Stability Analysis of a Mathematical Model for Infection Diseases with Stochastic Perturbations
Abstract
1. Introduction
- -
- —coefficient describing the antigen activity;
- -
- —the antigen neutralizing factor.
- -
- —takes into account the destruction of a normal functioning immune system, m is a feature of the organ;
- -
- —coefficient taking into account the probability of an antigen–antibody meeting;
- -
- —coefficient of reduction of plasma cells due to aging;
- -
- —the plasma cell rate concentration of healthy body.
- -
- —production rate of antibodies by one plasma cell;
- -
- —number of antibodies to neutralize one antigen;
- -
- —the antigen neutralizing factor;
- -
- —coefficient inversely proportional to the decay time of the antibodies.
- -
- —constant related to a particular disease;
- -
- —coefficient describing the generation rate of the target organ.
- -
- for the subclinical form of the disease:
- -
- for the acute form of the disease:
- -
- for the chronic form of the disease:
- -
- for the fatal outcome form of the disease:
2. Equilibria
2.1. Equilibria and
2.2. Equilibria and
- (1)
- For existence and positivity of and , it is required that , , i.e., .
- (2)
- If , then , or equivalently, .
- (3)
- For , it must hold that or , or equivalently .
- (4)
- If is defined, then .
3. Stochastic Perturbations, Centralization, and Linearization
Matrix Form
4. Stability
- -
- mean square stable if for each there exists a such that , , provided that ;
- -
- asymptotically mean square stable if it is mean square stable and for each initial function ϕ.
4.1. Routh–Hurwitz Criterion
4.2. Equilibrium
4.3. Equilibria and
5. Numerical Simulations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bailey, N.T.J. The Mathematical Theory of Infectious Diseases and Its Applications, 2nd ed.; Charles Griffin & Company Ltd.: London, UK, 1975. [Google Scholar]
- Bartlett, M.S. Deterministic and stochastic models for recurrent epidemics. In Proceedings of the 3rd Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 26–31 December 1956; Volume 4, pp. 81–109. [Google Scholar]
- Hege, J.S.; Cole, G. A mathematical model relating circulating antibody and antibody forming cells. J. Immunol. 1966, 97, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Kermack, W.O.; McKendrick, A.G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A 1927, 115, 700–721. Available online: https://royalsocietypublishing.org/doi/10.1098/rspa.1927.0118 (accessed on 20 June 2025).
- Ross, R. The Prevention of Malaria; E.P. Dutton and Company: New York, NY, USA, 1910; Available online: https://archive.org/details/pr00eventionofmalarossrich/mode/2up (accessed on 20 June 2025).
- Bernoulli, D.; Blower, S. An attempt at a new analysis of the mortality caused by smallpox and of the advantages of inoculation to prevent it. Rev. Med. Virol. 2004, 14, 275–288. [Google Scholar] [CrossRef] [PubMed]
- Farr, W. Report on the Mortality of Cholera in England, 1848–1849, Great Britain; General Register Office; Royal College of Physicians of London (HMSO): London, UK, 1852; Available online: https://wellcomecollection.org/works/pajtrpez (accessed on 20 June 2025).
