Thermodynamics of a Simple Endoreversible Model for Computer Gates
Abstract
1. Introduction
2. Model for a Endoreversible Computer Gate
2.1. De Vos Model for a Reversible Computer Gate
- A core part containing a reversible gate;
- Two transport channels: one for providing input information and another for extracting output information.
- Conservation of energy: , indicating that the total energy output from the converter is zero. It is worth mentioning that, in conventional electronic computers, the particles are electrons and the particle flow N is (up to a constant) equal to the electric current I. In this sense, it is possible to postulate that there exists a conservation of mater implying that the total amount of matter leaving the convertor is zero. Thus, assuming the conservation of matter, the equation for the conservation of energy is true only if should not depend on .
- Conservation of matter: , indicating that the total output of matter of the converter is zero.
- Conservation of entropy: , indicating that the total entropy output of the converter is zero.
- Carnot’s Law: When and , the work is , yielding an efficiency , which is the Carnot´s formula for a reversible engine working between the temperatures and .
- Landauer’s Principle: When and , the work is .
- Gibbs’ Law: When and , the work is .
2.2. Endoreversible Computer Gate Model
- A reversible computational gate.
- An irreversible structure for the transport of heat and information. The input side—analogous to one of the irreversible components of the CA engine—is connected to the reversible gate reservoir at temperature , while the output side—another irreversible channel—extracts heat and information and connects to the second reservoir at temperature , as shown in Figure 1.
- Conservation of Matter:
- Conservation of Energy:
- Conservation of Entropy in the reversible part:
3. Thermodynamics of the Endoreversible Model for a Computer Gate
3.1. Thermal Efficiency: The Special Case of the Curzon and Ahlbort Efficiency
3.2. Endoreversible Landauer’s Principle for a Computer Gate Model
3.3. Some Other Different Operation Regimes Regimes
3.3.1. The Omega Function
3.3.2. The Efficient Power
3.4. Some Consequences of Landauers’s Principle
4. Discussion and Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Landauer, R. Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 1961, 5, 183–191. [Google Scholar] [CrossRef]
- Keyes, R.W.; Landauer, R. Minimal energy dissipation in logic. IBM J. Res. Dev. 1970, 14, 152–157. [Google Scholar] [CrossRef]
- Bennett, C.H.; Landauer, R. The fundamental physical limits of computation. Sci. Am. 1985, 253, 48–57. [Google Scholar] [CrossRef]
- Landauer, R. Information is physical. Phys. Today 1991, 44, 23–29. [Google Scholar] [CrossRef]
- Bérut, A.; Arakelyan, A.; Petrosyan, A.; Ciliberto, S.; Dillenschneider, R.; Lutz, E. Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 2012, 483, 187–189. [Google Scholar] [CrossRef]
- Orlov, A.O.; Lent, C.S.; Thorpe, C.C.; Boechler, G.P.; Snider, G.L. Experimental test of Landauer’s Principle at the sub-kBT level. Jpn. J. Appl. Phys. 2012, 51, 06FE10. [Google Scholar] [CrossRef]
- Gavrilov, M.; Chétrite, R.; Bechhoefer, J. Direct measurement of weakly nonequilibrium system entropy is consistent with Gibbs–Shannon form. Proc. Natl. Acad. Sci. USA 2017, 114, 11097–11102. [Google Scholar] [CrossRef]
- Ciliberto, S. Information and thermodynamics: Experimental verification of Landauer’s erasure principle. In Proceedings of the APS March Meeting Abstracts, San Antonio, TX, USA, 2–6 March 2015; Volume 2015, p. Z3–005. [Google Scholar]
- Bérut, A.; Petrosyan, A.; Ciliberto, S. Detailed Jarzynski equality applied to a logically irreversible procedure. Europhys. Lett. 2013, 103, 60002. [Google Scholar] [CrossRef]
- Zulkowski, P.R.; DeWeese, M.R. Optimal finite-time erasure of a classical bit. Phys. Rev. E 2014, 89, 052140. [Google Scholar] [CrossRef]
- Aimet, S.; Tajik, M.; Tournaire, G.; Schüttelkopf, P.; Sabino, J.; Sotiriadis, S.; Guarnieri, G.; Schmiedmayer, J.; Eisert, J. Experimentally probing Landauer’s principle in the quantum many-body regime. Nat. Phys. 2025, 1–6. [Google Scholar] [CrossRef]
