Next Article in Journal
Deep Reinforcement Learning Method for Wireless Video Transmission Based on Large Deviations
Previous Article in Journal
Conformal Segmentation in Industrial Surface Defect Detection with Statistical Guarantees
Previous Article in Special Issue
Stability of Stochastic Delayed Recurrent Neural Networks
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Convergence and Stability of the Truncated Stochastic Theta Method for McKean-Vlasov Stochastic Differential Equations Under Local Lipschitz Conditions

1
School of Electrical and Information Engineering, Heilongjiang Institute of Technology, Harbin 150050, China
2
Department of Mathematics, Heilongjiang Institute of Technology, Harbin 150050, China
3
School of Mathematics and Statistics, Hunan Normal University, Changsha 410081, China
*
Author to whom correspondence should be addressed.
Mathematics 2025, 13(15), 2433; https://doi.org/10.3390/math13152433
Submission received: 29 June 2025 / Revised: 24 July 2025 / Accepted: 26 July 2025 / Published: 28 July 2025

Abstract

This paper focuses on McKean-Vlasov stochastic differential equations under local Lipschitz conditions. We first introduce the stochastic interacting particle system and prove the propagation of chaos. Then we establish a truncated stochastic theta scheme to approximate the interacting particle system and obtain the strong convergence of the continuous-time truncated stochastic theta scheme to the non-interacting particle system. Furthermore, we study the asymptotical mean square stability of the interacting particle system and the truncated stochastic theta method. Finally, we give one numerical example to verify our theoretical results.

1. Introduction

McKean-Vlasov stochastic differential equations (MVSDEs) also known as distribution-dependent SDEs or mean-fields SDEs, are used to describe asymptotic behavior of an N-particle system with mean-field interaction. The coefficients of MVSDEs depend not only on the solutions but also on the law of the solutions which have received widespread attention and played increasingly important role in various fields. The well-posedness of MVSDEs with coefficients satisfying global Lipschitz condition has been well studied in [1,2,3,4]. By truncating the coefficients in both the space and the distribution variables, Liu and Ma [5] obtained the well-posedness of MVSDEs with coefficients satisfying local Lipschitz and linear growth conditions. Using an interpolated Euler-like sequence, Li et al. [6] established the well-posedness of MVSDEs under local one-sided Lipschitz and uniform linear growth conditions. We refer the reader to [7,8,9,10] and the references therein for more results on the well-posedness of MVSDEs under global and local Lipschitz conditions.
Compared to the well-posedness of MVSDEs, the research on the stability of MVSDEs is slightly lacking. In Bahlali et al. [1], they demonstrated various stability properties with respect to (w.r.t.) the initial data, the coefficients, and the driving processes by using the BDG inequality and the Gronwall lemma under an Osgood type condition. In Govindan and Ahmed [11], they investigated the exponential stability of the stochastic McKean-Vlasov evolution equation by using Lebesgue’s dominated convergence theorem and the Lyapunov function method under Lipschitz and linear growth conditions. In Ding and Qiao [12], they considered the mean square exponential stability of the MVSDE with non-Lipschitz coefficients and obtained the exponentially 2-ultimate boundedness of the solution by using the Lyapunov function method.
Most of MVSDEs cannot be solved explicitly, so numerical solutions are very important in practical applications. Compared with standard SDEs, the law in MVSDEs leads to the numerical simulation for MVSDEs always involving two steps: (1) approximating the law of MVSDE by the empirical distribution of interacting particle system, and (2) establishing a stable numerical method to solve the interacting particle system. The first study on the numerical method for MVSDEs was Bossy and Talay [13], in which they investigated the Euler-Maruyama (EM) scheme for MVSDEs under global Lipschitz condition. Furthermore, Budhiraja and Fan in [14] studied the explicit Euler scheme for a specific MVSDE under global Lipschitz condition. Dos Reis et al. [2] showed that the implicit Euler scheme is convergent for the MVSDEs with the drift term growing super-linearly under global Lipschitz condition. Bao et al. [15] derived the fully implementable first-order Milstein schemes for MVSDEs with a super-linearly growing drift term in the state component. More work on the numerical approximations for MVSDEs under global Lipschitz condition can be found in [6,16,17,18] and the references therein. Nevertheless, to our best knowledge, the stabilities of the numerical schemes for MVSDEs under local Lipschitz condition have not been studied yet. Accordingly, based on the stochastic particle method, this paper focuses on the numerical approximation for MVSDEs under local Lipschitz condition with the aim to establish the convergence and stability theorem.
This paper is organized as follows. In Section 2, we introduce some notations and assumptions. In Section 3, we describe the MVSDE under local Lipschitz conditions and the corresponding interacting particle system. In Section 4, we propose the truncated stochastic theta method and then obtain the convergence result. In Section 5, we impose an extra condition to study the stability result. Finally, we present a numerical example to confirm our theory results in Section 6.

2. Notations and Preliminaries

We first recall some notions and results. Denote by A T the transpose of A R d × n , t r ( A ) the trace of A, | · | the Euclidean norm in R d , and | A | = t r ( A T A ) the trace norm. Let α be the rounding upward of real constant α .
Let ( Ω , F , P ) be the complete probability space equipped with the filtrations ( F t ) t 0 satisfying the usual conditions. Let E ( ξ ) be the expectation of R d -valued random variable ξ under P and L p ( Ω , R d ) ( p > 0 ) be the set of all R d -valued random variables ξ with E | ξ | p < . Denote by P ( R d ) the set of all probability measures over ( R d , B ( R d ) ) equipped with weak topology, where B ( R d ) is the Borel σ -field over R d . In addition, P 2 ( R d ) = μ P ( R d ) : R d | x | 2 μ ( d x ) < . For q 1 , μ , v P ( R d ) , define the q–Wasserstein distance W q ( μ , v ) as
W q ( μ , v ) = inf π Π ( μ , v ) R d × R d | x y | q π ( d x , d y ) 1 q ,
where Π ( μ , v ) is the set of couplings between μ and v on R d × R d . In other words, π Π ( μ , v ) is a probability measure on R d × R d such that π ( · × R d ) = μ and π ( R d × · ) = v . In particular, if μ = P X and v = P Y , then
W 1 ( μ , v ) = inf π Π ( μ , v ) R d × R d | x y | π ( d x , d y ) R d × R d | x y | d P ( X , Y ) ( x , y ) = E | X Y | ,
and
W 2 2 ( μ , v ) = inf π Π ( μ , v ) R d × R d | x y | 2 π ( d x , d y ) R d × R d | x y | 2 d P ( X , Y ) ( x , y ) = E | X Y | 2 ,
where P ( X , Y ) is the joint probability distribution of the random variables X and Y.