- Bruni, C.; Giovenco, M.A.; Koch, G.; Strom, R. A dynamical model of humoral immune response. Math. Biosci. 1975, 27, 191–211. [Google Scholar] [CrossRef]
- Bell, G.I. Mathematical model of clonal selection and antibody production. J. Theor. Biol. 1970, 29, 191–232. [Google Scholar] [CrossRef]
- Albani, V.V.L.; Zubelli, J.P. Stochastic transmission in epidemiological models. J. Math. Biol. 2024, 88, 25. [Google Scholar] [CrossRef]
- Allen, L.J.S. A primer on stochastic epidemic models: Formulation, numerical simulation, and analysis. Infect. Dis. Model. 2017, 2, 128–142. [Google Scholar] [CrossRef]
- Andersson, H.; Britton, T. Stochastic Epidemic Models and Their Statistical Analysis; Volume 151 of Lecture Notes in Statistics; Springer: New York, NY, USA, 2000. [Google Scholar] [CrossRef]
- Beretta, E.; Kolmanovskii, V.; Shaikhet, L. Stability of epidemic model with time delays influenced by stochastic perturbations. Math. Comput. Simul. 1998, 45, 269–277. [Google Scholar] [CrossRef]
- Beretta, E.; Takeuchi, Y. Global stability of an SIR epidemic model with time delays. J. Math. Biol. 1995, 33, 250–260. [Google Scholar] [CrossRef]
- Bouzalmat, I.; El Idrissi, M.; Settati, A.; Lahrouz, A. Stochastic SIRS epidemic model with perturbation on immunity decay rate. J. Appl. Math. Comput. 2023, 69, 4499–4524. [Google Scholar] [CrossRef]
- Britton, T. Stochastic epidemic models: A survey. Math. Biosci. 2010, 225, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Kang, Y.; Banerjee, M.; Wang, W. A stochastic SIRS epidemic model with infectious force under intervention strategies. J. Differ. Equ. 2015, 259, 7463–7502. [Google Scholar] [CrossRef]
- Cai, Y.; Kang, Y.; Wang, W. A stochastic SIRS epidemic model with nonlinear incidence rate. Appl. Math. Comput. 2017, 305, 221–240. [Google Scholar] [CrossRef]
- Dieu, N.T.; Nguyen, D.H.; Du, N.H.; Yin, G. Classification of asymptotic behaviour in a stochastic SIR model. SIAM J. Appl. Dyn. Syst. 2016, 15, 1062–1084. [Google Scholar] [CrossRef]
- Gray, A.J.; Greenhalgh, D.; Hu, L.; Mao, X.; Pan, J. A stochastic differential equation SIS epidemic model. SIAM J. Appl. Dyn. Syst. 2011, 71, 876–902. [Google Scholar] [CrossRef]
- Greenwood, P.E.; Gordillo, L.F. Stochastic epidemic modeling. In Mathematical and Statistical Estimation Approaches in Epidemiology; Springer: Dordrecht, The Netherlands, 2009; pp. 31–52. [Google Scholar] [CrossRef]
- Karako, K.; Song, P.; Chen, Y.; Tang, W. Analysis of COVID-19 infection spread in japan based on stochastic transition model. Biosci. Trends 2020, 14, 134–138. [Google Scholar] [CrossRef]
- Kiss, I.Z.; Miller, J.C.; Simon, P.L. Mathematics of Epidemics on Networks, From Exact to Approximate Models; Springer: Berlin, Germany, 2017. [Google Scholar]
- Korobeinikov, A. Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages. Bull. Math. Biol. 2009, 71, 75–83. [Google Scholar] [CrossRef]
- Laaribi, A.; Boukanjime, B.; El Khalifi, M.; Bouggar, D.; El Fatini, M. A generalized stochastic SIRS epidemic model incorporating mean-reverting ornstein–uhlenbeck process. Phys. A Stat. Mech. Appl. 2023, 615, 128609. [Google Scholar] [CrossRef]
- Lahrouz, A.; Settati, A.; El Fatini, M.; Tridane, A. The effect of a generalized nonlinear incidence rate on the stochastic SIS epidemic model. Math. Methods Appl. Sci. 2021, 44, 1137–1146. [Google Scholar] [CrossRef]
- Martcheva, M. An Introduction to Mathematical Epidemiology; Texts in Applied Mathematics; Springer: New York, NY, USA, 2010; Volume 61. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Takasu, F.; Nguyen, H.D. Asymptotic behaviours of stochastic epidemic models with jump-diffusion. Appl. Math. Model. 2020, 86, 259–270. [Google Scholar] [CrossRef]
- Settati, A.; Caraballo, T.; Lahrouz, A.; Bouzalmat, T.; Assadouq, A. Stochastic SIR epidemic model dynamics on scale-free networks. Math. Comput. Simul. 2025, 229, 246–259. [Google Scholar] [CrossRef]
