Next Article in Journal
Entropy-Guided KV Caching for Efficient LLM Inference
Previous Article in Journal
On an Unboundedness Property of Solutions of Elliptic Systems in the Plane
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Interval Operators and Preorders in Strong L-Fuzzy Convex Structures

School of Mathematics and Statistics, Linyi University, Linyi 276005, China
*
Author to whom correspondence should be addressed.
Mathematics 2025, 13(15), 2365; https://doi.org/10.3390/math13152365
Submission received: 23 June 2025 / Revised: 19 July 2025 / Accepted: 23 July 2025 / Published: 23 July 2025

Abstract

In this paper, the relationship between strong L-fuzzy convex structures and L-fuzzifying interval operators are investigated. It is proved that there is a Galois correspondence between the category of strong L-fuzzy convex spaces and that of L-fuzzifying interval spaces. Also, the concept of arity 2 strong L-fuzzy convex structures is presented, which can be reflectively embedded into the category of L-fuzzifying interval spaces. Finally, the ways of L-fuzzy preorders inducing strong L-fuzzy convex structures and strong L-fuzzy convex structures inducing L-fuzzy preorders are given. It is shown that a strong L-fuzzy convex structure generated by an L-fuzzy preorder is an arity 2 strong L-fuzzy convex structure.

1. Introduction

Convex structures play important roles in many research areas and have been widely used in many mathematical research areas, such as lattices [1,2], graphs [3,4], topological spaces [5,6], algebras [7,8], matroids [9], and so on. As we all know, ordered structures and topological structures are closely related [10,11]. As a topology-like structure, convex structures and ordered structures are also closely related [12]. Meanwhile, interval operators, as generalizations of intervals, provide a good method of describing convex structures. The purpose of this paper is to extend their relationship to a fuzzy setting.
Fuzzy set theory is an important mathematical tool to study uncertainty. The usefulness and versatility of this theory have amply been demonstrated by successful applications in a variety of problems [13,14,15,16,17,18,19,20,21]. With the development of fuzzy mathematics, convex structures have been interrelated to fuzzy set theory. In terms of applications, fuzzy convexity has been extensively studied due to its unique advantages in handling imprecise information and has demonstrated significant value across multiple fields. Research indicates that this theory has been successfully applied in practical scenarios such as industrial control [22], medical diagnosis [23], and decision analysis [24], fully showcasing its practicality and effectiveness in addressing complex real-world problems. While fuzzy convexity has proven valuable in practical domains, its theoretical foundations continue to be refined. Recent work has systematically investigated the relationships between lattice-valued interval operators, ordered structures, and convex structures [25,26,27,28,29,30]. These studies have primarily focused on completely distributive lattices with order-reversing involutions or commutative quantales, establishing important categorical relationships in these specialized settings. However, a significant gap remains in the more general framework of fuzzy convex structures: no study has investigated these relationships under the complete Heyting algebra setting, which occupies a crucial position between completely distributive lattices and general quantales in terms of both algebraic generality and logical expressiveness. This oversight limits the theoretical framework’s ability to model uncertainty in scenarios requiring intuitionistic logic features.
Motivated by this, we outline a more general theory of L-fuzzifying interval operators, L-fuzzy preorders and L-fuzzy convex structures using the structure of the complete Heyting algebra. To establish the relationships between these structures in this generalized environment, we employ Galois correspondence in category theory. This approach plays a significant role in establishing the relationships between different types of spatial structures, offering two fundamental advantages: (1) it can precisely characterize relationships between distinct spatial structures, and (2) the capacity for objects and morphisms in one category to bidirectionally derive or represent new information about the other.
Specifically, we focus on the relationship between L-fuzzifying interval operators and strong L-fuzzy convex structures via Galois correspondence. Additionally, we extend the classical concept of arity (a numerical feature indicating the ability of finite subsets to span the whole space via the hull operator) to the fuzzy setting. Specifically, within the lattice-valued environment of complete Heyting algebras, we establishes a precise definition for arity 2 strong L-fuzzy convex structures. Building upon this foundational definition, we investigate the relationship between arity 2 strong L-fuzzy convex structures and L-fuzzifying interval operators using Galois correspondence in category theory, aiming to establish a precise correspondence within this more general framework.
The structure of this paper is organized as follows. In Section 2, we recall some basic concepts and notations used in this paper. In Section 3, we investigate the categorical relationship between strong L-fuzzy convex spaces and L-fuzzifying interval spaces. In Section 4, we give the method of mutual induction between strong L-fuzzy convex structures and L-fuzzy preorders. In Section 5, we make a conclusion.