3. Stochastic Particle Method

Consider the following MVSDE
d Z ( t ) = f ( Z ( t ) , L Z ( t ) ) d t + g ( Z ( t ) , L Z ( t ) ) d B t , t ( 0 , T ] , Z ( 0 ) = ξ ,
where ξ is an R d -valued F 0 -measurable random variable, f : R d × P 2 ( R d ) R d and g : R d × P 2 ( R d ) R d × R d are Borel measurable functions, B t is a d-dimensional Brownian motion, and L Z ( t ) is the law of Z ( t ) . We impose some assumptions on f and g.
Assumption 1.
f ( x , μ ) is continuous in R d × P 2 ( R d ) . For each R 1 , there exist positive number a and L R a log R such that
x y , f ( x , μ ) f ( y , μ ) | g ( x , μ ) g ( y , μ ) | 2 L R ( | x y | 2 , x , y R d , | x | | y | R , μ P 2 ( R d ) .
Assumption 2.
There exists a positive constant L such that
| f ( x , μ ) f ( x , v ) | | g ( x , μ ) g ( x , v ) | L W 1 ( μ , v ) , x R d , μ , v P 2 ( R d ) .
Assumption 3.
For any x R d and μ P 2 ( R d ) , there exist positive constant M and l > 1 such that
x , f ( x , μ ) M ( 1 + | x | 2 + W 2 2 ( μ , δ 0 ) ) , | g ( x , μ ) | M ( | x | + W 1 ( μ , δ 0 ) ) , a n d | f ( x , μ ) | M ( 1 + | x | l + W 1 ( μ , δ 0 ) ) ,
where δ x denotes the Dirac measure concentrated on x.
Similar to Theorem 3.1 in [19], we may obtain the well-posedness of MVSDE (1).
Theorem 1.
Under Assumptions 1–3, if ξ L r ( Ω , R d ) for any r > 0 , MVSDE (1) admits a unique solution { Z ( t ) } 0 t T . For any p > 0 , there exists a constant C > 0 such that
E sup t [ 0 , T ] | Z ( t ) | p < C .
Proof. 
This result is known well. So for brevity we only outline main steps.
  • Uniqueness. Let Z 1 ( t ) and Z 2 ( t ) are solutions of (1) with the same initial value. Define Ω ¯ ( R ) = { ω Ω : sup 0 t T | Z 1 ( t ) | sup 0 t T | Z 2 ( t ) | R } . Then for any p 2 l , similar to the proof of Theorem 3.1 in [19], we have
    E sup 0 t T | Z 1 ( t ) Z 2 ( t ) | 2 C ^ R p R C ˜ T a ,
    where C ^ and C ˜ are positive constants. Considering that p can be arbitrarily large, we choose p > 2 C ˜ T a , such that the right-side of (2) converges to 0 when R .
  • Existence. Let Z t 0 = Z ( 0 ) = ξ , L Z t 0 = L Z ( 0 ) . For any n 1 , let Z t n solve the SDE
    Z t n = f ( Z t n , L Z t n 1 ) d t + g ( Z t n , L Z t n 1 ) d B t , Z t 0 = Z ( 0 ) = ξ .
    Similar to the proof of Theorem 3.1 in [19], we can prove that E sup 0 t T | Z t n | p < C and { Z t n } is a Cauchy sequence, and hence has a limit Z t in the space C ( [ 0 , T ] ) as n , which is a solution.
To approximate (1), we introduce an N ( 1 ) -dimensional system of interacting particles
d Z i , N ( t ) = f ( Z i , N ( t ) , 1 N i = 1 N δ Z i , N ( t ) ) d t + g ( Z i , N ( t ) , 1 N i = 1 N δ Z i , N ( t ) ) d B t i , i = 1 , 2 , , N
with the independent identical initial data Z i , N ( 0 ) = ξ i , i = 1 , 2 , , N , where ( B t i ) 1 i N are independent Brownian motion. As a bridge, we introduce the non-interacting particle system
d Z i ( t ) = f ( Z i ( t ) , L Z i ( t ) ) d t + g ( Z i ( t ) , L Z i ( t ) ) d B t i
with initial value Z i ( 0 ) = ξ i . It follows from Theorem 1 that L Z i ( t ) = L Z ( t ) for all i.
Under Assumptions 1–3, we establish the well-posedness of the interacting particle system via the following lemma.
Lemma 1.
Assume that Assumptions 1–3 hold. Then for any N 2 and p > 0 , the interacting particle system (3) admits a strong solution ( Z i , N ( t ) ) 0 t T and for Z i , N ( 0 ) = ξ i L p ( Ω , R d ) there exists a constant C p > 0 independent of i, such that
sup 1 i N E sup t [ 0 , T ] | Z i , N ( t ) ) | p < C p .
Proof. 
Let
Z ˜ ( t ) = Z 1 , N ( t ) , Z 2 , N ( t ) , , Z N , N ( t ) T , B N ( t ) = B t 1 , B t 2 , , B t N T ,
F ( Z ˜ ( t ) ) = f Z 1 , N ( t ) , 1 N i = 1 N δ Z i , N ( t ) , f Z 2 , N ( t ) , 1 N i = 1 N δ Z i , N ( t ) , , f Z N , N ( t ) , 1 N i = 1 N δ Z i , N ( t ) T ,
G ( Z ˜ ( t ) ) = d i a g g Z 1 , N ( t ) , 1 N i = 1 N δ Z i , N ( t ) , g Z 2 , N ( t ) , 1 N i = 1 N δ Z i , N ( t ) , , g Z N , N ( t ) , 1 N i = 1 N δ Z i , N ( t ) T .
Then, (3) can be rewritten as
d Z ˜ ( t ) = F ( Z ˜ ( t ) ) d t + G ( Z ˜ ( t ) ) d B N ( t ) .
Recalling the definition of W 1 , one has
W 1 1 N i = 1 N δ Z i , N ( t ) , 1 N i = 1 N δ Y i , N ( t ) 1 N i = 1 N | Z i , N ( t ) Y i , N ( t ) | .
Then, for any t [ 0 , T ] and Z ˜ ( t ) , Y ˜ ( t ) R d N with | Z i , N ( t ) | | Y i , N ( t ) | R , it follows from Assumptions 1–3 that
Z ˜ ( t ) Y ˜ ( t ) , F ( Z ˜ ( t ) ) F ( Y ˜ ( t ) ) = i = 1 N Z i , N ( t ) Y i , N ( t ) , f Z i , N ( t ) , 1 N i = 1 N δ Z i , N ( t ) f Y i , N ( t ) , 1 N i = 1 N δ Y i , N ( t ) L R i = 1 N | Z i , N ( t ) Y i , N ( t ) | 2 + L i = 1 N | Z i , N ( t ) Y i , N ( t ) | · W 1 1 N i = 1 N δ Z i , N ( t ) , 1 N i = 1 N δ Y i , N ( t ) ( L R + L ) | Z ˜ ( t ) Y ˜ ( t ) | 2 ,
| G ( Z ˜ ( t ) ) G ( Y ˜ ( t ) ) | 2 2 L R i = 1 N | Z i , N ( t ) Y i , N ( t ) | 2 + 2 L 2 N i = 1 N | Z i , N ( t ) Y i , N ( t ) | 2 ( 2 L R + 2 L 2 ) | Z ˜ ( t ) Y ˜ ( t ) | 2 ,
| F ( Z ˜ ( t ) ) | = i = 1 N | f Z i , N ( t ) , 1 N i = 1 N δ Z i , N ( t ) | M 1 + | Z ˜ ( t ) | l + | Z ˜ ( t ) | ,
| G ( Z ˜ ( t ) ) | = i = 1 N | g Z i , N ( t ) , 1 N i = 1 N δ Z i , N ( t ) | M i = 1 N | Z i , N ( t ) | + W 1 1 N i = 1 N δ Z i , N ( t ) , δ 0 2 M | Z ˜ ( t ) | .
These together with the existence and uniqueness Lemma 4.1 in [6] imply that (6) has a unique solution on [ 0 , T ] for any N.
For any 1 i N and R > 0 , define the stopping time τ R i = inf { t [ 0 , T ] : | Z i , N ( t ) | R } , by the growth condition, apply the Itô formula to [ 1 + | x | ] p 2 , we can prove (5), and so we omit it here. □
The following lemma describes the propagation of chaos for MVSDE under the local conditions.
Lemma 2.
Let Assumptions 1–3 hold. Then
lim N sup 1 i N E sup t [ 0 , T ] | Z i , N ( t ) Z i ( t ) | 2 = 0 ,
Proof. 
For any 1 i N and R > 0 , let τ R i = inf { t [ 0 , T ] : | Z i , N ( t ) | R } . Then, the Itô formula gives
E sup 0 r t τ R i | Z i , N ( r ) Z i ( r ) | 2 2 E sup 0 r t τ R i 0 r Z i , N ( s ) Z i ( s ) , f Z i , N ( s ) , 1 N i = 1 N δ Z i , N ( s ) f Z i ( s ) , L Z i ( s ) d s + 2 E sup 0 r t τ R i 0 r Z i , N ( s ) Z i ( s ) , g Z i , N ( s ) , 1 N i = 1 N δ Z i , N ( s ) g Z i ( s ) , L Z i ( s ) d B s i + E [ sup 0 r t τ R i 0 r | g Z i , N ( s ) , 1 N i = 1 N δ Z i , N ( s ) g Z i ( s ) , L Z i ( s ) | 2 d s .
Denote
I 1 , R i ( r ) = 2 0 r Z i , N ( s ) Z i ( s ) , f Z i , N ( s ) , 1 N i = 1 N δ Z i , N ( s ) f Z i ( s ) , L Z i ( s ) d s , I 2 , R i ( r ) = 2 0 r Z i , N ( s ) Z i ( s ) , g Z i , N ( s ) , 1 N i = 1 N δ Z i , N ( s ) g Z i ( s ) , L Z i ( s ) d B s i , I 3 , R i ( r ) = 0 r | g Z i , N ( s ) , 1 N i = 1 N δ Z i , N ( s ) g Z i ( s ) , L Z i ( s ) | 2 d s .
It follows from Assumptions 1–3, the Hölder inequality, and the Schwarz inequality that
E sup 0 r t τ R i I 1 , R i ( r ) 2 E [ sup 0 r t τ R i 0 t Z i , N ( s ) Z i ( s ) , f Z i , N ( s ) , 1 N i = 1 N δ Z i , N ( s ) f Z i ( s ) , 1 N i = 1 N δ Z i , N ( s ) + f Z i ( s ) , 1 N i = 1 N δ Z i , N ( s ) f Z i ( s ) , L Z i ( s ) d s ] ( 2 L R + 1 ) 0 t E | Z i , N ( s τ R i ) Z i ( s τ R i ) | 2 d s + L 2 0 t E | 1 N i = 1 N δ Z i , N ( s τ R i ) L Z i ( s τ R i ) | 2 d s .
Combining Burkholder-Davis-Gundy (BDG) inequality and Assumption 2, we get
E sup 0 r t τ R i I 2 , R i ( r ) 2 E 0 t τ R i | Z i , N ( s ) Z i ( s ) | 2 | g Z i , N ( s ) , 1 N i = 1 N δ Z i , N ( s ) g Z i ( s ) , L Z i ( s ) | 2 d s 1 2 1 2 E sup 0 s t | Z i , N ( s τ R i ) Z i ( s τ R i ) | 2 + 2 E 0 t | g Z i , N ( s τ R i ) , 1 N i = 1 N δ Z i , N ( s τ R i ) g Z i ( s τ R i ) , L Z i ( s τ R i ) | 2 d s 1 2 E sup 0 s t | Z i , N ( s τ R i ) Z i ( s τ R i ) | 2 + 4 L R 0 t E | Z i , N ( s τ R i ) Z i ( s τ R i ) | 2 d s + 4 L 2 0 t E | 1 N i = 1 N δ Z i , N ( s τ R i ) L Z i ( s τ R i ) | 2 d s
Similarly,
E sup 0 r t τ R i I 3 i ( r ) 0 t τ R i E | g Z i , N ( s ) , 1 N i = 1 N δ Z i , N ( s ) g Z i ( s ) , L Z i ( t ) | 2 d s 2 L R 0 t E | Z i , N ( s τ R i ) Z i ( s τ R i ) | 2 d s + 2 L 2 0 t E | 1 N i = 1 N δ Z i , N ( s τ R i ) L Z i ( s τ R i ) | 2 d s .
Noting that
E | 1 N i = 1 N δ Z i , N ( s ) L Z i ( t ) | 2 = E | 1 N i = 1 N δ Z i , N ( s ) 1 N i = 1 N δ Z i ( s ) + 1 N i = 1 N δ Z i ( s ) L Z i ( t ) | 2 2 E | 1 N i = 1 N δ Z i , N ( s ) 1 N i = 1 N δ Z i ( s ) | 2 + 2 E | 1 N i = 1 N δ Z i ( s ) L Z i ( t ) | 2 .
Considering the Glivenko-Cantelli lemma (Lemma 4.1 in [20] and Lemma 4.3 in [6]), we get that, for q > 2 and t 0 ,
E | 1 N i = 1 N δ Z i ( s ) L Z i ( t ) | 2 C d , q ( E | Z i ( s ) | q ) 2 q Φ ( N ) ,
where C d , q is a constant dependent of d, q, and
Φ ( N ) : = N 1 2 + N q 2 q , d < 4 and q 4 , N 1 2 log ( 1 + N ) + N q 2 q , d = 4 and q 4 , N 2 d + N q 2 q , d > 4 and q d d 2 .
Substituting (9)–(13) into (8), we have
E sup 0 s t | Z i , N ( s τ R i ) Z i ( s τ R i ) | 2 2 ( 8 L R + 14 L 2 + 1 ) 0 t E sup 0 r s | Z i , N ( r τ R i ) Z i ( r τ R i ) | 2 d s + C Φ ( N ) ,
where C is a constant. Noting that R is independent of N and letting N , the desired assertion can be obtained by using the Gronwall inequality. □

