Elastic Contact Between a Transversely, Uniformly Loaded Circular Membrane and a Spring-Reset Rigid Flat Circular Plate: An Improved Closed-Form Solution
Abstract
1. Introduction
2. Analytical Solution to the Elastic Contact Problem
3. Results and Discussion
3.1. The Convergence of the Improved Analytical Solution Derived in Section 2
3.2. The Validity of the Improved Analytical Solution Derived in Section 2
3.3. A Comparison Between the Analytical Solutions Before and After Improvement
3.4. The Effect of Changing the Structural Parameters on the Improved Analytical Solution
3.4.1. The Effect of Changing the Radius a on the q–wm Relationship
3.4.2. The Effect of Changing the Thickness h on the q–wm Relationship
3.4.3. The Effect of Changing the Young’s Modulus of Elasticity E on the q–wm Relationship
3.4.4. The Effect of Changing the Poisson’s Ratio v on the q–wm Relationship
3.4.5. The Effect of Changing the Stiffness Coefficient k on the q–wm Relationship
4. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- Gharahi, A.; Schiavone, P. On the boundary value problems of bending of thin elastic plates with surface effects. ASME J. Appl. Mech. 2021, 88, 021007. [Google Scholar] [CrossRef]
- Goloskokov, D.P.; Matrosov, A.V. Bending of clamped orthotropic thin plates: Polynomial solution. Math. Mech. Solids 2022, 27, 2498–2509. [Google Scholar] [CrossRef]
- Liu, C.S.; Qiu, L.; Lin, J. Simulating thin plate bending problems by a family of two-parameter homogenization functions. Appl. Math. Model. 2020, 79, 284–299. [Google Scholar] [CrossRef]
- Zenkour, A.M. Bending of thin rectangular plates with variable-thickness in a hygrothermal environment. Thin-Walled Struct. 2018, 123, 333–340. [Google Scholar] [CrossRef]
- Meng, G.; Ko, W.H. Modeling of circular diaphragm and spreadsheet solution programming for touch mode capacitive sensors. Sens. Actuators A Phys. 1999, 75, 45–52. [Google Scholar] [CrossRef]
- Bernardo, P.; Iulianelli, A.; Macedonio, F.; Drioli, E. Membrane technologies for space engineering. J. Membr. Sci. 2021, 626, 119177. [Google Scholar] [CrossRef]
- Xu, S.; Yu, X.; Gao, Y.; Wang, S.; Sun, L. Mechanical Property Analysis of a Boom–Membrane Structure Used for Aerospace Technologies. Materials 2024, 17, 3204. [Google Scholar] [CrossRef]
- Delfani, M.R. Nonlinear elasticity of monolayer hexagonal crystals: Theory and application to circular bulge test. Eur. J. Mech. A-Solids 2018, 68, 117–132. [Google Scholar] [CrossRef]
- Essalhi, M.; Khayet, M.; Ismail, N.; Sundman, O.; Tavajohi, N. Improvement of nanostructured electrospun membranes for desalination by membrane distillation technology. Desalination 2021, 510, 115086. [Google Scholar] [CrossRef]
- Suresh, K.; Katara, N. Design and development of circular ceramic membrane for wastewater treatment. Mater. Today Proc. 2021, 43, 2176–2181. [Google Scholar] [CrossRef]
- Plaut, R.H. Linearly elastic annular and circular membranes under radial, transverse, and torsional loading. Part I: Large unwrinkled axisymmetric deformations. Acta Mech. 2009, 202, 79–99. [Google Scholar] [CrossRef]
- Plaut, R.H. Effect of pressure on pull-off of flat 1-D rectangular punch adhered to membrane. J. Adhes. 2021, 98, 1480–1500. [Google Scholar] [CrossRef]
- Yang, X.; Srivastava, A.; Long, R. Adhesive contact of an inflated circular membrane with curved surfaces. Int. J. Solids Struct. 2023, 279, 112371. [Google Scholar] [CrossRef]
- Zhang, C.H.; Fan, L.J.; Tan, Y.F. Sequential limit analysis for clamped circular membranes involving large deformation subjected to pressure load. Int. J. Mech. Sci. 2019, 155, 440–449. [Google Scholar] [CrossRef]
- Yang, X.Y.; Yu, L.X.; Long, R. Contact mechanics of inflated circular membrane under large deformation: Analytical solutions. Int. J. Solids Struct. 2021, 233, 111222. [Google Scholar] [CrossRef]
- Soares, R.M.; Gonçalves, P.B. Large-amplitude nonlinear vibrations of a Mooney–Rivlin rectangular membrane. J. Sound Vib. 2014, 333, 2920–2935. [Google Scholar] [CrossRef]