2. Preliminaries

Throughout this paper, L denotes a complete Heyting algebra, which means that L is a complete lattice, and for all x , y i ( i I ) L the following distributive law holds
x i I y i = i I ( x y j ) .
The smallest element and the largest element in L are denoted by 0 and 1, respectively. For a complete Heyting algebra L, an implication operator : L × L L as the right adjoint for the meet operator ∧ can be defined as
x , y L , x y = { z L | x z y } .
Thus, the pair ( , ) forms a Galois correspondence on L, that is,
x , y , z L , x z y x z y .
For a complete Heyting algebra L, the following properties of ( , ) hold: x , y , z L , x i , y i ( i I ) L ,
(1)
x ( x y ) y , x ( x y ) y ;
(2)
1 x = x ;
(3)
x y x y = 1 ;
(4)
x i I y i = i I ( x y i ) ;
(5)
i I x i y = i I ( x i y ) ;
(6)
( x y ) z = x ( y z ) = y ( x z ) ;
(7)
y x y ;
(8)
( x y ) ( y z ) x z .
For a nonempty set X, we denote the set of all L-subsets on X by L X . All algebraic operations on L can be extended pointwise to L X . The smallest element and the largest element in L X are denoted by 0 X and 1 X , respectively. For any nonempty subset A X , let χ A denote the characteristic function of A. Clearly, χ A can be regarded as an L-subset on X. For a L , the constant fuzzy set a X is given by a X ( x ) = a for all x X . The partial order and all algebraic operators on L can be extended to L X by pointwise order. For a L and A , B L X , write fuzzy sets a A , a A and A B by ( a A ) ( x ) = a A ( x ) , ( a A ) ( x ) = a A ( x ) and ( A B ) ( x ) = A ( x ) B ( x ) for all x X . We say a nonempty family { A i } i I L X is a directed subset of L X if for each A i 1 , A i 2 { A i } i I , there exists A i 3 { A i } i I such that A i 1 , A i 2 A i 3 .
Let X , Y be nonempty sets and f : X Y be a mapping. Define f : L X L Y and f : L Y L X by f ( A ) ( y ) = f ( x ) = y A ( x ) for A L X and y Y , and f ( B ) = B ( f ( x ) ) for B L Y and x X , respectively.
Lemma 1.
Let L be a complete Heyting algebra. For each directed subfamily { A i } i I L X , we have for each x , y X :
i I A i ( x ) j I A j ( y ) = i I ( A i ( x ) A i ( y ) ) .
Proof. 
Obviously, i I A i ( x ) j I A j ( y ) i I ( A i ( x ) A i ( y ) ) .
Conversely,
i I A i ( x ) j I A j ( y ) = i I j I ( A i ( x ) A j ( y ) ) ( distributive law ) i I ( A i ( x ) A i ( y ) ) ( since { A i } i I L X is directed )
Hence, i I A i ( x ) j I A j ( y ) = i I ( A i ( x ) A i ( y ) ) .
For each A , B L X , the subsethood degree [31] of A in B is defined by
S ( A , B ) = x X ( A ( x ) B ( x ) ) .
Now, we collect some properties of the subsethood degree in the following lemma.
Lemma 2
([31,32]). Let A , B , C , A j , B j ( j J ) L X and a L . Then,
(1)
S ( A , B ) = 1 A B ;
(2)
S A , j J B j = j J S ( A , B j ) ;
(3)
S j J A j , B = j J S ( A j , B ) ;
(4)
S ( A , B ) S ( B , C ) S ( A , C ) ;
(5)
S ( A , B ) B ( x ) A ( x ) ;
(6)
S ( A , a B ) = a S ( A , B ) ;
(7)
S ( f ( A ) , B ) = S ( A , f ( B ) ) .
Notions related to category theory used this paper can be found in [33].
Definition 1
([34]). A subset C of 2 X is called a convex structure on X if it satisfies the following conditions:
(C1)
, X C ;
(C2)
If { A i } i I C is nonempty, then i I A i C ;
(C3)
If { A i } i I C is directed, then i I A i C .
If C is a convex structure on X, then the pair ( X , C ) is called a convex space.
Definition 2
([34]). The hull operator c o C : 2 X 2 X (briefly, c o ) of a convex space ( X , C ) is defined by:
A 2 X , c o ( A ) = { B : A B C }
Definition 3
([34]). A convex structure C on X is said to be of arity n, where n N and N is the set of all positive natural numbers, if
C = { A 2 X : F A , | F | n , c o ( F ) A } ,
where | F | is the cardinality of F. In particular, if n = 2 , then we say C is of arity 2
Definition 4
([25,27]). An L-fuzzifying interval operator I on X is a mapping I : X × X L X if it satisfies the following conditions: for any x , y X ,
(LFT1)
I ( x , y ) ( x ) = I ( x , y ) ( y ) = 1 ;
(LFT2)
I ( x , y ) = I ( y , x ) .
For an L-fuzzifying interval operator I on X, the pair ( X , I ) is called an L-fuzzifying interval space.
A mapping f : ( X , I X ) ( Y , I Y ) between L-fuzzifying interval spaces is called L-fuzzifying-interval-preserving (L-FIP for short) provided that x , y X , f ( I X ( x , y ) ) I Y ( f ( x ) , f ( y ) ) .
The category whose objects are L-fuzzifying interval spaces and whose morphisms are L-FIP mappings will be denoted by L - FIS .
Definition 5
([35]). A strong L-fuzzy convex structure C on X is a mapping C : L X L which satisfies the following conditions:
(LFC1)
C ( 0 X ) = C ( 1 X ) = 1 ;
(LFC2)
if { A i } i I L X is nonempty, then C i I A i i I C ( A i ) ;
(LFC3)
if { A i } i I L X is directed, then C i I A i i I C ( A i ) ;
(LFC4)
for each a L and A L X , a C ( A ) C ( a A ) .
For a strong L-fuzzy convex structure C on X, the pair ( X , C ) is called a strong L-fuzzy convex space.
A mapping f : ( X , C X ) ( Y , C Y ) between strong L-fuzzy convex spaces is called L-fuzzy-convexity-preserving (L-FCP for short), provided that B L Y , C Y ( B ) C X ( f ( B ) ) .
The category whose objects are strong L-fuzzy convex spaces and whose morphisms are L-FCP mappings will be denoted by L - SFCS .
Remark 1.
Definition 5 is a generalization of the definition of strong L-convex structures introduced by Pang in [32].
Definition 6
([36,37]). An L-fuzzy relation on X is a mapping R : X × X L . An L-fuzzy relation R on X is called an L-fuzzy preorder if it satisfies:
(LFR1)
reflexive if R ( x , x ) = 1 for any x X ;
(LFR2)
transitive if R ( x , y ) R ( y , z ) R ( x , z ) for any x , y , z X .
For an L-fuzzy preorder R on X, the pair ( X , R ) is called an L-fuzzy preordered set.
A mapping f : ( X , R X ) ( Y , R Y ) between L-fuzzy preordered sets is called L-fuzzy-preorder-preserving (L-FRP for short) provided that x , y X , R X ( x , y ) R Y ( f ( x ) , f ( y ) ) .
The category whose objects are L-fuzzy preordered sets and whose morphisms are L-FRP mappings will be denoted by L - FRS .