4. Truncated Stochastic Theta Method and Strong Convergence

In this section, we establish the truncated stochastic theta method for the stochastic interacting particle system, and then examine strong convergence of continuous-time truncated stochastic theta scheme to the non-interacting particle system.

4.1. Numerical Methods and Associated Moments

We introduce the stochastic theta method for the stochastic interacting particle system (3). We partition the time interval [ 0 , T ] into n steps of size Δ = T / n with { t k = k Δ : k = 0 , 1 , , n } . Let Y ˜ 0 i , N , n = ξ i and
Y ˜ k + 1 i , N , n = Y ˜ k i , N , n + θ f Y ˜ k + 1 i , N , n , μ k + 1 Y ˜ , N , n Δ + ( 1 θ ) f Y ˜ k i , N , n , μ k Y ˜ , N , n Δ + g Y ˜ k i , N , n , μ k Y ˜ , N , n Δ B k i ,
where μ k Y ˜ , N , n = 1 N i = 1 N δ Y ˜ k i , N , n , and Δ B k i = B k + 1 i B k i . The parameter θ [ 0 , 1 ] decides the implicitness of the numerical scheme. θ = 0 implies the EM scheme, and θ = 1 implies the backward EM scheme. We should make sure an implicit scheme is well defined before we use it. To make sure the well-definedness, the drift term should satisfy
x y , f ( x , μ ) f ( y , μ ) K | x y | 2 ,
where K is a positive constant. We cannot relax this condition. From Assumption 1, L R may be ∞ as R , which means that the stochastic theta method (15) may be not well-defined. So, we fall back on modifying the stochastic theta scheme by truncating it. Choose a strictly decreasing function κ : ( 0 , 1 ) ( 0 , ) such that
lim Δ 0 κ ( Δ ) = , L κ ( Δ ) e L κ ( Δ ) Δ 1 , and κ ( Δ ) Δ 1 .
Such a function does exist. For example, let κ ( Δ ) = ln Δ 1 2 , then, κ ( Δ ) decreases strictly and tends to ∞ as Δ 0 . Define L κ ( Δ ) = κ ( Δ ) , then L κ ( Δ ) e L κ ( Δ ) Δ Δ 1 2 < 1 and κ ( Δ ) Δ 1 .
We define a truncated function by
f Δ ( y , · ) = f ( y , · ) , for | y | κ ( Δ ) , f κ ( Δ ) y | y | , · , for | y | > κ ( Δ ) .
It can be proved that the truncated function satisfies:
Lemma 3.
Under Assumptions 1–3, for any y , z R d and μ P 2 ( R d ) , it holds that
y z , f Δ ( y , μ ) f Δ ( z , μ ) L ¯ κ ( Δ ) | y z | 2 ,
where L ¯ κ ( Δ ) = 2 L κ ( Δ ) + 2 M ( 1 + | κ ( Δ ) | l + | κ ( Δ ) | ) .
Proof. 
The proof is similar to that of Lemma 2.3 in [21], so we omit the details here. □
For θ [ 0 , 1 ] , we construct the truncated stochastic theta method for (3)
Y k + 1 i , N , n = Y k i , N , n + θ f Δ Y k + 1 i , N , n , μ k + 1 Y , N , n Δ + ( 1 θ ) f Δ Y k i , N , n , μ k Y , N , n Δ + g Y k i , N , n , μ k Y , N , n Δ B k i ,
where μ k Y , N , n = 1 N i = 1 N δ Y k i , N , n . By (17) and Lemma 3, the monotone operator implies that (19) is well defined (see discussion in Jentzen et al. [22]). Considering the implicitness of (19), we set θ Δ < 1 2 M , and M is defined in Assumption 3. Thus, we set Δ 1 ( 0 , 1 2 θ M ) and choose Δ ( 0 , Δ 1 ] . Now, we extend the discrete truncated stochastic theta method to a continuous form. Let Y i , N ( t ) be the continuous form of Y k i , N , n such that Y i , N ( 0 ) = Y 0 i , N , n , and for any t [ 0 , T ] ,
0 t Y i , N ( s ) θ f Δ Y i , N ( s ) , L Y i , N ( s ) d s = ( 1 θ ) 0 t f Δ Y ^ i , N ( s ) , L Y ^ ¯ N ( s ) d s + 0 t g Y ^ i , N ( s ) , L Y ^ ¯ N ( s ) d B s i ,
where Y ^ i , N ( t ) = Y k i , N , n and L Y ^ ¯ N ( t ) = 1 N i = 1 N δ Y t k i , N , n for t [ t k , t k + 1 ) , k = 0 , 1 , , n .
Similarly, we can define Y ˜ i , N ( t ) as the continuous form of Y ˜ k i , N , n ,
0 t Y ˜ i , N ( s ) θ f Y ˜ i , N ( s ) , L Y ˜ i , N ( s ) d s = ( 1 θ ) 0 t f Y ˜ ^ i , N ( s ) , L Y ˜ ^ ¯ N ( s ) d s + 0 t g Y ˜ ^ i , N ( s ) , L Y ˜ ^ ¯ N ( s ) d B s i ,
Y ˜ ^ i , N ( t ) = Y ˜ k i , N , n and L Y ˜ ^ ¯ N ( t ) = 1 N i = 1 N δ Y ˜ t k i , N , n for t [ t k , t k + 1 ) , k = 0 , 1 , , n .
For denoting convenience, we use C i , i = 0 , 2 , , 39 to denote different positive constants independent of Δ below, maybe some of C i , i = 0 , 2 , , 39 are dependent of n , T or p. Now, we proceed to estimate the pth moment of the numerical solution.
Lemma 4.
Let Assumption 3 hold. For θ [ 1 2 , 1 ] and p 2 , it holds that
E sup 0 k n | Y k i , N , n | p C 0 ,
and
E sup 0 k n | Y ˜ k i , N , n | p C 1 ,
where C 0 and C 1 are positive constants.
Proof. 
Denote Z k i , N , n = Y k i , N , n θ f Δ Y k i , N , n , μ k Y , N , n Δ , by (19), we have
| Z k + 1 i , N , n | 2 = | Z k i , N , n | 2 + 2 Z k i , N , n , f Δ Y k i , N , n , μ k Y , N , n Δ + | f Δ Y k i , N , n , μ k Y , N , n | 2 Δ 2 + | g Y k i , N , n , μ k Y , N , n Δ B k i | 2 + 2 Z k i , N , n + f Δ Y k i , N , n , μ k Y , N , n Δ , g Y k i , N , n , μ k Y , N , n Δ B k i = | Z k i , N , n | 2 + 2 Y k i , N , n , f Δ Y k i , N , n , μ k Y , N , n Δ + ( 1 2 θ ) | f Δ Y k i , N , n , μ k Y , N , n | 2 Δ 2 + | g Y k i , N , n , μ k Y , N , n Δ B k i | 2 + 2 Y k i , N , n + ( 1 θ ) f Δ Y k i , N , n , μ k Y , N , n Δ , g Y k i , N , n , μ k Y , N , n Δ B k i .
