Editorial: New Advances in High-Dimensional and Non-Asymptotic Statistics
1. Introduction
2. Background
3. Current Research Status
3.1. High-Dimensional Statistics
- Prediction error (predictive consistency): performs well on a test sample X, with a prediction error satisfying
- -estimation error (or other norms): approximates the true parameter . With high probability,
3.2. Infinite-Dimensional Statistics
4. Summary of the Special Issue Papers
4.1. Estimation for Partial Functional Multiplicative Regression Model by Liu et al. [59]
4.2. Sharper Concentration Inequalities for Median-of-Mean Processes by Teng et al. [60]
4.3. On a Low-Rank Matrix Single-Index Model by Mai [61] (One Citation)
4.4. Generalizations of the Kantorovich and Wielandt Inequalities with Applications to Statistics by Zhang et al. [62]
4.5. Optimal Non-Asymptotic Bounds for the Sparse Model by Yang et al. [63]
4.6. Non-Asymptotic Bounds of AIPW Estimators for Means with Missingness at Random by Wang and Deng [64] (One Citation)
4.7. Group Logistic Regression Models with Regularization by Zhang et al. [65] (Nine Citations)
4.8. Heterogeneous Overdispersed Count Data Regressions via Double-Penalized Estimations by Li et al. [66] (Five Citations)
4.9. Representation Theorem and Functional CLT for RKHS-Based Function-on-Function Regressions by Huang et al. [67]
4.10. Sharper Sub-Weibull Concentrations by Zhang and Wei [68] (Thirty-Two Citations)
Funding
Conflicts of Interest
References
- Portnoy, S. On the central limit theorem in Rp when p→∞. Probab. Theory Relat. Fields 1986, 73, 571–583. [Google Scholar] [CrossRef]
- He, X.; Shao, Q.M. On parameters of increasing dimensions. J. Multivar. Anal. 2000, 73, 120–135. [Google Scholar] [CrossRef]
- Sur, P.; Chen, Y.; Candès, E.J. The likelihood ratio test in high-dimensional logistic regression is asymptotically a rescaled Chi-square. Probab. Theory Relat. Fields 2019, 175, 487–558. [Google Scholar] [CrossRef]
- Zhang, H. A note on “MLE in logistic regression with a diverging dimension”. arXiv 2018, arXiv:1801.08898. [Google Scholar]
- Montanari, A.; Zhong, Y.; Zhou, K. Tractability from overparametrization: The example of the negative perceptron. Probab. Theory Relat. Fields 2024, 188, 805–910. [Google Scholar] [CrossRef]
- Li, Y.; Xie, J.; Zhou, G.; Zhou, W. Sequential estimation of high-dimensional signal plus noise models under general elliptical frameworks. J. Multivar. Anal. 2025, 207, 105403. [Google Scholar]
- Giraud, C. Introduction to High-Dimensional Statistics, 2nd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2021. [Google Scholar]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Buhlmann, P.; van de Geer, S.A. Statistics for High-Dimensional Data: Methods, Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Zhang, H.; Chen, S.X. Concentration inequalities for statistical inference. Commun. Math. Res. 2021, 37, 1–85. [Google Scholar] [CrossRef]
- Vershynin, R. High-Dimensional Probability: An Introduction with Applications in Data Science; Cambridge University Press: Cambridge, UK, 2018; Volume 47. [Google Scholar]
- Tropp, J.A. An introduction to matrix concentration inequalities. Found. Trends Mach. Learn. 2015, 8, 1–230. [Google Scholar] [CrossRef]
- Wu, C.F.J. The myth and debunking of the big four. Chin. J. Appl. Probab. Stat. 2025, 41, 329–338. [Google Scholar]
- van de Geer, S.A. High-dimensional generalized linear models and the lasso. Ann. Stat. 2008, 36, 614–645. [Google Scholar] [CrossRef]
- Zhang, H.; Jia, J. Elastic-net regularized high-dimensional negative binomial regression. Stat. Sin. 2022, 32, 181–207. [Google Scholar]
- Wainwright, M.J. High-Dimensional Statistics: A Non-Asymptotic Viewpoint; Cambridge University Press: Cambridge, UK, 2019; Volume 48. [Google Scholar]
- Zhou, P.J.; Wei, H.Y.; Zhang, H.M. Selective reviews of bandit problems in AI via a statistical view. Mathematics 2025, 4, 665. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, H. Concentration for multiplier empirical processes with dependent weights. AIMS Math. 2023, 8, 28738–28752. [Google Scholar] [CrossRef]
- Ramsay, J.O.; Silverman, B.W. Applied Functional Data Analysis: Methods and Case Studies; Springer: New York, NY, USA, 2002. [Google Scholar]
