A Note on Rigidity and Vanishing Theorems for Translating Solitons
Abstract
1. Introduction
- (i)
- Uniform derivative bounds:
- (ii)
- Asymptotic vanishing of gradient terms:
2. Some Lemmas
3. Proofs of Theorems 1 and 2
- (i)
- on and outside ;
- (ii)
- .
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huisken, G. Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom. 1984, 20, 237–266. [Google Scholar] [CrossRef]
- Wang, X.J. Convex solutions to the mean curvature flow. Ann. Math. 2011, 173, 1185–1239. [Google Scholar] [CrossRef]
- Jian, H.Y. Translating solitons of mean curvature flow of noncompact spacelike hypersurfaces in Minkowski space. J. Differ. Equ. 2006, 220, 147–162. [Google Scholar] [CrossRef]
- Lawn, M.A.; Ortega, M. Translating solitons in a Lorentzian setting, submersions and cohomogeneity one actions. Mediterr. J. Math. 2022, 19, 102. [Google Scholar] [CrossRef]
- Ilmanen, T. Elliptic regularization and partial regularity for motion by mean curvature. Mem. Am. Math. Soc. 1994, 108, 90. [Google Scholar] [CrossRef]
- Bao, C.; Shi, Y. Gauss maps of translating solitons of mean curvature flow. Proc. Am. Math. Soc. 2014, 142, 4333–4339. [Google Scholar] [CrossRef]
- Kunikawa, K. Bernstein-type theorem of translating solitons in arbitrary codimension with flat normal bundle. Calc. Var. Partial Differ. Equ. 2015, 54, 1331–1344. [Google Scholar] [CrossRef]
- Xin, Y.L. Translating solitons of the mean curvature flow. Calc. Var. Partial Differ. Equ. 2015, 54, 1995–2016. [Google Scholar] [CrossRef]
- Guan, L.; Xu, H.; Zhao, E. A Bernstein type theorem for ancient solutions to the mean curvature flow in arbitrary codimension. Proc. Am. Math. Soc. 2023, 151, 269–279. [Google Scholar] [CrossRef]
- Qiu, H. A Bernstein type result of translating solitons. Calc. Var. Partial Differ. Equ. 2022, 61, 228. [Google Scholar] [CrossRef]
- Qiu, H. Rigidity of symplectic translating solitons. J. Geom. Anal. 2022, 32, 284. [Google Scholar] [CrossRef]
- Qiu, H. Bernstein type theorems of translating solitons of the mean curvature flow in higher codimension. Calc. Var. Partial Differ. Equ. 2024, 63, 51. [Google Scholar] [CrossRef]
- Qiu, H.; Xin, Y.L. Curvature estimates of ancient solutions to the mean curvature flow of higher codimension with convex Gauss image. arXiv 2023, arXiv:2311.12400. [Google Scholar] [CrossRef]
- Dung, H.T.; Dung, N.T.; Huy, T.Q. Rigidity and vanishing theorems for complete translating solitons. Manuscr. Math. 2023, 172, 331–352. [Google Scholar] [CrossRef]
- Ma, L.; Miquel, V. Bernstein theorem for translating solitons of hypersurfaces. Manuscr. Math. 2020, 162, 115–132. [Google Scholar] [CrossRef]
- Wang, H.; Xu, H.; Zhao, E. A global pinching theorem for complete translating solitons of mean curvature flow. Pure Appl. Math. Q. 2016, 12, 603–619. [Google Scholar] [CrossRef]
- Nam, E.; Pyo, J. Stability and topology of translating solitons for the mean curvature flow with the small Lm norm of the second fundamental form. Bull. Korean Math. Soc. 2023, 60, 171–184. [Google Scholar]
- Angenent, S.B.; Velázquez, J.J.L. Asymptotic shape of cusp singularities in curve shortening. Duke Math. J. 1995, 77, 71–110. [Google Scholar] [CrossRef]
- Chen, Q.; Qiu, H. Rigidity of self-shrinkers and translating solitons of mean curvature flows. Adv. Math. 2016, 294, 517–531. [Google Scholar] [CrossRef]
- Clutterbuck, J.; Schnürer, O.C.; Schulze, F. Stability of translating solutions to mean curvature flow. Calc. Var. Partial Differ. Equ. 2007, 29, 281–293. [Google Scholar] [CrossRef]
- Hamilton, R.S. Harnack estimate for the mean curvature flow. J. Differ. Geom. 1995, 41, 215–226. [Google Scholar] [CrossRef]
- Huisken, G.; Sinestrari, C. Convexity estimates for mean curvature flow and singularities of mean convex surfaces. Acta Math. 1999, 183, 45–70. [Google Scholar] [CrossRef]
- Martín, F.; Savas-Halilaj, A.; Smoczyk, K. On the topology of translating solitons of the mean curvature flow. Calc. Var. Partial Differ. Equ. 2015, 54, 2853–2882. [Google Scholar] [CrossRef]
- Neves, A.; Tian, G. Translating solutions to Lagrangian mean curvature flow. Trans. Am. Math. Soc. 2013, 365, 5655–5680. [Google Scholar] [CrossRef]
- Nguyen, X.H. Complete embedded self-translating surfaces under mean curvature flow. J. Geom. Anal. 2013, 23, 1379–1426. [Google Scholar] [CrossRef]
- White, B. The nature of singularities in mean curvature flow of mean-convex sets. J. Am. Math. Soc. 2003, 16, 123–138. [Google Scholar] [CrossRef]
- Warner, F.W. Foundations of Differentiable Manifolds and Lie Groups; Scott, Foresman & Co.: Glenview, IL, USA; London, UK, 1971. [Google Scholar]
- de Medeiros, A.A. The weighted Sobolev and mean value inequalities. Proc. Am. Math. Soc. 2015, 143, 1229–1239. [Google Scholar] [CrossRef]
- Kunikawa, K. Translating solitons in arbitrary codimension. Asian J. Math. 2017, 21, 855–872. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, J.; Zhao, G. A Note on Rigidity and Vanishing Theorems for Translating Solitons. Mathematics 2025, 13, 2297. https://doi.org/10.3390/math13142297
Peng J, Zhao G. A Note on Rigidity and Vanishing Theorems for Translating Solitons. Mathematics. 2025; 13(14):2297. https://doi.org/10.3390/math13142297
Chicago/Turabian StylePeng, Jiji, and Guangwen Zhao. 2025. "A Note on Rigidity and Vanishing Theorems for Translating Solitons" Mathematics 13, no. 14: 2297. https://doi.org/10.3390/math13142297
APA StylePeng, J., & Zhao, G. (2025). A Note on Rigidity and Vanishing Theorems for Translating Solitons. Mathematics, 13(14), 2297. https://doi.org/10.3390/math13142297