Noting that θ 1 2 and f Δ Y k i , N , n , μ k Y , N , n Δ = 1 θ ( Y k i , N , n Z k i , N , n ) , it follows from Assumption 3 that
| Z k + 1 i , N , n | 2 | Z k i , N , n | 2 + 2 M 1 + | Y k i , N , n | 2 + W 2 2 ( μ k Y , N , n , δ 0 ) Δ + | g Y k i , N , n , μ k Y , N , n Δ B k i | 2 + 2 θ Y k i , N , n , g Y k i , N , n , μ k Y , N , n Δ B k i 2 1 θ θ Z k i , N , n , g Y k i , N , n , μ k Y , N , n Δ B k i .
Summing both sides from 0 to k to give
| Z k + 1 i , N , n | 2 | Z 0 i , N , n | 2 + 2 M T + 2 M j = 0 k | Y j i , N , n | 2 Δ + 2 M j = 0 k W 2 2 ( μ k Y , N , n , δ 0 ) Δ + j = 0 k | g Y j i , N , n , μ j Y , N , n Δ B j i | 2 + 2 θ j = 0 k Y j i , N , n , g Y j i , N , n , μ j Y , N , n Δ B j i 2 1 θ θ j = 0 k Z j i , N , n , g Y j i , N , n , μ j Y , N , n Δ B j i .
For any p 1 , it follows from the elementary inequality that
| Z k + 1 i , N , n | 2 p 6 p 1 2 p M p j = 0 k | Y j i , N , n | 2 p Δ p + 6 p 1 2 p M p j = 0 k W 2 2 ( μ k Y , N , n , δ 0 ) Δ p + 6 p 1 j = 0 k | g Y j i , N , n , μ j Y , N , n Δ B j i | 2 p + 6 p 1 4 p | j = 0 k Y j i , N , n , g Y j i , N , n , μ j Y , N , n Δ B j i | p + 6 p 1 2 p | j = 0 k Z j i , N , n , g Y j i , N , n , μ j Y , N , n Δ B j i | p + 6 p 1 | Z 0 i , N , n | 2 + 2 M T p .
Noting that W 2 2 ( μ k Y , N , n , δ 0 ) = W 2 2 ( δ Y k i , N , n , δ 0 ) E | Y k i , N , n | 2 , for 0 < s < n , we have
E sup 0 k s j = 0 k | Y j i , N , n | 2 p n p 1 j = 0 s E | Y j i , N , n | 2 p ,
and by Assumption 3, we have
E sup 0 k s j = 0 k | g Y j i , N , n , μ j Y , N , n Δ B j i | 2 p n p 1 E j = 0 s | g Y j i , N , n , μ j Y , N , n | 2 p | Δ B j i | 2 p ( 2 p 1 ) ! ! n p 1 M p Δ p j = 0 s E | Y j i , N , n | 2 + W 2 2 ( μ j Y , N , n , δ 0 ) p 4 ( 2 p 1 ) ! ! ( 2 n ) p 1 M p Δ p j = 0 s E | Y j i , N , n | 2 p .
Similarly, by Assumption 3 and the BDG inequality, we have
E sup 0 k s | j = 0 k Y j i , N , n , g Y j i , N , n , μ j Y , N , n Δ B j i | p c 1 ( p ) E j = 0 s | Y j i , N , n | 2 | g Y j i , N , n , μ j Y , N , n | 2 Δ p 2 c 1 ( p ) n p 2 1 M p 2 Δ p 2 E j = 0 s | Y j i , N , n | p | Y j i , N , n | 2 + W 2 2 ( μ j Y , N , n , δ 0 ) p 2 c 1 ( p ) 2 p 1 ( 2 n ) p 2 1 M p 2 Δ p 2 j = 0 s E | Y j i , N , n | 2 p ,
and
E sup 0 k s | j = 0 k Z j i , N , n , g Y j i , N , n , μ j Y , N , n Δ B j i | p c 1 ( p ) E j = 0 s | Z j i , N , n | 2 | g Y j i , N , n , μ j Y , N , n | 2 Δ p 2 c 1 ( p ) n p 2 1 M p 2 Δ p 2 E sup 0 j s + 1 | Z j i , N , n | p j = 0 s | Y j i , N , n | 2 + W 2 2 ( μ j Y , N , n , δ 0 ) p 2 1 2 E sup 0 j s + 1 | Z j i , N , n | 2 p + 2 c 1 2 ( p ) ( 2 n ) p 1 M p Δ p j = 0 k E | Y j i , N , n | 2 p ,
where c 1 ( p ) = p p + 1 2 ( p 1 ) p 1 p / 2 . Substituting (23)–(26) into (22) to give
E sup 0 j s + 1 | Z j i , N , n | 2 p C 2 + C 3 j = 0 s E | Y j i , N , n | 2 p .
We derive from Z k i , N , n = Y k i , N , n θ f Δ Y k i , N , n , μ k Y , N , n Δ and Lemma 3 that
| Z k i , N , n | 2 = | Y k i , N , n | 2 2 Y k i , N , n , θ f Δ Y k i , N , n , μ k Y , N , n Δ + | θ f Δ Y k i , N , n , μ k Y , N , n Δ | 2 | Y k i , N , n | 2 2 M θ Δ 1 + | Y k i , N , n | 2 + W 2 2 ( μ k Y , N , n , δ 0 ) = ( 1 2 M θ Δ ) | Y k i , N , n | 2 2 M θ Δ 2 M θ Δ W 2 2 ( μ k Y , N , n , δ 0 ) .
Thus,
| Y k i , N , n | 2 1 1 2 M θ Δ | Z k i , N , n | 2 + 2 M θ Δ + 2 M θ Δ W 2 2 ( μ k Y , N , n , δ 0 ) ,
which together with (27) yields
E sup 0 k n | Y k i , N , n | 2 p C 4 + C 5 k = 0 n 1 E sup 0 j k | Y j i , N , n | 2 p .
Similarly, we can obtain
E sup 0 k n | Y ˜ k i , N , n | 2 p C 6 + C 7 k = 0 n 1 E sup 0 j k | Y ˜ j i , N , n | 2 p .
By the discrete Gronwall inequality, the proof can be finished. □
Lemma 5.
Let Assumption 3 hold. Then for any p 2 , there exist two positive constants C 8 and C 9 such that
E sup 0 t T | Y i , N ( t ) | p C 8 ,
and
E sup 0 k n 1 sup t k t < t k + 1 | Y i , N ( t ) Y i , N ( t k ) | p C 9 Δ p 2 ,
Proof. 
Let V i , N ( t ) = Y i , N ( t ) θ f Δ Y i , N ( t ) , L Y i , N ( t ) Δ , for any p 2 and t [ 0 , T ] , it follows from (20), the elementary inequality, the Hölder inequality, the BDG inequality, and Lemma 4 that
E sup 0 r t | V i , N ( r ) | p 3 p 1 E | V i , N ( 0 ) | p + 3 p 1 E ( sup 0 r t 0 r 1 θ ) f Δ Y ^ i , N ( s ) , L Y ^ ¯ N ( s ) d s p + 3 p 1 E sup 0 r t 0 r g Y ^ i , N ( s ) , L Y ^ ¯ N ( s ) d B s i p 3 p 1 E | V i , N ( 0 ) | p + 3 p 1 t p 1 ( 1 θ ) p E 0 t | f Δ Y ^ i , N ( s ) , L Y ^ ¯ N ( s ) | p d s + 3 p 1 c 1 ( p ) t p 2 1 E 0 t | g Y ^ i , N ( s ) , L Y ^ ¯ N ( s ) | 2 d s p 2 C 10 + C 11 E 0 t 1 + | Y ^ i , N ( s ) | p + | Y ^ i , N ( s ) | l p + E | Y ^ i , N ( s ) | p d s C 12 ,
where C 10 , C 11 , C 12 are positive constants. Similar to (28), we have
| Y i , N ( t ) | 2 1 1 2 M θ Δ | V i , N ( t ) | 2 + 2 M θ Δ + 2 M θ Δ W 2 2 ( L Y i , N ( t ) , δ 0 ) ,
which together with (31) yields
E sup 0 t T | Y i , N ( t ) | 2 C 13 + C 14 E sup 0 t T | V i , N ( t ) | p : = C 6 ,
where C 11 and C 12 are positive constants.
Now we proceed to prove (30). By (20), the Hölder inequality, and the BDG inequality, we have