3. L-Fuzzifying Interval Operators and Strong L-Fuzzy Convex Structures

In this section, we will discuss the relationship between categories L - SFCS and L - FIS . Also, we will present the concept of arity 2 strong L-fuzzy convex structures and study its relationship with L-fuzzifying interval operators in a categorical sense.
Next, we study the relationship between categories L-SFCS and L-FIS.
Proposition 1.
Let ( X , I ) be an L-fuzzifying interval space and define C I : L X L by
A L X , C I ( A ) = x , y X ( A ( x ) A ( y ) ) S ( I ( x , y ) , A ) .
Then C I is a strong L-fuzzy convex structure on X.
Proof. 
It suffices to verify that C I satisfies (LFC1)–(LFC4). Indeed,
(LFC1) Obviously.
(LFC2) Take any { A i : i I } L X . Then,
C I i I A i = x , y X i I A i ( x ) i I A i ( y ) S I ( x , y ) , i I A i = x , y X i I ( A i ( x ) A i ( y ) ) i I S ( I ( x , y ) , A i ) i I x , y X ( A i ( x ) A i ( y ) ) S ( I ( x , y ) , A i ) = i I C I ( A i ) .
(LFC3) Take each directed subfamily { A i : i I } L X . Then,
C I i I A i = x , y X i I A i ( x ) i I A i ( y ) S I ( x , y ) , i I A i = x , y X i I ( A i ( x ) A i ( y ) ) S I ( x , y ) , i I A i ( by Lemma 1 ) x , y X i I ( A i ( x ) A i ( y ) ) i I S ( I ( x , y ) , A i ) i I x , y X ( A i ( x ) A i ( y ) ) S ( I ( x , y ) , A i ) = i I C I ( A i ) .
(LFC4) Take each a L and A L X . Then,
C I ( a A ) = x , y X ( a A ) ( x ) ( a A ) ( y ) S ( I ( x , y ) , a A ) = x , y X ( a A ( x ) ) ( a A ( y ) ) a S ( I ( x , y ) , A ) = x , y X a ( A ( x ) A ( y ) ) a S ( I ( x , y ) , A ) = x , y X a ( A ( x ) A ( y ) ) a a S ( I ( x , y ) , A ) = x , y X a ( A ( x ) A ( y ) ) a ( a S ( I ( x , y ) , A ) ) x , y X ( A ( x ) A ( y ) ) ( a S ( I ( x , y ) , A ) ) = x , y X a ( A ( x ) A ( y ) ) S ( I ( x , y ) , A ) = a x , y X ( A ( x ) A ( y ) ) S ( I ( x , y ) , A ) = a C I ( A ) .
Hence, C I is a strong L-fuzzy convex structure on X. □
Example 1.
Let X = { x , y } and L = [ 0 , 1 ] be the unit interval, with the implication defined by
x y = 1 , x y ; y , x > y .
Define I : X × X L X as follows (Table 1):
Then, it is easy to verify that I is an L-fuzzifying interval operator on X. Further, define a mapping C I : L X L by
A L X , C I ( A ) = x , y X ( A ( x ) A ( y ) ) S ( I ( x , y ) , A ) .
For convenience, let A ( x ) = a and A ( y ) = b for any L X , where a , b L . Through calculation, we obtain the following formulas:
C I ( A ) = x , y X ( A ( x ) A ( y ) ) S ( I ( x , y ) , A ) = a ( ( 1 a ) ( 1 b ) ) b ( ( 1 a ) ( 1 b ) ) 1 1 = a ( a b ) b ( a b ) = ( a b ) ( a b ) .
Then, it is easy to verify that C I is a strong L-fuzzy convex structure on X.
Proposition 2.
If f : ( X , I X ) ( Y , I Y ) is L-FIP, then f : ( X , C I X ) ( Y , C I Y ) is L-FCP.
Proof. 
Since f : ( X , I X ) ( Y , I Y ) is L-FIP, it follows that
x , y X , f ( I X ( x , y ) ) I Y ( f ( x ) , f ( y ) ) .
Take each B L Y . Then
C I X ( f ( B ) ) = x , y X ( f ( B ) ( x ) f ( B ) ( y ) ) S ( I X ( x , y ) , f ( B ) ) = f ( x ) , f ( y ) Y ( f ( B ) ( x ) f ( B ) ( y ) ) S ( I X ( x , y ) , f ( B ) ) = f ( x ) , f ( y ) Y ( B ( f ( x ) ) B ( f ( y ) ) ) S ( f ( I X ( x , y ) ) , B ) f ( x ) , f ( y ) Y ( B ( f ( x ) ) B ( f ( y ) ) ) S ( I Y ( f ( x ) , f ( y ) ) , B ) m , n Y ( B ( m ) B ( n ) ) S ( I Y ( m , n ) , B ) = C I Y ( B ) .
This implies that f : ( X , C I X ) ( Y , C I Y ) is L-FCP. □
By Propositions 1 and 2, we obtain a functor S : L - FIS L - SFCS by
S : ( X , I ) ( X , C I ) a n d f f .
The action of functor S is illustrated in the following commutative diagram (Figure 1):
Proposition 3.
Let ( X , C ) be a strong L-fuzzy convex space and define I C : X × X L X by
x , y X , I C ( x , y ) ( z ) = B L X ( B ( x ) B ( y ) C ( B ) ) B ( z ) .
Then I C is an L-fuzzifying interval operator on X.
Proof. 
(LFT1) and (LFT2) are trivial. □
Proposition 4.
If f : ( X , C X ) ( Y , C Y ) is L-FCP, then f : ( X , I C X ) ( Y , I C Y ) is L-FIP.
Proof. 
Since f : ( X , C X ) ( Y , C Y ) is L-FCP, it follows that
B L Y , C Y ( B ) C X ( f ( B ) ) .
Take each x , y X . Then,
f ( I C Y ( f ( x ) , f ( y ) ) ) ( z ) = I C Y ( f ( x ) , f ( y ) ) ( f ( z ) ) = B L Y ( B ( f ( x ) ) B ( f ( y ) ) C Y ( B ) ) B ( f ( z ) ) = B L Y ( f ( B ) ( x ) f ( B ) ( y ) C Y ( B ) ) f ( B ) ( z ) B L Y ( f ( B ) ( x ) f ( B ) ( y ) C X ( f ( B ) ) ) f ( B ) ( z ) A L X ( A ( x ) A ( y ) C X ( A ) ) A ( z ) = I C X ( x , y ) ( z ) .
This implies that f ( I C X ( x , y ) ) I C Y ( f ( x ) , f ( y ) ) , as desired. □
By Propositions 3 and 4, we obtain a functor H : L - SFCS L - FIS by
H : ( X , C ) ( X , I C ) a n d f f .
The action of functor H is illustrated in the following commutative diagram (Figure 2):
Theorem 1.
( H , S ) is a Galois correspondence.
Proof. 
It suffices to prove that H S I I L - FIS and S H C I L - SFCS . That is to say, we only need to verify (1) I C I I I ( i . e . , I C I I ) ; (2) C I C C C ( i . e . , C C I C ) .
For (1), take each x , y X . Then
