Biderivations of Simple Modular Lie Algebras of Cartan-Type
Abstract
1. Introduction
2. Generalities and Main Results
2.1. Biderivations and Related Definitions
2.2. Simple Lie Algebras of Cartan-Type
2.3. Main Conclusions
- (1)
- Every biderivation of L is inner;
- (2)
- A linear map on L is commuting if and only if it is a scalar transformation;
- (3)
- Every commutative post-Lie algebra structure is trivial on L.
3. Reductions and Technical Lemmas
3.1. Skew-Symmetric Biderivations
3.2. Decompositions
- if and only if .
- is transitive.
4. Symmetric Biderivations
4.1. Special Algebras
4.2. Generalized Jacobson–Witt Algebra
4.3. Hamiltonian Algebras
4.4. Contact Algebras
5. Linear Commuting Maps, Commutative Post-Lie Algebra Structures
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brešar, M. On generalized biderivations and related maps. J. Algebra 1995, 172, 764–786. [Google Scholar] [CrossRef]
- Wang, D.; Yu, X.; Chen, Z. Biderivations of the parabolic subalgebras of simple Lie algebras. Comm. Algebra 2011, 39, 4097–4104. [Google Scholar] [CrossRef]
- Brešar, M.; Zhao, K. Biderivations and commuting linear maps on Lie algebras. J. Lie Theory 2018, 28, 885–900. [Google Scholar]
- Chang, Y.; Chen, L. Biderivations and linear commuting maps on the restricted Cartan-type Lie algebras W(n;1) and S(n;1). Linear Multilinear Algebra 2019, 67, 1625–1636. [Google Scholar] [CrossRef]
- Chang, Y.; Chen, L.; Zhou, X. Biderivations and linear commuting maps on the restricted Cartan-type Lie algebras H(n;1). Comm. Algebra 2019, 47, 1311–1326. [Google Scholar] [CrossRef]
- Liu, X.; Guo, X.; Zhao, K. Biderivations of the block Lie algebras. Linear Algebra Appl. 2018, 538, 43–55. [Google Scholar] [CrossRef]
- Tang, X. Biderivations of finite-dimensional complex simple Lie algebras. Linear Multilinear Algebra 2018, 66, 250–259. [Google Scholar] [CrossRef]
- Tang, X. Biderivations, linear commuting maps and commutative post-Lie algebra structures on W-algebras. Comm. Algebra 2017, 45, 5252–5261. [Google Scholar] [CrossRef]
- Tang, X.; Li, X. Biderivations of the twisted Heisenberg-Virasoro algebra and their applications. Comm. Algebra 2018, 46, 2346–2355. [Google Scholar] [CrossRef]
- Tang, X.; Yang, Y. Biderivations of the higher rank Witt algebra without anti-symmetric condition. Open Math. 2018, 16, 447–452. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, L.; Yuan, L. Conformal biderivations of loop W(a,b) Lie conformal algebra. Front. Math 2022, 17, 1157–1167. [Google Scholar] [CrossRef]
- Bartolo, A.; Rosa, G. Biderivations of complete Lie algebras. J. Algebra Appl. 2025, 24, 2550016. [Google Scholar] [CrossRef]
- Chen, Q.; Yao, Y.; Zhao, K. Biderivations of Lie algebras. Can. Math. Bull. 2025, 68, 440–450. [Google Scholar] [CrossRef]
- Liu, H.; Chen, Z. Biderivations of the mirror Heisenberg—Virasoro algebra. J. Algebra Appl. 2025, 24, 2550244. [Google Scholar] [CrossRef]
- Bai, W.; Liu, W. Superbiderivations of Simple Modular Lie Superalgebras of Witt Type and Special Type. Algebra Colloq. 2023, 30, 181–192. [Google Scholar] [CrossRef]