E sup t k t < t k + 1 | V i , N ( t ) V i , N ( t k ) | p 2 p 1 E sup t k t < t k + 1 | t k t ( 1 θ ) f Δ Y ^ i , N ( s ) , L Y ^ ¯ N ( s ) d s | p + 2 p 1 E sup t k t < t k + 1 | t k t g Y ^ i , N ( s ) , L Y ^ ¯ N ( s ) d B s i | p 2 p 1 Δ p 1 E t k t k + 1 | ( 1 θ ) f Δ Y ^ i , N ( s ) , L Y ^ ¯ N ( s ) | p d s + 2 p 1 c 1 ( p ) Δ p 2 1 E t k t k + 1 | g Y ^ i , N ( s ) , L Y ^ ¯ N ( s ) | p d s C 15 Δ p + C 16 Δ p 2 C 17 Δ p 2 ,
where C 15 , C 16 , C 17 are positive constants. By Lemma 4 and (32), we obtain
E sup t k t < t k + 1 | V i , N ( t ) Y i , N ( t k ) | p 2 p 1 E sup t k t < t k + 1 | V i , N ( t ) V i , N ( t k ) | p + 2 p 1 E | V i , N ( t k ) Y i , N ( t k ) | p 2 p 1 E sup t k t < t k + 1 | V i , N ( t ) V i , N ( t k ) | p + 2 p 1 θ p Δ p E | f Δ Y i , N ( t k ) , L Y i , N ( t k ) | p 2 p 1 C 17 Δ p 2 + 2 p 1 θ p Δ p E | f Δ Y i , N ( t k ) , L Y i , N ( t k ) | p C 18 Δ p 2 ,
where C 18 ia a positive constant. Thus,
E sup t k t < t k + 1 | Y i , N ( t ) Y i , N ( t k ) | p E sup t k t < t k + 1 | Y i , N ( t ) V i , N ( t ) | p + E sup t k t < t k + 1 | V i , N ( t ) Y i , N ( t k ) | p C 19 Δ p 2 .
The desired assertion holds. □
Now, we turn to check the error of the solutions of solving (3) by the truncated stochastic theta method and the stochastic theta method.
Define
τ ^ Δ i = inf { r [ 0 , T ] : | Y i , N ( r ) | κ ( Δ ) } , τ ˜ Δ i = inf { r [ 0 , T ] : | Y ˜ i , N ( r ) | κ ( Δ ) } , τ Δ i = τ ^ Δ i τ ˜ Δ i .
Lemma 6.
Let Assumptions 1–3 hold. Then for any T > 0 and θ [ 1 2 , 1 ] , it holds that
P ( τ ^ Δ i T ) C 20 ( κ ( Δ ) ) p , P ( τ ˜ Δ i T ) C 21 ( κ ( Δ ) ) p ,
where C 20 and C 21 are positive constants.
Proof. 
The proof can be finished by the Chebyshev inequality, so we omit it here. □
Lemma 7.
Under Assumptions 1–3, it holds that for θ [ 1 2 , 1 ]
E sup 0 r T | Y i , N ( r τ Δ i ) Y ˜ i , N ( r τ Δ i ) | 2 C 22 e L ¯ κ ( Δ ) Δ 1 2 .
Proof. 
Denote e ˜ i ( t ) = Y i , N ( t ) Y ˜ i , N ( t ) . Applying the Itô formula to | e ˜ i ( t τ Δ i ) | 2 gives
| e ˜ i ( t τ Δ i ) | 2 2 0 t τ Δ i { Y i , N ( s ) Y ˜ i , N ( s ) , ( 1 θ ) f Δ Y ^ i , N ( s ) , L Y ^ ¯ N ( s ) f Y ˜ ^ i , N ( s ) , L Y ˜ ^ ¯ N ( s ) + Y i , N ( s ) Y ˜ i , N ( s ) , θ f Δ Y i , N ( s ) , L Y i , N ( s ) f Y ˜ i , N ( s ) , L Y ˜ i , N ( s ) } d s + 2 0 t τ Δ i Y i , N ( s ) Y ˜ i , N ( s ) , g Y ^ i , N ( s ) , L Y ^ ¯ N ( s ) g Y ˜ ^ i , N ( s ) , L Y ˜ ^ ¯ N ( s ) d B s i + 0 t τ Δ i | g Y ^ i , N ( s ) , L Y ^ ¯ N ( s ) g Y ˜ ^ i , N ( s ) , L Y ˜ ^ ¯ N ( s ) | 2 d s = Ξ 1 i ( t ) + Ξ 2 i ( t ) + Ξ 3 i ( t ) .
Note that f Δ Y i , N ( s ) = f Y i , N ( s ) for 0 s r τ Δ i . By the Hölder inequality, Lemmas 3 and 5 we have
E sup 0 r t Ξ 1 i ( r ) 2 E ( 0 t { Y i , N ( s τ Δ i ) Y ^ i , N ( s τ Δ i ) + Y ^ i , N ( s τ Δ i ) Y ˜ ^ i , N ( s τ Δ i ) + Y ˜ ^ i , N ( s τ Δ i ) Y ˜ i , N ( s τ Δ i ) , ( 1 θ ) f Y ^ i , N ( s τ Δ i ) , L Y ^ ¯ N ( s τ Δ i ) f Y ˜ ^ i , N ( s τ Δ i ) , L Y ˜ ^ ¯ N ( s τ Δ i ) + Y i , N ( s τ Δ i ) Y ˜ i , N ( s τ Δ i ) , θ f Y i , N ( s τ Δ i ) , L Y i , N ( s τ Δ i ) f Y ˜ i , N ( s τ Δ i ) , L Y ˜ i , N ( s τ Δ i ) } d s 2 0 t E | Y i , N ( s τ Δ i ) Y ^ i , N ( s τ Δ i ) | 2 1 2 E | f Y ^ i , N ( s τ Δ i ) , L Y ^ ¯ N ( s τ Δ i ) f Y ˜ ^ i , N ( s τ Δ i ) , L Y ˜ ^ ¯ N ( s τ Δ i ) | 2 1 2 d s + 2 0 t E | Y ^ i , N ( s τ Δ i ) Y ˜ i , N ( s τ Δ i ) | 2 1 2 E | f Y ^ i , N ( s τ Δ i ) , L Y ^ ¯ N ( s τ Δ i ) f Y ˜ ^ i , N ( s τ Δ i ) , L Y ˜ ^ ¯ N ( s τ Δ i ) | 2 1 2 d s + C 23 L ¯ κ ( Δ ) 0 t E sup 0 u s | Y ^ i , N ( u τ Δ i ) Y ˜ ^ i , N ( u τ Δ i ) | 2 d s + C 24 L ¯ κ ( Δ ) 0 t E sup 0 u s | Y i , N ( u τ Δ i ) Y ˜ i , N ( u τ Δ i ) | 2 d s C 25 Δ 1 2 + C 26 L ¯ κ ( Δ ) 0 t E sup 0 u s | Y i , N ( u τ Δ i ) Y ˜ i , N ( u τ Δ i ) | 2 d s .
By the BDG inequality, the Cauchy-Schwarz inequality and Assumption 2, we have
E sup 0 r t Ξ 2 i ( r ) 8 E 0 t | Y i , N ( s τ Δ i ) Y ˜ i , N ( s τ Δ i ) | 2 | g Y ^ i , N ( s τ Δ i ) , L Y ^ ¯ N ( s τ Δ i ) g Y ˜ ^ i , N ( s τ Δ i ) , L Y ˜ ^ ¯ N ( s τ Δ i ) | 2 d s 1 2 8 E sup 0 s t | Y i , N ( s τ Δ i ) Y ˜ i , N ( s τ Δ i ) | 2 0 t | g Y ^ i , N ( s τ Δ i ) , L Y ^ ¯ N ( s τ Δ i ) g Y ˜ ^ i , N ( s ) , L Y ˜ ^ ¯ N ( s ) | 2 d s 1 2 1 2 E sup 0 s t | Y i , N ( s τ Δ i ) Y ˜ i , N ( s τ Δ i ) | 2 + 128 ( L ¯ κ ( Δ ) + L 2 ) 0 t E sup 0 u s | Y i , N ( u τ Δ i ) Y ˜ i , N ( u τ Δ i ) | 2 d s .
Similarly,
E sup 0 r t Ξ 3 i ( r ) E 0 t | g Y ^ i , N ( s τ Δ i ) , L Y 1 ¯ N ( s τ Δ i ) g Y ˜ ^ i , N ( s τ Δ i ) , L Y ˜ ^ ¯ N ( s τ Δ i ) | 2 d s 2 ( L ¯ κ ( Δ ) + L 2 ) 0 t E sup 0 u s | Y i , N ( u τ Δ i ) Y ˜ i , N ( u τ Δ i ) | 2 d s .
Combining (33)–(36) yields
E sup 0 r t | Y i , N ( r τ Δ i ) Y ˜ i , N ( r τ Δ i ) | 2 C 27 ( L ¯ κ ( Δ ) + L 2 ) 0 t E sup 0 u s | Y i , N ( u τ Δ i ) Y ˜ i , N ( u τ Δ i ) | 2 d s + C 28 Δ 1 2 .
The Gronwall inequality yields E sup 0 r T | Y i , N ( r τ Δ i ) Y ˜ i , N ( r τ Δ i ) | 2 C 29 e L ¯ κ ( Δ ) + L 2 Δ 1 2 . This completes the proof. □