I C I ( x , y ) ( z ) = B L X ( B ( x ) B ( y ) C I ( B ) ) B ( z ) = B L X B ( x ) B ( y ) m , n X ( B ( m ) B ( n ) S ( I ( m , n ) , B ) ) B ( z ) B L X B ( x ) B ( y ) ( B ( x ) B ( y ) S ( I ( x , y ) , B ) ) B ( z ) B L X ( S ( I ( x , y ) , B ) B ( z ) ) I ( x , y ) ( z ) .
This means that I C I I I .
For (2), take each A L X . Then
C I C ( A ) = x , y X ( A ( x ) A ( y ) ) S ( I C ( x , y ) , A ) = x , y X ( A ( x ) A ( y ) ) z X ( I C ( x , y ) ( z ) A ( z ) ) = z X x , y X ( A ( x ) A ( y ) ) ( I C ( x , y ) ( z ) A ( z ) ) = z X x , y X ( A ( x ) A ( y ) ) B L X ( B ( x ) B ( y ) C ( B ) ) B ( z ) A ( z ) z X x , y X ( A ( x ) A ( y ) ) ( ( A ( x ) A ( y ) C ( A ) ) A ( z ) ) A ( z ) x , y X ( A ( x ) A ( y ) ) ( A ( x ) A ( y ) C ( A ) ) C ( A ) .
This shows that C I C C C , as desired. □
This adjunction H S is represented diagrammatically as follows (Figure 3):
Next, based on the result in Theorem 1, we will further study the embedding and reflective properties with the categories L - SFCS and L - FIS by using the properties of Galois correspondence.
Definition 7
([35]). Let ( X , C ) be a strong L-fuzzy convex space and define c o C : L X L X by
A L X , c o C ( A ) = B L X ( S ( A , B ) C ( B ) ) B .
Then c o C is an L-ordered hull operator on X.
Lemma 3.
Let ( X , C ) be a strong L-fuzzy convex space and c o C be defined as in Definition 7. Then
c o C ( χ { x , y } ) = B L X ( B ( x ) B ( y ) C ( B ) ) B .
Proof. 
From Definition 7, we have
c o C ( χ { x , y } ) = B L X ( S ( χ { x , y } , B ) C ( B ) ) B = B L X z X ( χ { x , y } ( z ) B ( z ) ) C ( B ) B = B L X ( B ( x ) B ( y ) C ( B ) ) B ,
as desired. □
Definition 8.
A strong L-fuzzy convex structure C on X is called arity 2 if it satisfies:
(LFA)
A L X , C ( A ) = x , y X ( A ( x ) A ( y ) ) S ( c o C ( χ { x , y } ) , A ) .
For an arity 2 strong L-fuzzy convex structure C on X, the pair ( X , C ) is called an arity 2 strong L-fuzzy convex space. The full subcategory of L-SFCS with arity 2 strong L-fuzzy convex spaces as objects is denoted by L-SFCS(2).
Remark 2.
When L = { 0 , 1 } , Definitions 7 and 8 are in agreement with the classical concepts given by Van De Vel in [34], respectively.
Example 2.
Let X = { x , y } and L = [ 0 , 1 ] be the unit interval, the corresponding implication is defined by
x y = 1 , x y ; y , x > y .
Define C : L X L as follows:
C ( A ) = 1 , A ( x ) = A ( y ) ; A ( x ) A ( y ) , o t h e r w i s e .
Then, it is easy to verify that C is an arity 2 strong L-fuzzy convex structure on X.
Next, we study the relationship between categories L-SFCS(2) and L-FIS.
Proposition 5.
Let ( X , I ) be an L-fuzzifying interval space and define C I : L X L by
A L X , C I ( A ) = x , y X ( A ( x ) A ( y ) ) S ( I ( x , y ) , A ) .
Then C I is an arity 2 strong L-fuzzy convex structure on X.
Proof. 
By Proposition 1, we only need to prove that C I satisfies (LFA), i.e.,
A L X , C I ( A ) = x , y X ( A ( x ) A ( y ) ) S ( c o C I ( χ { x , y } ) , A ) .
We first prove I ( x , y ) c o C I ( χ { x , y } ) for each x , y X .
  • Take each x , y , z X . Then,
    c o C I ( χ { x , y } ) ( z ) = B L X ( B ( x ) B ( y ) C I ( B ) ) B ( z ) = B L X B ( x ) B ( y ) m , n X ( ( B ( m ) B ( n ) ) S ( I ( m , n ) , B ) ) B ( z ) B L X B ( x ) B ( y ) ( ( B ( x ) B ( y ) ) S ( I ( x , y ) , B ) ) B ( z ) B L X ( S ( I ( x , y ) , B ) B ( z ) ) I ( x , y ) ( z ) . ( by ( S 5 ) )
It follows that
x , y X ( A ( x ) A ( y ) ) S ( c o C I ( χ { x , y } , A ) x , y X ( A ( x ) A ( y ) ) S ( I ( x , y ) , A ) = C I ( A ) .
Conversely,
x , y X ( A ( x ) A ( y ) ) S ( c o C I ( χ { x , y } ) , A ) = x , y X ( A ( x ) A ( y ) ) B L X ( B ( x ) B ( y ) C I ( B ) B ) A x , y X ( A ( x ) A ( y ) ) A ( x ) A ( y ) C I ( A ) A A x , y X ( A ( x ) A ( y ) ) ( A ( x ) A ( y ) C I ( A ) ) C I ( A ) .
Hence, C I ( A ) = x , y X ( A ( x ) A ( y ) S ( c o C I ( χ { x , y } ) , A ) ) , as desired. □
By Propositions 2, 3, 4, and 5, we know H = Δ H | L - SFCS ( 2 ) : L - SFCS ( 2 ) L FIS and S = Δ S : L - FIS L - SFCS ( 2 ) are still functors. Then, we obtain the following result.
Theorem 2.
( S , H ) is a Galois correspondence. Moreover, S is a left inverse of H .
Proof. 
It is sufficient to prove that H S ( I ) I I for any ( X , I ) L - FIS and S H ( C ) = C for any ( X , C ) L - SFCS ( 2 ) . Indeed, it follows from Theorem 1, we only need to prove that S H ( C ) = C ( i . e . , C I C = C ) for any ( X , C ) L - SFCS ( 2 ) .
Firstly, by Proposition 3 and Lemma 3, we have c o C ( χ { x , y } ) ( z ) = I C ( x , y ) ( z ) for each z X . This implies that
C I C ( A ) = x , y X ( A ( x ) A ( y ) ) S ( I C ( x , y ) , A ) = x , y X ( A ( x ) A ( y ) ) S ( c o C ( χ { x , y } ) , A ) = C ( A ) . ( by ( LFA ) )
This shows that C = C I C , as desired. □
Corollary 1.
The category L-SFCS(2)can be embedded in the category L-FISas a reflective subcategory.
This reflective subcategory structure is captured in the following diagram, which visualizes the adjunction S H and the left inverse property (Figure 4):