- De Vos, A. Endoreversible models for the thermodynamics of computing. Entropy 2020, 22, 660. [Google Scholar] [CrossRef] [PubMed]
- Andresen, B.; Salamon, P. Future perspectives of finite-time thermodynamics. Entropy 2022, 24, 690. [Google Scholar] [CrossRef] [PubMed]
- Curzon, F.; Ahlborn, B. Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 1975, 43, 22–24. [Google Scholar] [CrossRef]
- Leff, H.S.; Rex, A.F. Maxwell’s Demon: Entropy, Information, Computing; Princeton University Press: Princeton, NJ, USA, 1990. [Google Scholar]
- Parrondo, J.M.; Horowitz, J.M.; Sagawa, T. Thermodynamics of information. Nat. Phys. 2015, 11, 131–139. [Google Scholar] [CrossRef]
- Proesmans, K.; Ehrich, J.; Bechhoefer, J. Finite-time Landauer principle. Phys. Rev. Lett. 2020, 125, 100602. [Google Scholar] [CrossRef]
- Gadomski, A.; Karpiński, K. Erasure by friction: An over-scales-manifesting estimation of the nanoscale (quantum) coefficient of friction. J. Phys. D Appl. Phys. 2025, 58, 135310. [Google Scholar] [CrossRef]
- Velasco, S.; Roco, J.; Medina, A.; White, J.; Hernández, A.C. Optimization of heat engines including the saving of natural resources and the reduction of thermal pollution. J. Phys. D Appl. Phys. 2000, 33, 355. [Google Scholar] [CrossRef]
- Callen, H. Thermodynamics; Wiley: New York, NY, USA, 1960; pp. 45–46. [Google Scholar]
- Carnot, S. Reflections on the motive power of fire, and on machines fitted to develop that power. Bachelier 1824, 108, 1824. [Google Scholar]
- Tsirlin, A.M.; Balunov, A.I.; Sukin, I.A. Finite-Time Thermodynamics: Problems, Approaches, and Results. Entropy 2025, 27, 649. [Google Scholar] [CrossRef]
- Angulo-Brown, F. An ecological optimization criterion for finite-time heat engines. J. Appl. Phys. 1991, 69, 7465–7469. [Google Scholar] [CrossRef]
- Bejan, A. Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Hernández, A.C.; Medina, A.; Roco, J.; White, J.; Velasco, S. Unified optimization criterion for energy converters. Phys. Rev. E 2001, 63, 037102. [Google Scholar] [CrossRef]
- Salas, N.S.; Velasco, S.; Hernández, A.C. Unified working regime of irreversible Carnot-like heat engines with nonlinear heat transfer laws. Energy Convers. Manag. 2002, 43, 2341–2348. [Google Scholar] [CrossRef]
- Chimal, J.; Sánchez, N.; Ramírez, P. Thermodynamic Optimality criteria for biological systems in linear irreversible thermodynamics. J. Phys. Conf. Ser. 2017, 792, 012082. [Google Scholar] [CrossRef]
- Arias-Hernández, L.; Angulo-Brown, F. A general property of endoreversible thermal engines. J. Appl. Phys. 1997, 81, 2973–2979. [Google Scholar] [CrossRef]
- Yilmaz, T. A new performance criterion for heat engines: Efficient power. J. Energy Inst. 2006, 79, 38–41. [Google Scholar] [CrossRef]
- Bormashenko, E. Landauer’s Principle: Past, Present and Future. Entropy 2025, 27, 437. [Google Scholar] [CrossRef]
- Sanchez-Salas, N.; López-Palacios, L.; Velasco, S.; Calvo Hernández, A. Optimization criteria, bounds, and efficiencies of heat engines. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 2010, 82, 051101. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chimal-Eguia, J.C.; Páez-Hernández, R.T.; Pacheco-Paez, J.C.; Saldana-Perez, M.; Ladino-Luna, D. Thermodynamics of a Simple Endoreversible Model for Computer Gates. Mathematics 2025, 13, 2577. https://doi.org/10.3390/math13162577
Chimal-Eguia JC, Páez-Hernández RT, Pacheco-Paez JC, Saldana-Perez M, Ladino-Luna D. Thermodynamics of a Simple Endoreversible Model for Computer Gates. Mathematics. 2025; 13(16):2577. https://doi.org/10.3390/math13162577
Chicago/Turabian StyleChimal-Eguia, Juan Carlos, Ricardo Teodoro Páez-Hernández, Juan Carlos Pacheco-Paez, Magdalena Saldana-Perez, and Delfino Ladino-Luna. 2025. "Thermodynamics of a Simple Endoreversible Model for Computer Gates" Mathematics 13, no. 16: 2577. https://doi.org/10.3390/math13162577
APA StyleChimal-Eguia, J. C., Páez-Hernández, R. T., Pacheco-Paez, J. C., Saldana-Perez, M., & Ladino-Luna, D. (2025). Thermodynamics of a Simple Endoreversible Model for Computer Gates. Mathematics, 13(16), 2577. https://doi.org/10.3390/math13162577