4.2. Strong Convergence

Define
ζ Δ i = inf { r [ 0 , T ] : | Z i , N ( r ) | κ ( Δ ) } , τ ^ Δ i = inf { r [ 0 , T ] : | Y i , N ( r ) | κ ( Δ ) } , v Δ i = ζ Δ i τ ^ Δ i .
Lemma 8.
Under Assumptions 1–3, it holds that for any T > 0 and θ [ 1 2 , 1 ] ,
P ( ζ Δ i T ) C 30 ( κ ( Δ ) ) p , P ( τ ^ Δ i T ) C 31 ( κ ( Δ ) ) p ,
where C 30 and C 31 are positive constants.
Proof. 
The proof is similar to that of Lemma 6, so we omit the details here. □
Lemma 9.
Under Assumptions 1–3, it holds that for θ [ 1 2 , 1 ]
E sup 0 r T | Y i , N ( r v Δ i ) Z i , N ( r v Δ i ) | 2 C 32 e L ¯ κ ( Δ ) Δ ,
where C 32 is a positive constant.
Proof. 
Denote e i ( r ) = Y i , N ( r ) Z i , N ( r ) . Applying the Itô formula to | e i ( r v Δ i ) | 2 , the rest of this proof is similar to that of Lemma 7, so we omit it here. □
Lemma 10.
Let Assumptions 1–3 hold. For any ϵ > 0 and θ [ 1 2 , 1 ] , there exists a Δ * such that for any Δ ( 0 , Δ * ) ,
E sup 0 r T | Y i , N ( r ) Z i , N ( r ) | 2 < ϵ , .
Proof. 
Recall the Young inequality,
Z q Y q η Z p p + p q p η q p q Y p p q , q < p , η > 0 ,
for any p > 2 and η > 0 , it has
E sup 0 r T | Y i , N ( r ) Z i , N ( r ) | 2 E 1 { ζ Δ i > T , τ ^ Δ i > T } sup 0 r T | Y i , N ( r ) Z i , N ( r ) | 2 + 2 η p E sup 0 r T | Y i , N ( r ) Z i , N ( r ) | p + p 2 p η 2 p 2 P ( ζ Δ i T or τ ^ Δ i T ) ,
which, together with Lemmas 1, 5 and 9, yields
E sup 0 r T | Y i , N ( r ) Z i , N ( r ) | 2 E sup 0 r T | Y i , N ( r v Δ i ) Z i , N ( r v Δ i ) | 2 + 2 η C 33 p + 2 ( p 2 ) C 34 p η 2 p 2 ( κ ( Δ ) ) p .
For each ϵ > 0 , we can choose a sufficiently small η to satisfy 2 η C 33 p < ϵ 3 , and a sufficiently large κ ( Δ ) with Δ sufficiently small such that
2 ( p 2 ) C 34 p η 2 p 2 ( κ ( Δ ) ) p < ϵ 3 , and C 32 e L ¯ κ ( Δ ) Δ < ϵ 3 .
Thus, the proof is finished. □
Theorem 2.
Let Assumptions 1–3 hold. For any ϵ > 0 and θ [ 1 2 , 1 ] , there exists a Δ * such that
lim N sup 0 i N E sup 0 r T | Y i , N ( r ) Z i ( r ) | 2 = 0 .
Proof. 
The proof can be finished by the triangle inequality, we omit the details here. □
Remark 1.
Compared to the standard SDEs, it is difficult to establish the rate of strong convergence of the numerical approximation for MVSDEs under local Lipschtiz drift coefficient due to that the stopping time technique cannot be directly applied to Mckean-Vlasov SDEs and thus the Gronwall inequality in the form of stopped process cannot be used. In Liu-Shi-Wu [19], they established the strong convergence of the numerical solution of Euler-Maruyama method for the MVSDEs whose drift and diffusion coefficients are dependent on the distribution and satisfies the local Lipschitz condition with Lipschitz constant L R = O ( log R ) . They also showed that when the Lipschitz constant L R is independent of R, the order of convergence is 1 / 2 under some polynomial growth conditions. Following their assertions in [19], we can obtain the convergence order of the truncated stochastic theta method, for example, we can choose sufficiently small Δ, η, and L ¯ such that 2 η C 33 p < C 35 Δ , 2 ( p 2 ) C 34 p η 2 p 2 κ ( Δ ) p < C 36 Δ , and C 32 e L ¯ Δ < C 37 Δ , thus,
E sup 0 r T | Y i , N ( r ) Z i ( r ) | 2 = E sup 0 r T | Y i , N ( r ) Z i , N ( r ) + Z i , N ( r ) Z i ( r ) | 2 C 38 ( N 1 / 2 + Δ 1 / 2 ) + C 39 Δ .
This convergence order can be observed in our numerical simulation.