4. Strong L -Fuzzy Convex Structures and L -Fuzzy Preorders

In this section, we will discuss the connection between strong L-fuzzy convex structures and L-fuzzy preorders.
Now, we give a way of mutual construction of strong L-fuzzy convex structures and L-fuzzy preorders.
Proposition 6.
Let ( X , R ) be an L-fuzzy preordered set and define C R : L X L by
A L X , C R ( A ) = u X x , y X ( A ( x ) A ( y ) R ( x , u ) R ( u , y ) ) A ( u ) .
Then C R is a strong L-fuzzy convex structure on X.
Proof. 
It suffices to verify that C R satisfies (LFC1)–(LFC4). Indeed,
(LFC1) it is clear that C R ( 1 X ) = C R ( 0 X ) = 1 .
(LFC2) Take any { A i : i I } L X . Then,
C R i I A i = u X x , y X i I A i ( x ) i I A i ( y ) R ( x , u ) R ( u , y ) i I A i ( u ) = i I u X x , y X i I ( A i ( x ) A i ( y ) ) R ( x , u ) R ( u , y ) A i ( u ) i I u X x , y X ( A i ( x ) A i ( y ) R ( x , u ) R ( u , y ) ) A i ( u ) = i I C R ( A i ) .
(LFC3) Take each directed subfamily { A i : i I } L X . Then,
C R i I A i = u X x , y X i I A i ( x ) i I A i ( y ) R ( x , u ) R ( u , y ) i I A i ( u ) = u X x , y X i I ( A i ( x ) A i ( y ) ) R ( x , u ) R ( u , y ) i I A i ( u ) = u X x , y X i I ( A i ( x ) A i ( y ) R ( x , u ) R ( u , y ) ) i I A i ( u ) = u X i I x , y X ( A i ( x ) A i ( y ) R ( x , u ) R ( u , y ) ) i I A i ( u ) i I u X x , y X ( A i ( x ) A i ( y ) R ( x , u ) R ( u , y ) ) A i ( u ) = i I C R ( A i ) .
(LFC4) Take each a L and A L X . Then,
C R ( a A ) = u X x , y X ( ( a A ) ( x ) ( a A ) ( y ) R ( x , u ) R ( u , y ) ) ( a A ) ( u ) = u X x , y X ( ( a A ( x ) ) ( a A ( y ) ) R ( x , u ) R ( u , y ) ) ( a A ( u ) ) = u X x , y X ( ( a A ( x ) ) ( a A ( y ) ) R ( x , u ) R ( u , y ) ) ( a a A ( u ) ) = u X x , y X ( ( a A ( x ) ) ( a A ( y ) ) R ( x , u ) R ( u , y ) ) ( a ( a A ( u ) ) ) = u X x , y X ( ( a ( A ( x ) A ( y ) ) ) R ( x , u ) R ( u , y ) ) ( a ( a A ( u ) ) ) = u X x , y X ( a ( a ( A ( x ) A ( y ) ) ) R ( x , u ) R ( u , y ) ) ( a A ( u ) ) u X x , y X ( A ( x ) A ( y ) R ( x , u ) R ( u , y ) ) ( a A ( u ) ) = u X x , y X a ( ( A ( x ) A ( y ) R ( x , u ) R ( u , y ) ) A ( u ) ) = a u X x , y X ( A ( x ) A ( y ) R ( x , u ) R ( u , y ) ) A ( u ) = a u X x , y X ( A ( x ) A ( y ) R ( x , u ) R ( u , y ) ) A ( u ) = a C R ( A ) .
Hence C R is a strong L-fuzzy convex structure on X. □
Proposition 7.
If f : ( X , R X ) ( Y , R Y ) is L-FRP, then f : ( X , C R X ) ( Y , C R Y ) is L-FCP.
Proof. 
Since f : ( X , R X ) ( Y , R Y ) is L-FRP, it follows that
x , y X , R X ( x , y ) R Y ( f ( x ) , f ( y ) ) .
Take each B L Y . Then,
C R X ( f ( B ) ) = u X x , y X ( f ( B ) ( x ) f ( B ) ( y ) R X ( x , u ) R X ( u , y ) ) f ( B ) ( u ) = u X f ( x ) , f ( y ) Y ( f ( B ) ( x ) f ( B ) ( y ) R X ( x , u ) R X ( u , y ) ) f ( B ) ( u ) = u X f ( x ) , f ( y ) Y ( B ( f ( x ) ) B ( f ( y ) ) R X ( x , u ) R X ( u , y ) ) B ( f ( u ) ) u X f ( x ) , f ( y ) Y ( B ( f ( x ) ) B ( f ( y ) ) R Y ( f ( x ) , f ( u ) ) R Y ( f ( u ) , f ( y ) ) ) B ( f ( u ) ) u X m , n Y ( B ( m ) B ( n ) R Y ( m , f ( u ) ) R Y ( f ( u ) , n ) ) B ( f ( u ) ) z Y m , n Y ( B ( m ) B ( n ) R Y ( m , z ) R Y ( z , n ) ) B ( z ) = C R Y ( B ) .
This means that f : ( X , C R X ) ( Y , C R Y ) is L-FCP. □
Proposition 8.
Let ( X , C ) be a strong L-fuzzy convex space and define R C : X × X L by
x , y X , R C ( x , y ) = B L X ( C ( B ) ( B ( y ) B ( x ) ) ) .
Then R C is an L-fuzzy preorder on X.
Proof. 
It is clear that R C ( x , x ) = 1 .
(LFR2) Take each x , y , z X . Then,
R C ( x , y ) R C ( y , z ) = B L X ( C ( B ) ( B ( y ) B ( x ) ) ) A L X ( C ( A ) ( A ( z ) A ( y ) ) ) = B L X A L X ( C ( B ) ( B ( y ) B ( x ) ) ) ( C ( A ) ( A ( z ) A ( y ) ) ) B L X ( C ( B ) ( B ( y ) B ( x ) ) ) ( C ( B ) ( B ( z ) B ( y ) ) ) = B L X C ( B ) ( B ( y ) B ( x ) ) ( B ( z ) B ( y ) ) B L X ( C ( B ) ( B ( z ) B ( x ) ) ) = R C ( x , z ) .