- Dilxat, M.; Gao, S.; Liu, D. Super-biderivations and Post-Lie Superalgebras on Some Lie Superalgebras. Acta. Math. Sin.-Engl. Ser. 2023, 39, 1736–1754. [Google Scholar] [CrossRef]
- Yuan, L.; Li, J. Biderivations of Hom-Lie Algebras and Superalgebras. Acta. Math. Sin.-Engl. Ser. 2024, 40, 2337–2358. [Google Scholar] [CrossRef]
- Casas, J.; Khmaladze, E.; Ladra, M. Central Derivations, Centroids and Skew-Symmetric Biderivations of Leibniz (n-)Algebras. Bull. Braz. Math. Soc. New Ser. 2025, 56, 29. [Google Scholar] [CrossRef]
- Posner, E. Derivations in prime rings. Proc. Am. Math. Soc. 1957, 8, 1093–1100. [Google Scholar] [CrossRef]
- Brešar, M. Commuting maps: A survey. Taiwan. J. Math. 2004, 8, 361–397. [Google Scholar] [CrossRef]
- Vukman, J. Commuting and centralizing mappings in prime rings. Proc. Amer. Math. Soc 1990, 109, 47–52. [Google Scholar] [CrossRef]
- Vallette, B. Homology of generalized partition posets. J. Pure Appl. Algebra 2007, 208, 699–725. [Google Scholar] [CrossRef]
- Burde, D.; Moens, W. Commutative post-Lie algebra structures on Lie algebras. J. Algebra 2016, 467, 183–201. [Google Scholar] [CrossRef]
- Ebrahimi-Fard, K.; Lundervold, A.; Mencattini, I.; Munthe-Kaas, H. Post-Lie algebras and isospectral flows. SIGMA Symmetry Integr. Geom. Methods Appl. 2015, 11, 16. [Google Scholar] [CrossRef]
- Munthe-Kaas, H.; Lundervold, A. On post-Lie algebras, Lie-Butcher series and moving frames. Found. Comput. Math. 2013, 13, 583–613. [Google Scholar] [CrossRef]
- Burde, D.; Dekimpe, K. Post-Lie algebra structures on pairs of Lie algebras. J. Algebra 2016, 464, 226–245. [Google Scholar] [CrossRef]
- Burde, D.; Dekimpe, K.; Moens, A. Commutative post-Lie algebra structures and linear equations for nilpotent Lie algebras. J. Algebra 2019, 526, 12–29. [Google Scholar] [CrossRef]
- Burde, D.; Gubarev, V. Rota-Baxter operators and post-Lie algebra structures on semisimple Lie algebras. Comm. Algebra 2019, 47, 2280–2296. [Google Scholar] [CrossRef] [PubMed]
- Strade, H. Simple Lie Algebras over Fields of Positive Characteristic, I. Structure Theory; Walter de Gruyter: Berlin, Germany; New York, NY, USA, 2004. [Google Scholar]
- Strade, H.; Farnsteiner, R. Modular Lie Algebras and Their Representations; Pure and Applied Mathematics: A Series of Monographs and Textbooks; Marcel Dekker: New York, NY, USA, 1988; Volume 116. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, W.; Liu, W. Biderivations of Simple Modular Lie Algebras of Cartan-Type. Mathematics 2025, 13, 2596. https://doi.org/10.3390/math13162596
Bai W, Liu W. Biderivations of Simple Modular Lie Algebras of Cartan-Type. Mathematics. 2025; 13(16):2596. https://doi.org/10.3390/math13162596
Chicago/Turabian StyleBai, Wei, and Wende Liu. 2025. "Biderivations of Simple Modular Lie Algebras of Cartan-Type" Mathematics 13, no. 16: 2596. https://doi.org/10.3390/math13162596
APA StyleBai, W., & Liu, W. (2025). Biderivations of Simple Modular Lie Algebras of Cartan-Type. Mathematics, 13(16), 2596. https://doi.org/10.3390/math13162596