5. Stability of the Truncated Stochastic Theta Method

Having established the strong convergence of truncated stochastic theta method, we will proceed to the asymptotical mean square stability of both the underlying (3) and the truncated stochastic theta method. We suppose that f ( 0 , 0 ) = 0 , g ( 0 , 0 ) = 0 and give the following two definitions of stability.
Definition 1.
The system of interacting particles (3) is said to be asymptotically stable in mean square, if
lim t E | Z i , N ( t ) | 2 = 0 .
Definition 2.
For a given step size Δ > 0 , the truncated stochastic theta method is said to be asymptotically stable in mean square if for any initial value Y 0 i , N , n = ξ R d
lim k E | Y k i , N , n | 2 = 0 .
We first recall a result on the stability of the exact solution for interacting particle system (3) and for which we need an extra assumption.
Assumption 4.
For any x R d and μ P 2 ( R d ) , there exist positive constants a 1 , a 2 such that
2 x , f ( x , μ ) + | g ( x , μ ) | 2 a 1 | x | 2 + a 2 W 2 2 ( μ , δ 0 ) .
This Lyapunov-type condition ensures a form of mean-square coercivity, which is crucial in proving stability of the system.
Theorem 3.
Let Assumptions 1–4 hold. If a 1 > a 2 , for any i N and some a ( 0 , a 1 a 2 ) , the solution Z i , N ( t ) to interacting particle system (3) satisfies
lim t 1 t log ( E | Z i , N ( t ) | 2 ) a .
Proof. 
For any i N and some a ( 0 , a 1 a 2 ) , the Itô formula gives
e a t | Z i , N ( t ) | 2 = | ξ i | 2 + 0 t a e a s | Z i , N ( s ) | 2 d s + 2 0 t e a s Z i , N ( s ) , f ( Z i , N ( s ) , 1 N i = 1 N δ Z i , N ( s ) ) d s + 0 t e a s | Z i , N ( s ) , 1 N i = 1 N δ Z i , N ( s ) ) | 2 d s + 2 0 t e a s Z i , N ( s ) , g ( Z i , N ( s ) , 1 N i = 1 N δ Z i , N ( s ) ) d B s i .
Taking expectation on both sides of (43) and considering Assumption 4 to give
e a t E | Z i , N ( t ) | 2 = E | ξ i | 2 + 0 t a e a s E | Z i , N ( s ) | 2 d s + 2 0 t e a s E Z i , N ( s ) , f ( Z i , N ( s ) , 1 N i = 1 N δ Z i , N ( s ) ) d s + 0 t e a s E | Z i , N ( s ) , 1 N i = 1 N δ Z i , N ( s ) ) | 2 d s E | ξ i | 2 + 0 t e a s ( a a 1 ) E | Z i , N ( s ) | 2 + a 2 W 2 2 ( 1 N i = 1 N δ Z i , N ( s ) , δ 0 ) d s E | ξ i | 2 + 0 t e a s ( a a 1 + a 2 ) E | Z i , N ( s ) | 2 d s ,
where we use a result of Wasserstein metric W 2 2 ( 1 N i = 1 N δ Z i , N ( s ) , δ 0 ) E 1 N j = 1 N | Z j , N ( s ) | 2 and E 1 N j = 1 N | Z j , N ( s ) | 2 = E | Z i , N ( s ) | 2 . Thus, for a ( 0 , a 1 a 2 ) , (44) gives
E | Z i , N ( t ) | 2 e a t E | ξ i | 2 ,
which means
lim t 1 t log ( E | Z i , N ( t ) | 2 ) a .
Proposition 1.
(45) implies (41).
Next, we give a theorem on the asymptotical mean square stability of the truncated stochastic theta method. This theorem shows that under certain nonlinear conditions, for all step sizes Δ > 0 , the truncated stochastic theta method with θ [ 1 2 , 1 ] preserves the asymptotical mean square stability of the interacting particle system (3).
Theorem 4.
Let Assumptions 2–4 hold. If θ [ 1 2 , 1 ] , then the truncated stochastic theta method applied to interacting particle system (3) is asymptotically mean square stable for all Δ > 0 .
Proof. 
Taking expectation on both-sides of (19), we have
E | Y k + 1 i , N , n θ f Δ Y k + 1 i , N , n , μ k + 1 Y , N , n Δ | 2 = E | Y k i , N , n θ f Δ Y k i , N , n , μ k Y , N , n Δ | 2 + 2 E Y k i , N , n , f Δ Y k i , N , n , μ k Y , N , n Δ + ( 1 2 θ ) E | f Δ Y k i , N , n , μ k Y , N , n | 2 Δ 2 + E | g Y k i , N , n , μ k Y , N , n Δ B k i | 2 + 2 E Y k i , N , n + ( 1 θ ) f Δ Y k i , N , n , μ k Y , N , n Δ , g Y k i , N , n , μ k Y , N , n Δ B k i .
Notice that, by definitions, f Y k i , N , n , μ k Y , N , n are measurable w.r.t. F k = g { B t i , 0 t k Δ } , and F k is independent of B ( k + 1 ) Δ i B k Δ i . Thus by conditional on F k and using the facts that
E ( B ( k + 1 ) Δ i B k Δ i ) 2 = Δ and E B ( k + 1 ) Δ i B k Δ i = 0 ,
(46) yields
E | Y k + 1 i , N , n θ f Δ Y k + 1 i , N , n , μ k + 1 Y , N , n Δ | 2 = E | Y k i , N , n θ f Δ Y k i , N , n , μ k Y , N , n Δ | 2 + 2 Δ E Y k i , N , n , f Δ Y k i , N , n , μ k Y , N , n + ( 1 2 θ ) Δ 2 E | f Δ Y k i , N , n , μ k Y , N , n | 2 + Δ E | g Y k i , N , n , μ k Y , N , n | 2 .
Set I k = E | Y k i , N , n θ f Δ Y k i , N , n , μ k Y , N , n Δ | 2 and using Assumption 4, we have
I k + 1 = I k + 2 Δ E Y k i , N , n , f Δ Y k i , N , n , μ k Y , N , n + Δ E | g Y k i , N , n , μ k Y , N , n | 2 + ( 1 2 θ ) Δ 2 E | f Δ Y k i , N , n , μ k Y , N , n | 2 I k a 1 E | Y k i , N , n | 2 + a 2 W 2 2 ( μ k Y , N , n , δ 0 ) + ( 1 2 θ ) Δ 2 E | f Δ Y k i , N , n , μ k Y , N , n | 2 I k ( a 1 a 2 ) E | Y k i , N , n | 2 + ( 1 2 θ ) Δ 2 E | f Δ Y k i , N , n , μ k Y , N , n | 2 ,
where we use a result of Wasserstein metric W 2 2 ( μ k Y , N , n , δ 0 ) ) E | Y k i , N , n | 2 .
By iteration, we have
I k + 1 I 0 ( a 1 a 2 ) l = 0 k E | Y l i , N , n | 2 + ( 1 2 θ ) Δ 2 l = 0 k E | f Δ Y l i , N , n , μ l Y , N , n | 2 .
In the case of θ [ 1 2 , 1 ] , ( 1 2 θ ) 0 and ( 1 2 θ ) Δ 2 l = 0 k E | f Δ Y l i , N , n , μ l Y , N , n | 2 is bounded. Since ( a 1 a 2 ) > 0 , we can obtain from (47) that
lim k E | Y k i , N , n | 2 = 0 ,
i.e., the truncated stochastic theta method is asymptotically mean square stable for all Δ > 0 . □

6. Numerical Example

Example 1.
Let B ( t ) be a 1-dimensional Brownian motion and consider
d Z ( t ) = Z ( t ) Z 3 ( t ) + 1 4 E Z ( t ) d t + 1 4 Z ( t ) + E Z ( t ) d B ( t ) , t [ 0 , 1 ] , Z ( 0 ) = 1 ,
where f ( x , u ) = x x 3 + 1 4 R z μ ( d z ) , g ( x , u ) = 1 4 ( x + R z μ ( d z ) ) . For any integer R 2 and x , y , μ R with | x | | y | R and a = 42 ,
x y , f ( x , μ ) f ( y , μ ) = x y , x + y x 3 + y 3 42 log R | x y | 2 ,
| g ( x , μ ) g ( y , μ ) | 2 = 1 16 | x y | 2 .
For R 2 with | x | | y | R and a = 42 , we have | g ( x , μ ) g ( y , μ ) | 2 = 1 16 | x y | 2 42 log R | x y | 2 . Furthermore, For x R and P ( · × R ) = μ , P ( R × · ) = v ,
| f ( x , μ ) f ( x , v ) | = 1 4 | R z μ ( d z ) R z v ( d z ) | 1 4 | R | z z | P ( d z , d z ) | 1 4 W 1 ( μ , v ) ,
| g ( x , μ ) g ( x , v ) | = 1 4 | R z μ ( d z ) R z v ( d z ) | 1 4 | R | z z | P ( d z , d z ) | 1 4 W 1 ( μ , v ) .
So, Assumptions 1 and 2 hold. For any x R and μ P 2 ( R ) , by the Lyapunov inequality and the Young inequality, we have
x f ( x , μ ) = x x x 3 + 1 4 R z μ ( d z ) 1 4 1 + x 2 + W 2 2 ( μ , δ 0 ) , | f ( x , μ ) | = | x x 3 + 1 4 R z μ ( d z ) | 2 1 + | x | 3 + W 1 ( μ , δ 0 ) ,
and
| g ( x , μ ) | = | 1 4 x + R z μ ( d z ) | 1 4 | x | + W 1 ( μ , δ 0 ) ,
which means Assumption 3 holds. Thus Equation (48) admits a unique solution Z ( t ) 0 t T . Furthermore, we can obtain
x f ( x , μ ) + 1 2 | g ( x , μ ) | 2 = x x x 3 + 1 4 R z μ ( d z ) + 1 32 | x + R z μ ( d z ) | 2 1 2 | x | 2 + 1 4 W 2 2 ( μ , δ 0 ) ) ,
thus, Assumption 4 holds.
We have the interacting particle system,
d Z i , N ( t ) = Z i , N ( t ) ( Z i , N ( t ) ) 3 + 1 4 N i = 1 N Z i , N ( t ) d t + 1 4 Z i , N ( t ) + 1 4 N i = 1 N Z i , N ( t ) d B i ( t ) , t [ 0 , 1 ] ,
subject to Z i , N ( 0 ) = 1 , i = 1 , 2 , , N .
Let κ ( Δ ) = ln Δ 1 2 and Δ = 2 10 . The truncated stochastic theta scheme for Equation (51) reads
Y k + 1 i , N , n = Y k i , N , n + θ f Δ Y k + 1 i , N , n , 1 N i = 1 N Y k + 1 i , N , n Δ + ( 1 θ ) f Δ Y k i , N , n , + 1 N i = 1 N Y k i , N , n Δ + g Y k i , N , n , 1 N i = 1 N Y k i , N , n Δ B k i
with initial data Y 0 i , N , n = 1 . It is difficult to obtain the analytic solutions of Equation (48) and the interacting particle system, so we use the reference solution { Y i , N , n ( t n k ) } generated by the EM method with n = 2 10 . We use the maximum sample average ( N = 100 ) of the absolute error max 1 k n 1 N i = 1 N | Y i , N , n ( t n k ) Y k i , N , n | between the numerical solution { Y k i , N , n } of the truncated stochastic theta scheme and the reference solution { Y i , N , n ( t n k ) } at time t n k to denote the error and plot the numerical results in Figure 1 and Figure 2 and which verifies the convergence and asymptotical mean square stability of the proposed scheme.