- Giné, E.; Nickl, R. Mathematical Foundations of Infinite-Dimensional Statistical Models; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Hall, P.; Hosseini-Nasab, M. Theory for high-order bounds in functional principal components analysis. In Mathematical Proceedings of the Cambridge Philosophical Society; Cambridge University Press: Cambridge, UK, 2009; Volume 146, pp. 225–256. [Google Scholar]
- Hsing, T.; Eubank, R. Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Dubey, P.; Müller, H.G. Functional models for time-varying random objects. J. R. Stat. Soc. Ser. B Stat. Methodol. 2020, 82, 275–327. [Google Scholar] [CrossRef]
- Petersen, A.; Müller, H.G. Functional data analysis for density functions by transformation to a Hilbert space. Ann. Stat. 2016, 44, 183–218. [Google Scholar] [CrossRef]
- Petersen, A.; Müller, H.G. Fréchet regression for random objects with Euclidean predictors. Ann. Stat. 2019, 47, 691–719. [Google Scholar] [CrossRef]
- Tavakoli, S.; Pigoli, D.; Aston, J.A.; Coleman, J.S. A spatial modeling approach for linguistic object data: Analyzing dialect sound variations across great Britain. J. Am. Stat. Assoc. 2019, 114, 1081–1096. [Google Scholar] [CrossRef]
- Petersen, A.; Müller, H.G. Wasserstein covariance for multiple random densities. Biometrika 2019, 106, 339–351. [Google Scholar] [CrossRef]
- Chen, F.; Chen, Y.; Ying, Z.; Zhou, K. Dynamic factor analysis of high-dimensional recurrent events. arXiv 2024, arXiv:2405.19803. [Google Scholar] [CrossRef]
- Russo, D.; Zou, J. How much does your data exploration overfit? Controlling bias via information usage. IEEE Trans. Inf. Theory 2019, 66, 302–323. [Google Scholar] [CrossRef]
- Buldygin, V.V.; Kozachenko, I.V. Metric Characterization of Random Variables and Random Processes; American Mathematical Society: Providence, RI, USA, 2000; Volume 188. [Google Scholar]
- Horowitz, J.L.; Lee, S. Inference in a class of optimization problems: Confidence regions and finite sample bounds on errors in coverage probabilities. J. Bus. Econ. Stat. 2023, 41, 927–938. [Google Scholar] [CrossRef]
- Yang, X.; Liu, X.; Wei, H. Concentration inequalities of MLE and robust MLE. Commun. Stat.-Theory Methods 2024, 53, 6944–6956. [Google Scholar] [CrossRef]
- Li, Y.; Tian, B. Non-asymptotic sub-Gaussian error bounds for hypothesis testing. Stat. Probab. Lett. 2022, 189, 109586. [Google Scholar] [CrossRef]
- Knight, K.; Fu, W. Asymptotics for lasso-type estimators. Ann. Stat. 2000, 28, 1356–1378. [Google Scholar]
- Greenshtein, E.; Ritov, Y. Persistence in high-dimensional linear predictor selection and the virtue of overparametrization. Bernoulli 2004, 10, 971–988. [Google Scholar] [CrossRef]
- Bickel, P.J.; Ritov, Y.A.; Tsybakov, A.B. Simultaneous analysis of Lasso and Dantzig selector. Ann. Stat. 2009, 37, 1705–1732. [Google Scholar] [CrossRef]
- Blazere, M.; Loubes, J.M.; Gamboa, F. Oracle inequalities for a group lasso procedure applied to generalized linear models in high dimension. IEEE Trans. Inf. Theory 2014, 60, 2303–2318. [Google Scholar] [CrossRef]
- Tsybakov, A.B. Introduction to Nonparametric Estimation; Springer: New York, NY, USA, 2008. [Google Scholar]
- Wei, H.; Lei, X.; Han, Y.; Zhang, H. High-dimensional inference and FDR control for simulated Markov random fields. arXiv 2022, arXiv:2202.05612. [Google Scholar]
- Xiao, Y.; Yan, T.; Zhang, H.; Zhang, Y. Oracle inequalities for weighted group lasso in high-dimensional misspecified Cox models. J. Inequalities Appl. 2020, 2020, 252. [Google Scholar] [CrossRef]
- Han, D.; Xie, J.; Liu, J.; Sun, L.; Huang, J.; Jiang, B.; Kong, L. Inference on high-dimensional single-index models with streaming data. J. Mach. Learn. Res. 2024, 25, 1–68. [Google Scholar]
- Fu, S.; Chen, P.; Ye, Z. Simplex-based proximal multicategory support vector machine. IEEE Trans. Inf. Theory 2022, 69, 2427–2451. [Google Scholar] [CrossRef]
- Fu, S.; Chen, P.; Liu, Y.; Ye, Z. Simplex-based multinomial logistic regression with diverging numbers of categories and covariate. Stat. Sin. 2023, 33, 2463–2493. [Google Scholar] [CrossRef]
- Zhang, B.; Huang, H.; Chen, J. Estimation of large-dimensional covariance matrices via second-order Stein-type regularization. Entropy 2023, 25, 53. [Google Scholar] [CrossRef]
- Tian, W.; Qin, Z. Block Toeplitz sparse precision matrix estimation for large-scale interval-valued time series forecasting. arXiv 2025, arXiv:2504.03322. [Google Scholar]
- Zhuang, R.; Lederer, J. Maximum regularized likelihood estimators: A general prediction theory and applications. Stat 2018, 7, e186. [Google Scholar] [CrossRef]