- Phadke, A.C.; Cheung, K.F. Nonlinear response of fluid-filled membrane in gravity waves. J. Eng. Mech. 2003, 129, 739–750. [Google Scholar] [CrossRef]
- Ren, Z.; Du, J.; Wang, F.; Xie, C.; Tang, P.; Yang, D. Hierarchical shape optimization for large deployable membrane reflector with spatial skirt cable. Structures 2023, 57, 105104. [Google Scholar] [CrossRef]
- Yao, F.; Jinnei, W.; Wang, Y.; Mingyue, S. Study on nonlinear vibration of flexible electronic membrane engendered by high-precision imprinting system. J. Low Freq. Noise Vib. Act. Control 2022, 41, 970–981. [Google Scholar]
- Feng, L.; Li, X.; Shi, T. Nonlinear large deflection of thin film overhung on compliant substrate using shaft-loaded blister test. J. Appl. Mech. 2015, 82, 091001. [Google Scholar] [CrossRef]
- Li, F.-Y.; Li, X.; Zhang, Q.; He, X.-T.; Sun, J.-Y. A refined closed-form solution for laterally loaded circular membranes in frictionless contact with rigid flat plates: Simultaneous improvement of out-of-plane equilibrium equation and geometric equation. Mathematics 2022, 10, 3025. [Google Scholar] [CrossRef]
- Plaut, R.H. Effect of pressure on pull-off of flat cylindrical punch adhered to circular membrane. J. Adhes. 2022, 98, 1438–1460. [Google Scholar] [CrossRef]
- Aish, F.; Joyce, S.; Malek, S.; Williams, C.J.K. The use of a particle method for the modelling of isotropic membrane stress for the form finding of shell structures. Comput. Aided Des. 2015, 61, 24–31. [Google Scholar] [CrossRef]
- Lim, T.C. Large deflection of circular auxetic membranes under uniform load. J. Mater. Technol. 2016, 138, 041011. [Google Scholar] [CrossRef]
- Jabareen, M.; Eisenberger, M. Free vibrations of non-homogeneous circular and annular membranes. J. Sound Vib. 2001, 240, 409–429. [Google Scholar] [CrossRef]
- Hencky, H. On the stress state in circular plates with vanishing bending stiffness. Z. Angew. Math. Phys. 1915, 63, 311–317. [Google Scholar]
- Chien, W.Z. Asymptotic behavior of a thin clamped circular plate under uniform normal pressure at very large deflection. Sci. Rep. Natl. Tsinghua Univ. 1948, 5, 193–208. [Google Scholar]
- Alekseev, S.A. Elastic circular membranes under the uniformly distributed loads. Eng. Corpus 1953, 14, 196–198. [Google Scholar]
- Dinca, G.; Matei, P. Weak solutions to Dirichlet problems in the Hencky deformation theory of plasticity. Mech. Res. Commun. 2021, 114, 103551. [Google Scholar] [CrossRef]
- Rao, Y.; Qiao, S.; Dai, Z.; Lu, N. Elastic wetting: Substrate-supported droplets confined by soft elastic membranes. J. Mech. Phys. Solids 2021, 151, 104399. [Google Scholar] [CrossRef]
- Farrahi, G.H.; Hosseinian, E.; Assempour, A. General variable material property formulation for the solution of autofrettaged thick-walled tubes with constant axial strains. J. Press. Vessel Technol. 2008, 130, 041209. [Google Scholar] [CrossRef]
- Khalfi, H.E.; Faiz, Z.; Baiz, O. Optimal convergence of thermoelastic contact problem involving nonlinear Hencky-type materials with friction conditions. Iran. J. Sci. 2025, 49, 133–149. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, G.R.; Chen, Y.L.; Long, D.; Guan, Y.C.; Liu, L.Q.; Zhang, Z. Extended Hencky solution for the blister test of nanomembrane. Extrem. Mech. Lett. 2018, 22, 69–78. [Google Scholar] [CrossRef]
- Chien, W.Z.; Wang, Z.Z.; Xu, Y.G.; Chen, S.L. The symmetrical deformation of circular membrane under the action of uniformly distributed loads in its portion. Appl. Math. Mech. 1981, 2, 653–668. [Google Scholar] [CrossRef]
- Arthurs, A.M.; Clegg, J. On the solution of a boundary value problem for the nonlinear Föppl-Hencky equation. Z. Angew. Math. Mech. 1994, 74, 281–284. [Google Scholar] [CrossRef]
- Kelkar, A.; Elber, W.; Raju, I.S. Large deflections of circular isotropic membranes subjected to arbitrary axisymmetric loading. Comput. Struct. 1985, 21, 413–421. [Google Scholar] [CrossRef]
- Komaragiri, U.; Begley, M.R.; Simmonds, J.G. The mechanical response of freestanding circular elastic films under point and pressure loads. ASME J. Appl. Mech. 2005, 72, 203–212. [Google Scholar] [CrossRef]