Hence R C is an L-fuzzy preorder on X. □
Proposition 9.
If f : ( X , C X ) ( Y , C Y ) is L-FCP, then f : ( X , R C X ) ( Y , R C Y ) is L-FRP.
Proof. 
Since f : ( X , C X ) ( Y , C Y ) is L-FCP, it follows that
B L Y , C Y ( B ) C X ( f ( B ) ) .
Take each x , y X . Then,
R C Y ( f ( x ) , f ( y ) ) = B L Y C Y ( B ) ( B ( f ( y ) ) B ( f ( x ) ) ) = B L Y C Y ( B ) ( f ( B ) ( y ) f ( B ) ( x ) ) B L Y C X ( f ( B ) ) ( f ( B ) ( y ) f ( B ) ( x ) ) A L X ( C X ( A ) ( A ( y ) A ( x ) ) ) = R C X ( x , y ) .
This implies that f : ( X , R C X ) ( Y , R C Y ) is L-FRP. □
Proposition 10.
Let ( X , C ) be a strong L-fuzzy convex space. Then C R C C .
Proof. 
Take each A L X . Then,
C R C ( A ) = u X x , y X ( A ( x ) A ( y ) R C ( x , u ) R C ( u , y ) ) A ( u ) = u X x , y X A ( x ) A ( y ) B L X ( C ( B ) ( B ( u ) B ( x ) ) ) D L X ( C ( D ) ( D ( y ) D ( u ) ) ) A ( u ) u X x , y X A ( x ) A ( y ) ( C ( A ) ( A ( u ) A ( x ) ) ) ( C ( A ) ( A ( y ) A ( u ) ) ) A ( u ) = u X x , y X A ( x ) A ( y ) ( C ( A ) ( A ( u ) A ( x ) ) ) ( C ( A ) ( A ( y ) A ( u ) ) ) A ( u ) = u X x , y X A ( x ) A ( y ) ( C ( A ) ( A ( u ) A ( x ) ) ) ( C ( A ) ( A ( y ) A ( u ) ) ) A ( u ) = u X x , y X A ( x ) A ( y ) ( C ( A ) ( A ( u ) A ( x ) ) ) ( ( C ( A ) A ( y ) ) A ( u ) ) A ( u ) u X x , y X A ( x ) A ( y ) ( C ( A ) ( A ( u ) A ( x ) ) ) ( C ( A ) A ( y ) ) = u X x , y X A ( x ) ( C ( A ) ( A ( u ) A ( x ) ) ) A ( y ) ( C ( A ) A ( y ) ) u X x , y X A ( x ) ( C ( A ) ( A ( u ) A ( x ) ) ) C ( A ) C ( A ) .
It means that C R C C , as desired. □
Finally, we shall show that a strong L-fuzzy convex structure generated by an L-fuzzy preorder is an arity 2 strong L-fuzzy convex structure.
Proposition 11.
Let ( X , R ) be an L-fuzzy preordered set and define C R : L X L by
A L X , C R ( A ) = u X x , y X ( A ( x ) A ( y ) R ( x , u ) R ( u , y ) ) A ( u ) .
Then, C R is an arity 2 strong L-fuzzy convex structure on X.
Proof. 
By Proposition 6, we only need to prove that C R satisfies (LFA), i.e.,
A L X , C R ( A ) = x , y X ( A ( x ) A ( y ) ) S ( c o C R ( χ { x , y } ) , A ) .
We first prove R ( x , z ) R ( z , y ) c o C R ( χ { x , y } ) ( z ) for each x , y X .
  • Take each x , y X . Then,
    c o C R ( χ { x , y } ) ( z ) = B L X ( ( B ( x ) B ( y ) C R ( B ) ) B ( z ) ) = B L X B ( x ) B ( y ) u X m , n X ( B ( m ) B ( n ) R ( m , u ) R ( u , n ) ) B ( u ) B ( z ) B L X B ( x ) B ( y ) m , n X ( B ( m ) B ( n ) R ( m , z ) R ( z , n ) ) B ( z ) B ( z ) = B L X ( B ( x ) B ( y ) ) m , n X ( B ( m ) B ( n ) R ( m , z ) R ( z , n ) ) B ( z ) B ( z ) B L X ( B ( x ) B ( y ) ) m , n X ( B ( m ) B ( n ) R ( m , z ) R ( z , n ) ) B L X ( B ( x ) B ( y ) ) ( B ( x ) B ( y ) R ( x , z ) R ( z , y ) ) R ( x , z ) R ( z , y ) .
It follows that
x , y X ( ( A ( x ) A ( y ) ) S ( c o C R ( χ { x , y } , A ) ) = x , y X ( A ( x ) A ( y ) ) z X ( c o C R ( χ { x , y } ) ( z ) A ( z ) ) = z X x , y X ( A ( x ) A ( y ) ) ( c o C R ( χ { x , y } ) ( z ) A ( z ) ) = z X x , y X ( A ( x ) A ( y ) c o C R ( χ { x , y } ) ( z ) ) A ( z ) z X x , y X ( A ( x ) A ( y ) R ( x , z ) R ( z , y ) ) A ( z ) = z X x , y X ( A ( x ) A ( y ) R ( x , z ) R ( z , y ) ) A ( z ) = C R ( A ) .
Conversely,
x , y X ( ( A ( x ) A ( y ) ) S ( c o C R ( χ { x , y } ) , A ) ) = x , y X ( A ( x ) A ( y ) ) z X ( c o C R ( χ { x , y } ) ( z ) A ( z ) ) = z X x , y X ( A ( x ) A ( y ) ) B L X ( B ( x ) B ( y ) C R ( B ) B ( z ) ) A ( z ) z X x , y X ( A ( x ) A ( y ) ) ( A ( x ) A ( y ) C R ( A ) A ( z ) ) A ( z ) x , y X ( A ( x ) A ( y ) ) ( A ( x ) A ( y ) C R ( A ) ) C R ( A ) .
Hence, C R ( A ) = x , y X ( A ( x ) A ( y ) S ( c o C R ( χ { x , y } ) , A ) ) , as desired. □