7. Conclusions

In this paper, we have focused the strong convergence and asymptotical mean square stability of the stochastic theta method for McKean-Vlasov stochastic differential equations (MVSDEs) under local Lipschitz condition. We have used the empirical distribution to represent the law and introduced the interacting particle system to approximate the MVSDE. We have introduced the truncated stochastic theta method and showed that the solution of the truncated stochastic theta scheme for the non-interacting particle system strongly converges to the exact solution. Moreover, we have studied the asymptotical mean square stability of MVSDE and the truncated stochastic theta scheme by adding an Lyapunov-type condition on the drift and diffusion coefficients and presented one example to check our theory results.

Author Contributions

Conceptualization, H.C. and H.Y.; methodology, Q.Z.; software, H.C.; validation, H.C., H.Y. and Q.Z.; formal analysis, H.C.; investigation, H.C.; resources, Q.Z.; data curation, H.C.; writing—original draft preparation, H.C.; writing—review and editing, H.Y.; visualization, Q.Z.; supervision, Q.Z. All authors have read and agreed to the published version of the manuscript.

Funding

The work is supported by the National Natural Science Foundation of China (62173139, 12271368), the Natural Science Foundation of Heilongjiang Province (LH2023A019), the Longjiang Project Young Goose Innovation Team Support Program (2024CYLJ01), and the Foundation of Innovation Talent of Heilongjiang Institute of Technology (2023GJ10, 2024GJ01).

Data Availability Statement

The original contributions presented in this study are included in the article. Further inquiries can be directed to the corresponding author.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Bahlali, K.; Mezerdi, M.A.; Mezerdi, B. Stability of McKean-Vlasov stochastic differential equations and applications. Stoch. Dyn. 2020, 20, 1–20. [Google Scholar] [CrossRef]
  2. dos Reis, G.; Engelhardt, S.; Smith, G. Simulation of McKean-Vlasov SDEs with super-linear growth. IMA J. Numer. Anal. 2022, 42, 874–922. [Google Scholar] [CrossRef]
  3. dos Reis, G.; Salkeld, W.; Tugaut, J. Freidlin-Wentzell LDP in path space for McKean-Vlasov equations and the functional iterated logarithm law. Ann. Appl. Probab. 2019, 29, 1487–1540. [Google Scholar] [CrossRef]
  4. Carmona, R.; Delarue, F. Probabilistic Theory of Mean Field Games with Applications II. Probability Theory and Stochastic Modelling; Springer: Cham, Switzerland, 2018. [Google Scholar]
  5. Liu, Z.; Ma, J. Existence, uniqueness and exponential ergodicity under Lyapunov conditions for McKean-Vlasov SDEs with Markovian switching. J. Differ. Equ. 2022, 337, 138–167. [Google Scholar] [CrossRef]
  6. Li, Y.; Mao, X.; Song, Q.; Wu, F.; Yin, G. Strong convergence of Euler-Maruyama schemes for McKean-Vlasov stochastic differential equations under local Lipschitz conditions of state variables. IMA J. Numer. Anal. 2023, 43, 1001–1035. [Google Scholar] [CrossRef]
  7. Adams, D.; Reis, G.d.; Ravaille, R.; Salkld, W.; Tugaut, J. Large deviations and exit-times for reflected McKean-Vlasov equations with self-stabilizing terms and superlinear drifts. Stoch. Processes Appl. 2022, 146, 264–310. [Google Scholar] [CrossRef]
  8. Hammersley, W.R.P.; Šiška, D.; Szpruch, Ł. Weak existence and uniqueness for McKean-Vlasov SDEs with common noise. Ann. Probab. 2021, 49, 527–555. [Google Scholar] [CrossRef]
  9. Yuan, H.; Zhu, Q. The well-posedness and stabilities of mean-field stochastic differential equations driven by G-Brownian motion. SIAM J. Control Optim. 2025, 63, 596–624. [Google Scholar] [CrossRef]
  10. Yuan, H.; Zhu, Q. The stabilities of delay stochastic McKean-Vlasov equations in the G-framework. Sci. China Inf. Sci. 2025, 68, 112203. [Google Scholar] [CrossRef]
  11. Govindan, T.E.; Ahmed, N.U. On Yosida approximations of McKean-Vlasov type stochastic evolution equations. Stoch. Anal. Appl. 2015, 33, 383–398. [Google Scholar] [CrossRef]
  12. Ding, X.; Qiao, H. Stability for stochastic Mckean-Vlasov equations with non-lipschitz coefficients. SIAM J. Control Optim. 2021, 59, 880–905. [Google Scholar] [CrossRef]
  13. Bossy, M.; Talay, D. A stochastic particle method for the McKean-Vlasov and the Burgers equation. Math. Comp. 1997, 66, 157–192. [Google Scholar] [CrossRef]
  14. Budhiraja, A.; Fan, W.T.L. Uniform in time interacting particle approximations for nonlinear equations of Patlak-Keller-Segel type. Electron. J. Probab. 2016, 22, 1–37. [Google Scholar] [CrossRef]
  15. Bao, J.; Reisinger, C.; Ren, P.; Stockinger, W. First-order convergence of Milstein schemes for McKean-Vlasov equations and interacting particle systems. Proc. R. Soc. A 2021, 477, 20200258. [Google Scholar] [CrossRef] [PubMed]
  16. Gobet, E.; Pagliarani, S. Analytical approximations of non-linear SDEs of McKean-Vlasov type. J. Math. Anal. Appl. 2018, 466, 71–106. [Google Scholar] [CrossRef]
  17. Kumar, C.; Neelima, C. On explicit Milstein-type scheme for McKean-Vlasov stochastic differential equations with super-linear drift coefficient. Electron. J. Probab. 2021, 26, 1–32. [Google Scholar] [CrossRef]
  18. Neelima, B.S.; Kumar, C.; Reis, G.d.; Reisinger, C. Well-posedness and tamed Euler schemes for McKean-Vlasov equations driven by Lévy noise. arXiv 2020, arXiv:2010.08585. [Google Scholar]
  19. Liu, H.; Shi, B.; Wu, F. Tamed Euler-Maruyama approximation of McKean-Vlasov stochastic differential equations with super-linear drift and Hölder diffusion coefficients. Appl. Numer. Math. 2023, 183, 56–85. [Google Scholar] [CrossRef]
  20. Wu, H.; Hu, J.; Gao, S.; Yuan, C. Stabilization of stochastic McKean-Vlasov equations with feedback control based on discrete-time state observation. SIAM J. Control Optim. 2022, 60, 2884–2901. [Google Scholar] [CrossRef]
  21. Li, T.; Yuan, C. A note on strong convergence of implicit scheme for SDEs under local one-sided Lipschitz conditions. Int. J. Comput. Math. 2020, 98, 238–251. [Google Scholar] [CrossRef]
  22. Jentzen, A.; Kloeden, P.E.; Neuenkirch, A. Pathwise approximation of stochastic differential equations on domains: Higher order convergence rates without global Lipschitz coeficients. Numer. Math. 2009, 112, 41–64. [Google Scholar] [CrossRef]
Figure 1. Convergence of the truncated stochastic theta method with different θ for (48).
Figure 1. Convergence of the truncated stochastic theta method with different θ for (48).
Mathematics 13 02433 g001
Figure 2. Asymptotical mean square stability of the truncated stochastic theta method with different θ for (48).
Figure 2. Asymptotical mean square stability of the truncated stochastic theta method with different θ for (48).
Mathematics 13 02433 g002
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Chu, H.; Yuan, H.; Zhu, Q. Convergence and Stability of the Truncated Stochastic Theta Method for McKean-Vlasov Stochastic Differential Equations Under Local Lipschitz Conditions. Mathematics 2025, 13, 2433. https://doi.org/10.3390/math13152433

AMA Style

Chu H, Yuan H, Zhu Q. Convergence and Stability of the Truncated Stochastic Theta Method for McKean-Vlasov Stochastic Differential Equations Under Local Lipschitz Conditions. Mathematics. 2025; 13(15):2433. https://doi.org/10.3390/math13152433

Chicago/Turabian Style

Chu, Hongxia, Haiyan Yuan, and Quanxin Zhu. 2025. "Convergence and Stability of the Truncated Stochastic Theta Method for McKean-Vlasov Stochastic Differential Equations Under Local Lipschitz Conditions" Mathematics 13, no. 15: 2433. https://doi.org/10.3390/math13152433

APA Style

Chu, H., Yuan, H., & Zhu, Q. (2025). Convergence and Stability of the Truncated Stochastic Theta Method for McKean-Vlasov Stochastic Differential Equations Under Local Lipschitz Conditions. Mathematics, 13(15), 2433. https://doi.org/10.3390/math13152433

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop