–10373. [Google Scholar] [CrossRef]
- Vo, A.T.; Truong, T.N.; Kang, H.J.; Nguyen, N.H.A. Prescribed Performance Model-Free Sliding Mode Control Using Time-Delay Estimation and Adaptive Technique Applied to Industrial Robot Arms. Inf. Sci. 2025, 702, 121911. [Google Scholar] [CrossRef]
- Ha, W.; Back, J. A disturbance observer-based robust tracking controller for uncertain robot manipulators. Int. J. Control. Autom. Syst. 2018, 16, 417–425. [Google Scholar] [CrossRef]
- Rinaldi, G.; Cucuzzella, M.; Ferrara, A. Third order sliding mode observer-based approach for distributed optimal load frequency control. IEEE Control Syst. Lett. 2017, 1, 215–220. [Google Scholar] [CrossRef]
- Nazari, N.; Moladavoudi, H.; Beyramzad, J. Finite time sliding mode control for agile rigid satellite with CMG actuators using fast high-order sliding mode observer. Aerosp. Syst. 2024, 7, 363–383. [Google Scholar] [CrossRef]
- Tarkhani, R.; Krim, S.; Mansouri, M.; Mimouni, M.F. Robust Current Sensor Fault-Tolerant Controller Using Third Order Super-Twisting Sliding Mode Observer and Controller for Induction Motors. IEEE Access 2025, 13, 52841–52862. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, J.; Zhang, O.; Zhao, Y.; Chen, W.; Gao, Y. Adaptive disturbance observer-based fixed-time tracking control for uncertain robotic systems. IEEE Trans. Ind. Electron. 2024, 71, 14823–14831. [Google Scholar] [CrossRef]
- Ren, C.E. Adaptive fuzzy disturbance observer-based control for nonlinear uncertain systems with general exogenous disturbances. Int. J. Fuzzy Syst. 2021, 23, 1453–1461. [Google Scholar] [CrossRef]
- Abdollahi, F.; Talebi, H.A.; Patel, R.V. A stable neural network-based observer with application to flexible-joint manipulators. IEEE Trans. Neural Netw. 2006, 17, 118–129. [Google Scholar] [CrossRef] [PubMed]
- Van, M.; Ceglarek, D. Robust fault tolerant control of robot manipulators with global fixed-time convergence. J. Frankl. Inst. 2021, 358, 699–722. [Google Scholar] [CrossRef]
- Truong, T.N.; Vo, A.T.; Kang, H.J. A model-free terminal sliding mode control for robots: Achieving fixed-time prescribed performance and convergence. ISA Trans. 2024, 144, 330–341. [Google Scholar] [CrossRef] [PubMed]
- Anjum, Z.; Sun, Z.; Chen, B. Disturbance-observer-based fault-tolerant control of robotic manipulator: A fixed-time adaptive approach. IET Control Theory Appl. 2024, 18, 1398–1413. [Google Scholar] [CrossRef]
- Nguyen, V.C.; Vo, A.T.; Kang, H.J. A finite-time fault-tolerant control using non-singular fast terminal sliding mode control and third-order sliding mode observer for robotic manipulators. IEEE Access 2021, 9, 31225–31235. [Google Scholar] [CrossRef]
- Zuo, Z.; Tie, L. Distributed robust finite-time nonlinear consensus protocols for multi-agent systems. Int. J. Syst. Sci. 2016, 47, 1366–1375. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, Y.; Guo, G. Fixed-time prescribed performance adaptive fixed-time sliding mode control for vehicular platoons with actuator saturation. IEEE Trans. Intell. Transp. Syst. 2022, 23, 24176–24189. [Google Scholar] [CrossRef]
- Levant, A. Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 2003, 76, 924–941. [Google Scholar] [CrossRef]
- Zuo, Z. Non-singular fixed-time terminal sliding mode control of non-linear systems. IET Control Theory Appl. 2015, 9, 545–552. [Google Scholar] [CrossRef]
- Li, H.; Cai, Y. On SFTSM control with fixed-time convergence. IET Control Theory Appl. 2017, 11, 766–773. [Google Scholar] [CrossRef]
- Craig, J.J. Introduction to Robotics: Mechanics and Control; Pearson Educacion: London, UK, 2005. [Google Scholar]
- Niku, S.B. Introduction to Robotics: Analysis, Control, Applications; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Van, M.; Ge, S.S.; Ren, H. Robust fault-tolerant control for a class of second-order nonlinear systems using an adaptive third-order sliding mode control. IEEE Trans. Syst. Man Cybern. Syst. 2016, 47, 221–228. [Google Scholar] [CrossRef]
- Cruz-Zavala, E.; Moreno, J.A.; Fridman, L.M. Uniform robust exact differentiator. IEEE Trans. Autom. Control 2011, 56, 2727–2733. [Google Scholar] [CrossRef]
- Yang, L.; Yang, J. Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems. Int. J. Robust Nonlinear Control 2010, 18, 557–569. [Google Scholar] [CrossRef]
Method | Parameter | Value |
---|---|---|
A1 | 2,2,18,0.8,7 | |
A2 | 0.6,5,3,18,7 | |
A3 | ||
– | ||
A4 | ||
– | ||
Observer |
Method | ||||||
---|---|---|---|---|---|---|
A1 | ||||||
A2 | ||||||
A3 | ||||||
A4 |
Method | Joint 1 | Joint 2 | Joint 3 |
---|---|---|---|
A1 | |||
A2 | |||
A3 | |||
A4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vo, A.T.; Truong, T.N.; Hong, I.-P.; Kang, H.-J. Precision Tracking of Industrial Manipulators via Adaptive Nonsingular Fixed-Time Sliding Mode Control. Mathematics 2025, 13, 2641. https://doi.org/10.3390/math13162641
Vo AT, Truong TN, Hong I-P, Kang H-J. Precision Tracking of Industrial Manipulators via Adaptive Nonsingular Fixed-Time Sliding Mode Control. Mathematics. 2025; 13(16):2641. https://doi.org/10.3390/math13162641
Chicago/Turabian StyleVo, Anh Tuan, Thanh Nguyen Truong, Ic-Pyo Hong, and Hee-Jun Kang. 2025. "Precision Tracking of Industrial Manipulators via Adaptive Nonsingular Fixed-Time Sliding Mode Control" Mathematics 13, no. 16: 2641. https://doi.org/10.3390/math13162641
APA StyleVo, A. T., Truong, T. N., Hong, I.-P., & Kang, H.-J. (2025). Precision Tracking of Industrial Manipulators via Adaptive Nonsingular Fixed-Time Sliding Mode Control. Mathematics, 13(16), 2641. https://doi.org/10.3390/math13162641