5. Conclusions

In this paper, we showed that there is a Galois correspondence between the category of strong L-fuzzy convex spaces and that of L-fuzzifying interval spaces. Further, we presented the concept of arity 2 strong L-fuzzy convex structures and proved that the category of arity 2 strong L-fuzzy convex spaces can be reflectively embedded into that of L-fuzzifying interval spaces. Finally, we investigated the relationship between strong L-fuzzy convex structures and L-fuzzy preorders. While these results lay a solid foundation within the framework of complete Heyting algebras, we acknowledge certain limitations and outline promising avenues for future research to broaden the scope and impact of this work:
  • Limitation:
The current study assumes L to be a complete Heyting algebra. More general algebraic structures (e.g., residuated lattices or quantales) may be necessary for wider practical applications, particularly in domains like advanced fuzzy logic.
  • Future Direction 1: In addition to interval operators, there are many mathematical structures closely related to convex structures that are worth studying. We will also consider the fuzzy forms of other mathematical structures related to convex structures and study their relationships in lattice-valued environments through Galois correspondence in category theory.
  • Future Direction 2: Inspired by classical convex spaces and convex preference models in economics, we will define a convexity degree for preference relations using the α -cut method and investigate the properties of fuzzy convex preferences under various fuzzy convex structures.

Author Contributions

Writing—original draft and funding acquisition, F.Z.; Writing—review and editing, S.Z. All authors have read and agreed to the published version of the manuscript.

Funding

This work is supported by the Natural Science Foundation of Shandong Province (No. ZR2023QA062).

Data Availability Statement

No dataset was generated or analyzed during this study.

Acknowledgments

The authors express thanks to the handling editor and the reviewers for their careful reading and useful suggestions.

Conflicts of Interest

The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:
AbbreviationDefinition
L - SFCS Category of strong L-fuzzy convex spaces:
Objects: Strong L-fuzzy convex spaces
Morphisms: L-fuzzy-convexity-preserving
L - FIS Category of L-fuzzifying interval spaces:
Objects: L-fuzzifying interval spaces
Morphisms: L-fuzzifying-interval-preserving
L - FRS Category of L-fuzzy preordered sets:
Objects: L-fuzzy preordered sets
Morphisms: L-fuzzy-preorder-preserving