- Settati, A.; Lahrouz, A.; Zahri, M.; Tridane, A.; El Fatini, M.; El Mahjour, H.; Seaid, M. A stochastic threshold to predict extinction and persistence of an epidemic SIRS system with a general incidence rate. Chaos Solit. Fractals 2021, 144, 110690. [Google Scholar] [CrossRef]
- Shaikhet, L. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Tesfay, A.; Saeed, T.; Zeb, A.; Tesfay, D.; Khalaf, A.; Brannan, J. Dynamics of a stochastic COVID-19 epidemic model with jump-diffusion. Adv. Differ. Equ. 2021, 2021, 228. [Google Scholar] [CrossRef]
- Tornatore, E.; Vetro, P.; Buccellato, S.M. SIVR epidemic model with stochastic perturbation. Neural Comput. Appl. 2014, 24, 309–315. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, K. Stochastic SIR model with jumps. Appl. Math. Lett. 2013, 26, 867–874. [Google Scholar] [CrossRef]
- Zhang, Z.; Zeb, A.; Hussain, S.; Alzahrani, E. Dynamics of COVID-19 mathematical model with stochastic perturbation. Adv. Differ. Equ. 2020, 2020, 451. [Google Scholar] [CrossRef]
- Zhao, D.; Yuan, S. Threshold dynamics of the stochastic epidemic model with jump-diffusion infection force. J. Appl. Anal. Comput. 2019, 9, 440–451. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, W. Threshold of a stochastic SIR epidemic model with Levy jumps. Phys. A Stat. Mech. Appl. 2016, 446, 204–216. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, W.; Yuan, S. Survival and stationary distribution of a SIR epidemic model with stochastic perturbations. Appl. Math. Comput. 2014, 244, 118–131. [Google Scholar] [CrossRef]
- Marchuk, G.I. Mathematical Modelling of Immune Response in Infection Diseases; Book series: Mathematics and Its Applications; Springer Science & Business Media: Dordrecht, The Netherlands, 1997. [Google Scholar] [CrossRef]
- Domoshnitsky, A.; Bershadsky, M.; Volinsky, I. Distributed control in stabilization of a model of infection diseases. Russ. J. Biomech. 2019, 23, 494–499. [Google Scholar] [CrossRef]
- Domoshnitsky, A.; Volinsky, I.; Bershadsky, M. Around the Model of Infection Disease: The Cauchy Matrix and Its Properties. Symmetry 2019, 11, 1016. [Google Scholar] [CrossRef]
- Volinsky, I.; Bershadsky, M. Numerical Solution of Marchuk models of infection diseases. Funct. Differ. Equ. 2021, 28, 85–93. Available online: https://www.ariel.ac.il/wp/fde/2021/03/21/numerical-solution-of-marchuk-model-of-infection-diseases/ (accessed on 20 June 2025). [CrossRef]
- Volinsky, I.; Domoshnitsky, A.; Bershadsky, M.; Shklyar, R. Marchuk’s Models of Infection Diseases: New Developments. In Functional Differential Equations and Applications; FDEA, 2019; Domoshnitsky, A., Rasin, A., Padhi, S., Eds.; Springer Proceedings in Mathematics and Statistics; Springer: Singapore, 2021; Volume 379, pp. 131–143. [Google Scholar] [CrossRef]
- Bershadsky, M.; Chirkov, M.; Domoshnitsky, A.; Rusakov, S.; Volinsky, I. Distributed Control and the Lyapunov Characteristic Exponents in the Model of Infectious Diseases. Complexity 2019, 5234854. [Google Scholar] [CrossRef]
- Marchuk, G.I. Mathematical Models in Immunology; Nauka: Moscow, Russia, 1980. [Google Scholar]
- Gikhman, I.I.; Skorokhod, A.V. Stochastic Differential Equations; Springer: Berlin/Heidelberg, Germany, 1972. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bershadsky, M.; Shaikhet, L. Stability Analysis of a Mathematical Model for Infection Diseases with Stochastic Perturbations. Mathematics 2025, 13, 2265. https://doi.org/10.3390/math13142265
Bershadsky M, Shaikhet L. Stability Analysis of a Mathematical Model for Infection Diseases with Stochastic Perturbations. Mathematics. 2025; 13(14):2265. https://doi.org/10.3390/math13142265
Chicago/Turabian StyleBershadsky, Marina, and Leonid Shaikhet. 2025. "Stability Analysis of a Mathematical Model for Infection Diseases with Stochastic Perturbations" Mathematics 13, no. 14: 2265. https://doi.org/10.3390/math13142265
APA StyleBershadsky, M., & Shaikhet, L. (2025). Stability Analysis of a Mathematical Model for Infection Diseases with Stochastic Perturbations. Mathematics, 13(14), 2265. https://doi.org/10.3390/math13142265