- Javanmard, A.; Javadi, H. False discovery rate control via debiased lasso. Electron. J. Stat. 2019, 13, 1212–1253. [Google Scholar] [CrossRef]
- Han, Y.; Guo, X.; Zou, C. Model-free controlled variable selection via data splitting. Sci. Sin. Math. 2024. [Google Scholar] [CrossRef]
- Hall, P.; Horowitz, J.L. Methodology and convergence rates for functional linear regression. Ann. Stat. 2007, 35, 70–91. [Google Scholar] [CrossRef]
- Dou, W.W.; Pollard, D.; Zhou, H.H. Estimation in functional regression for general exponential families. Ann. Stat. 2012, 40, 2421–2451. [Google Scholar] [CrossRef]
- Yang, X.; Song, S.; Zhang, H. Law of iterated logarithm and model selection consistency for generalized linear models with independent and dependent responses. Front. Math. China 2021, 16, 825–856. [Google Scholar] [CrossRef]
- Zhang, H.; Lei, X. Growing-dimensional partially functional linear models: Non-asymptotic optimal prediction error. Phys. Scr. 2023, 98, 095216. [Google Scholar] [CrossRef]
- Cai, T.T.; Yuan, M. Optimal estimation of the mean function based on discretely sampled functional data: Phase transition. Ann. Stat. 2011, 39, 2330–2355. [Google Scholar] [CrossRef]
- Zhang, J.T.; Chen, J. Statistical inferences for functional data. Ann. Stat. 2007, 35, 1052–1079. [Google Scholar] [CrossRef]
- Yao, F.; Müller, H.G.; Wang, J.L. Functional linear regression analysis for longitudinal data. Ann. Stat. 2005, 33, 2873–2903. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.L. From sparse to dense functional data and beyond. Ann. Stat. 2016, 44, 2281–2321. [Google Scholar] [CrossRef]
- Zhou, H.; Yao, F.; Zhang, H. Functional linear regression for discretely observed data: From ideal to reality. Biometrika 2023, 110, 381–393. [Google Scholar] [CrossRef]
- Zhou, H.; Wei, D.; Yao, F. Theory of functional principal component analysis for noisy and discretely observed data. Ann. Stat. 2025. Available online: https://imstat.org/journals-and-publications/annals-of-statistics/annals-of-statistics-future-papers/ (accessed on 6 July 2025).
- Liu, X.; Yu, P.; Shi, J. Estimation for partial functional multiplicative regression model. Mathematics 2025, 13, 471. [Google Scholar] [CrossRef]
- Teng, G.; Li, Y.; Tian, B.; Li, J. Sharper concentration inequalities for median-of-mean processes. Mathematics 2023, 11, 3730. [Google Scholar] [CrossRef]
- Mai, T.T. On a low-rank matrix single-index model. Mathematics 2023, 11, 2065. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, X.; Liu, J.; Chen, X. Generalizations of the kantorovich and wielandt inequalities with applications to statistics. Mathematics 2024, 12, 2860. [Google Scholar] [CrossRef]
- Yang, X.; Pan, L.; Cheng, K.; Liu, C. Optimal non-asymptotic bounds for the sparse β model. Mathematics 2023, 11, 4685. [Google Scholar] [CrossRef]
- Wang, F.; Deng, Y. Non-asymptotic bounds of AIPW estimators for means with missingness at random. Mathematics 2023, 11, 818. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, C.; Liu, X. Group logistic regression models with ℓp,q regularization. Mathematics 2022, 10, 2227. [Google Scholar] [CrossRef]
- Li, S.; Wei, H.; Lei, X. Heterogeneous overdispersed count data regressions via double-penalized estimations. Mathematics 2022, 10, 1700. [Google Scholar] [CrossRef]
- Huang, H.; Mo, G.; Li, H.; Fang, H.B. Representation theorem and functional CLT for RKHS-based function-on-function regressions. Mathematics 2022, 10, 2507. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, H. Sharper sub-weibull concentrations. Mathematics 2022, 10, 2252. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Yang, X. Editorial: New Advances in High-Dimensional and Non-Asymptotic Statistics. Mathematics 2025, 13, 2267. https://doi.org/10.3390/math13142267
Zhang H, Yang X. Editorial: New Advances in High-Dimensional and Non-Asymptotic Statistics. Mathematics. 2025; 13(14):2267. https://doi.org/10.3390/math13142267
Chicago/Turabian StyleZhang, Huiming, and Xiaowei Yang. 2025. "Editorial: New Advances in High-Dimensional and Non-Asymptotic Statistics" Mathematics 13, no. 14: 2267. https://doi.org/10.3390/math13142267
APA StyleZhang, H., & Yang, X. (2025). Editorial: New Advances in High-Dimensional and Non-Asymptotic Statistics. Mathematics, 13(14), 2267. https://doi.org/10.3390/math13142267