- Jin, C.R. Large deflection of circular membrane under concentrated force. Appl. Math. Mech. 2008, 29, 889–896. [Google Scholar] [CrossRef]
- Sun, J.-Y.; Lian, Y.-S.; Li, Y.-M.; He, X.-T.; Zheng, Z.-L. Closed-form solution of elastic circular membrane with initial stress under uniformly-distributed loads: Extended Hencky solution. Z. Angew. Math. Mech. 2015, 95, 1335–1341. [Google Scholar] [CrossRef]
- Lian, Y.-S.; Sun, J.-Y.; Yang, Z.-X.; He, X.-T.; Zheng, Z.-L. Closed-form solution of well-known Hencky problem without small-rotation-angle assumption. ZAMM J. Appl. Math. Mech. 2016, 96, 1434–1441. [Google Scholar] [CrossRef]
- Lian, Y.-S.; Sun, J.-Y.; Zhao, Z.-H.; He, X.-T.; Zheng, Z.-L. A revisit of the boundary value problem for Föppl–Hencky membranes: Improvement of geometric equations. Mathematics 2020, 8, 631. [Google Scholar] [CrossRef]
- Sun, J.-Y.; Wu, J.; Li, X.; He, X.-T. An exact in-plane equilibrium equation for transversely loaded large deflection membranes and its application to the Föppl-Hencky membrane problem. Mathematics 2023, 11, 3329. [Google Scholar] [CrossRef]
- Chen, M.Y.; Huang, C.Y.; Liu, S.W.; Huang, P.; Li, Z.L.; Li, Y.Q.; Fu, S.Y. Novel flexible capacitive pressure sensor with a wide detection range enabled by carboxyl iron particle-paraffin wax/silicone composite. Compos. Commun. 2024, 47, 101884. [Google Scholar] [CrossRef]
- Xu, S.M.; Manshaii, F.; Chen, J. Multiphasic interfaces enabled aero-elastic capacitive pressure sensors. Matter 2024, 7, 2351–2354. [Google Scholar] [CrossRef]
- Javidi, R.; Zand, M.M.; Majd, S.A. Designing wearable capacitive pressure sensors with arrangement of porous pyramidal microstructures. Micro Nano Syst. Lett. 2023, 11, 13. [Google Scholar] [CrossRef]
- Hajizi, H.M.M.; Aris, H.; Norhaimi, W.M.W.; Nor, N.I.M.; Sauli, Z.; Aziz, A.A. Design and Simulation of Micro-Electro-Mechanical Systems (MEMS) Capacitive Pressure Sensor for Thermal Runaway Detection in the Electric Vehicle. Int. J. Nanoelectron. Mater. 2023, 16, 17–32. [Google Scholar]
- Dong, C.Z.; Bai, Y.F.; Zou, J.F.; Cheng, J.K.; An, Y.F.; Zhang, Z.T.; Li, Z.H.; Lin, S.Y.; Zhao, S.H.; Li, N. Flexible capacitive pressure sensor: Material, structure, fabrication and application. Nondestruct. Test. Eval. 2024, 39, 1749–1790. [Google Scholar] [CrossRef]
- Li, X.; Sun, J.-Y.; Shi, B.-B.; Zhao, Z.H.; He, X.-T. A theoretical study on an elastic polymer thin film-based capacitive wind-pressure sensor. Polymers 2020, 12, 2133. [Google Scholar] [CrossRef]
- He, X.T.; Ran, J.S.; Wu, J.; Li, F.Y.; Sun, J.Y. A circular touch mode capacitive rainfall sensor: Analytical solution and numerical design and calibration. Sensors 2024, 24, 6291. [Google Scholar] [CrossRef]
- Ogden, R.W. Non-Linear Elastic Deformations; Dover Publications, Inc.: New York, NY, USA, 1997. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, X.-T.; Yin, J.-M.; Ran, J.-S.; Sun, J.-Y.; Guo, Y. Elastic Contact Between a Transversely, Uniformly Loaded Circular Membrane and a Spring-Reset Rigid Flat Circular Plate: An Improved Closed-Form Solution. Mathematics 2025, 13, 2626. https://doi.org/10.3390/math13162626
He X-T, Yin J-M, Ran J-S, Sun J-Y, Guo Y. Elastic Contact Between a Transversely, Uniformly Loaded Circular Membrane and a Spring-Reset Rigid Flat Circular Plate: An Improved Closed-Form Solution. Mathematics. 2025; 13(16):2626. https://doi.org/10.3390/math13162626
Chicago/Turabian StyleHe, Xiao-Ting, Jing-Miao Yin, Jun-Song Ran, Jun-Yi Sun, and Ying Guo. 2025. "Elastic Contact Between a Transversely, Uniformly Loaded Circular Membrane and a Spring-Reset Rigid Flat Circular Plate: An Improved Closed-Form Solution" Mathematics 13, no. 16: 2626. https://doi.org/10.3390/math13162626
APA StyleHe, X.-T., Yin, J.-M., Ran, J.-S., Sun, J.-Y., & Guo, Y. (2025). Elastic Contact Between a Transversely, Uniformly Loaded Circular Membrane and a Spring-Reset Rigid Flat Circular Plate: An Improved Closed-Form Solution. Mathematics, 13(16), 2626. https://doi.org/10.3390/math13162626