References

  1. Varlet, J.C. Remarks on distributive lattices. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 1975, 23, 1143–1147. [Google Scholar]
  2. Van De Vel, M. Binary convexities and distributive lattice. Proc. Lond. Math. Soc. 1984, 48, 1–33. [Google Scholar] [CrossRef]
  3. Changat, M.; Mulder, H.M.; Sierksma, G. Convexities related to path properties on graphs. Discret. Math. 2005, 290, 117–131. [Google Scholar] [CrossRef]
  4. Farber, M.; Jamison, R.E. On local convexity in graphs. Discret. Math. 1987, 66, 231–247. [Google Scholar] [CrossRef]
  5. Chepoi, V. Separation of two convex sets in convexity structures. J. Geom. 1994, 50, 30–51. [Google Scholar] [CrossRef]
  6. Sierksma, G. Carathéodory and Helly-numbers of convex-product-structures. Pac. J. Math. 1975, 61, 272–282. [Google Scholar] [CrossRef]
  7. Marczewski, E. Independence in abstract algebras results and problems. Colloq. Math. 1966, 14, 169–188. [Google Scholar] [CrossRef]
  8. Nieminen, J. The ideal structure of simple ternary algebras. Colloq. Math. 1978, 1, 23–29. [Google Scholar] [CrossRef]
  9. Shi, F.-G. A new approach to the fuzzification of matroids. Fuzzy Sets Syst. 2009, 160, 696–705. [Google Scholar] [CrossRef]
  10. Besnard, F. A noncommutative view on topology and order. J. Geom. Phys. 2009, 59, 861–875. [Google Scholar] [CrossRef]
  11. Zhao, B.; Wang, K.Y. Order topology and bi-scott topology on a poset. Acta Math. Sin. Engl. Ser. 2011, 27, 2101–2106. [Google Scholar] [CrossRef]
  12. Franklin, S.P. Some results on order-convexity. Am. Math. Mon. 1962, 69, 357–359. [Google Scholar] [CrossRef]
  13. Duan, Z.X.; Ding, F.Y.; Liang, J.L.; Xiang, Z.R. Observer-based fault detection for continuous-discrete systems in T-S fuzzy model. Nonlinear Anal. Hybrid Syst. 2023, 50, 101379. [Google Scholar] [CrossRef]
  14. Shi, Y.; Pang, B.; Baets, B.D. Fuzzy structures induced by fuzzy betweenness relations. Fuzzy Sets Syst. 2023, 466, 108443. [Google Scholar] [CrossRef]
  15. Yan, S.; Ding, L.M.; Cai, Y. Memory-based attack-tolerant T-S fuzzy control of networked artificial pancreas system subject to false data injection attacks. Fuzzy Sets Syst. 2025, 518, 109486. [Google Scholar] [CrossRef]
  16. Yan, X.X.; Zhou, H.J. Weak implications as ordinal sums of fuzzy implications and co-implications. Inf. Sci. 2025, 718, 122395. [Google Scholar] [CrossRef]
  17. Das, A.K.; Granados, C. An advanced approach to fuzzy soft group decision-making using weighted average ratings. SN Comput. Sci. 2021, 2, 471. [Google Scholar] [CrossRef]
  18. Das, A.K.; Granados, C. IFP-intuitionistic multi fuzzy N-soft set and its induced IFP-hesitant N-soft set in decision-making. J. Ambient Intell. Hum. Comput. 2023, 14, 10143–10152. [Google Scholar] [CrossRef]
  19. Huidobro, P.; Alonso, P.; Janiš, V.; Montes, S. Convexity and level sets for interval-valued fuzzy sets. Fuzzy Optim. Decis. 2022, 21, 553–580. [Google Scholar] [CrossRef]
  20. Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Alsharif, A.M.; Noor, K.I. New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation. AIMS Math 2021, 6, 10964–10988. [Google Scholar] [CrossRef]
  21. Zhao, H.; Jia, L.Y.; Chen, G.X. Convex (L, M)-fuzzy remote neighborhood operators. Kybernetika 2024, 60, 150–171. [Google Scholar] [CrossRef]
  22. Ekonomou, L. Stability Analysis and Control Design of Fuzzy Systems using Scilab Package. In Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization (SMO’06), Lisbon, Portugal, 22–24 September 2006; World Scientific and Engineering Academy and Society (WSEAS): Stevens Point, WI, USA, 2006. [Google Scholar]
  23. El-Sappagh, S.; Ali, F.; Ali, A.; Hendawi, A.; Badria, F.A.; Suh, D.Y. Clinical decision support system for liver fibrosis prediction in hepatitis patients: A case comparison of two soft computing techniques. IEEE Access 2018, 6, 52911–52929. [Google Scholar] [CrossRef]
  24. Huidobro, P.; Alonso, P.; Janiš, V.; Montes, S. Convexity of typical hesitant fuzzy sets applied to decision-making problems. Comput. Appl. Math. 2025, 44, 304. [Google Scholar] [CrossRef]
  25. Xiu, Z.-Y.; Shi, F.-G. M-fuzzifying interval spaces. Iran. J. Fuzzy Syst. 2017, 14, 145–162. [Google Scholar]
  26. Wu, X.Y.; Bai, S.Z. On M-fuzzifying JHC convex structures and M-fuzzifying Peano interval spaces. J. Intell. Fuzzy Syst. 2016, 30, 2447–2458. [Google Scholar] [CrossRef]
  27. Pang, B.; Xiu, Z.-Y. Lattice-valued interval operators and its induced lattice-valued convex structures. IEEE Trans. Fuzzy Syst. 2018, 26, 1525–1534. [Google Scholar] [CrossRef]
  28. Pang, B. Hull operators and interval operators in (L,M)-fuzzy convex spaces. Fuzzy Sets Syst. 2021, 405, 106–127. [Google Scholar] [CrossRef]
  29. Li, E.Q.; Shi, F.-G. Some properties of M-fuzzifying convexities induced by M-orders. Fuzzy Sets Syst. 2018, 350, 41–54. [Google Scholar] [CrossRef]
  30. Wang, K.; Shi, F.-G. Fuzzifying interval operators, fuzzifying convex structures and fuzzy pre-orders. Fuzzy Sets Syst. 2020, 390, 74–95. [Google Scholar] [CrossRef]
  31. Bělohlávek, R. Fuzzy Relation Systems: Foundation and Principles; Kluwer Academic, Plenum Publishers: Dordrecht, The Netherlands, 2002. [Google Scholar]
  32. Pang, B.; Shi, F.-G. Fuzzy counterparts of hull operators and interval operators in the framework of L-convex spaces. Fuzzy Sets Syst. 2019, 369, 20–39. [Google Scholar] [CrossRef]
  33. Adámek, J.; Herrlich, H.; Strecker, G.E. Abstract and Concrete Categories; Wiley: New York, NY, USA, 1990. [Google Scholar]
  34. Van De Vel, M. Theory of Convex Structures; Elsevier: Amsterdam, The Netherlands, 1993. [Google Scholar]
  35. Zhao, F.F.; Huang, H.L. The relationship among L-ordered hull operators, restricted operators and strong L-fuzzy convex structures. J. Nonlinear Convex Anal. 2020, 21, 2817–2829. [Google Scholar]
  36. Fang, J.M. I-fuzzy Alexandrov topologies and specialization orders. Fuzzy Sets Syst. 2007, 158, 2359–2374. [Google Scholar]
  37. Yao, W.; Shi, F.-G. A note on specialization L-preorder of L-topological spaces, L-fuzzifying topological spaces and L-fuzzy topological spaces. Fuzzy Sets Syst. 2008, 159, 2586–2595. [Google Scholar] [CrossRef]
Figure 1. Functor S : L - FIS L - SFCS .
Figure 1. Functor S : L - FIS L - SFCS .
Mathematics 13 02365 g001
Figure 2. Functor H : L - SFCS L - FIS .
Figure 2. Functor H : L - SFCS L - FIS .
Mathematics 13 02365 g002
Figure 3. Galois correspondence H S with explicit adjoint labels.
Figure 3. Galois correspondence H S with explicit adjoint labels.
Mathematics 13 02365 g003
Figure 4. L-SFCS(2) as a reflective subcategory of L-FIS.
Figure 4. L-SFCS(2) as a reflective subcategory of L-FIS.
Mathematics 13 02365 g004
Table 1. Example of L-fuzzifying interval operator I on X = { x , y } .
Table 1. Example of L-fuzzifying interval operator I on X = { x , y } .
I (x, x) I (x, y) I (y, y) I (y, x)
x1111
y1111
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Zhao, S.; Zhao, F. Interval Operators and Preorders in Strong L-Fuzzy Convex Structures. Mathematics 2025, 13, 2365. https://doi.org/10.3390/math13152365

AMA Style

Zhao S, Zhao F. Interval Operators and Preorders in Strong L-Fuzzy Convex Structures. Mathematics. 2025; 13(15):2365. https://doi.org/10.3390/math13152365

Chicago/Turabian Style

Zhao, Sen, and Fangfang Zhao. 2025. "Interval Operators and Preorders in Strong L-Fuzzy Convex Structures" Mathematics 13, no. 15: 2365. https://doi.org/10.3390/math13152365

APA Style

Zhao, S., & Zhao, F. (2025). Interval Operators and Preorders in Strong L-Fuzzy Convex Structures. Mathematics, 13(15), 2365. https://doi.org/10.3390/math13152365

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop