Advances in Study of Time-Delay Systems and Their Applications: A Second Edition
1. Introduction
2. Overview of Special Issue Contributions
3. Conclusions
Funding
Conflicts of Interest
Abbreviations
DE | Differential equation |
DMD | Dynamic mode decomposition |
HOBAMNN | High-order bidirectional associative memory neural network |
NANSE | Non-autonomous Navier–Stokes equation |
PDE | Partial differential equation |
SGPS | Semi-global polynomial synchronization |
STDMD | Spatio-temporal dynamic mode decomposition |
TDS | Time-delay system |
References
- Volterra, V. Sur la théorie mathématique des phénomenes héréditaires. J. Math. Pures Appl. 1928, 7, 249–298. [Google Scholar]
- Cong, E.-y.; Zhang, X.; Zhu, L. Semi-global polynomial synchronization of high-order multiple proportional-delay BAM neural networks. Mathematics 2025, 13, 1512. [Google Scholar] [CrossRef]
- Ge, H.; Du, F. Global well-posedness and determining nodes of non-autonomous Navier–Stokes equations with infinite delay on bounded domains. Mathematics 2025, 13, 222. [Google Scholar] [CrossRef]
- Lang, Y.; Lu, W. Criteria on exponential incremental stability of dynamical systems with time delay. Mathematics 2023, 11, 2242. [Google Scholar] [CrossRef]
- Nedzhibov, G. Delay-embedding spatio-temporal dynamic mode decomposition. Mathematics 2024, 12, 762. [Google Scholar] [CrossRef]
- Batiha, B.; Alshammari, N.; Aldosari, F.; Masood, F.; Bazighifan, O. Nonlinear neutral delay differential equations: Novel criteria for oscillation and asymptotic behavior. Mathematics 2025, 13, 147. [Google Scholar] [CrossRef]
- Sedova, N.O.; Druzhinina, O.V. Exponential stability of nonlinear time-varying delay differential equations via Lyapunov–Razumikhin technique. Mathematics 2023, 11, 896. [Google Scholar] [CrossRef]
- Mesmouli, M.B.; Ardjouni, A.; Saber, H. Asymptotic Behavior of Solutions in Nonlinear Neutral System with Two Volterra Terms. Mathematics 2023, 11, 2676. [Google Scholar] [CrossRef]
- De la Sen, M.; Ibeas, A.; Garrido, A.J.; Garrido, I. On the evolution operators of a class of time-delay systems with impulsive parameterizations. Mathematics 2025, 13, 365. [Google Scholar] [CrossRef]
- Zhou, B.; Egorov, A.V. Razumikhin and Krasovskii stability theorems for time-varying time-delay systems. Automatica 2016, 71, 281–291. [Google Scholar] [CrossRef]
- Ning, C.; He, Y.; Wu, M.; She, J. Improved Razumikhin-type theorem for input-to-state stability of nonlinear time-delay systems. IEEE Trans. Autom. Control 2014, 59, 1983–1988. [Google Scholar] [CrossRef]
- Hou, C.; Gao, F. Criteria for quantitative stability for a class of Razumikhin-type retarded functional differential equations. J. Math. Anal. Appl. 1999, 238, 558–566. [Google Scholar] [CrossRef]
- Hu, W.; Zhu, Q.; Karimi, H.R. Some improved Razumikhin stability criteria for impulsive stochastic delay differential systems. IEEE Trans. Autom. Control 2019, 64, 5207–5213. [Google Scholar] [CrossRef]
- Zhou, B.; Luo, W. Improved Razumikhin and Krasovskii stability criteria for time-varying stochastic time-delay systems. Automatica 2018, 89, 382–391. [Google Scholar] [CrossRef]
- Dung, N.T. New stability conditions for mixed linear Levin-Nohel integro-differential equations. J. Math. Phys. 2013, 54, 082705. [Google Scholar] [CrossRef]
- Mesmouli, M.B.; Ardjouni, A.; Djoudi, A. Stability conditions for a mixed linear Levin-Nohel integro-differential system. J. Integral Equ. Appl. 2022, 34, 349–356. [Google Scholar] [CrossRef]
- Tamilvanan, S.; Thandapani, E.; Džurina, J. Oscillation of second order nonlinear differential equations with sub-linear neutral term. Differ. Equ. Appl. 2017, 9, 29–35. [Google Scholar] [CrossRef]
- Wu, Y.; Yu, Y.; Xiao, J.; Jiao, Z. Oscillatory behaviour of a class of second order Emden-Fowler differential equations with a sublinear neutral term. Appl. Math. Sci. Eng. 2023, 31, 224609. [Google Scholar] [CrossRef]
- Chang, J. Solutions to non-autonomous integrodifferential equations with infinite delay. J. Math. Anal. Appl. 2007, 331, 137–151. [Google Scholar] [CrossRef]
- Huang, A.; Huo, W.; Ma, J. Finite-dimensionality and determining modes of the global attractor for 2D Boussinesq equations with fractional Laplacian. Adv. Nonlinear Stud. 2018, 18, 501–515. [Google Scholar] [CrossRef]
- Tu, J.H.; Rowley, C.W.; Luchtenburg, D.M.; Brunton, S.L.; Kutz, J.N. On dynamic mode decomposition: Theory and applications. J. Comput. Dyn. 2014, 1, 391–421. [Google Scholar] [CrossRef]
- Clainche, S.L.; Vega, J.M. Spatio-temporal Koopman decomposition. J. Nonlinear Sci. 2018, 28, 1793–1842. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, X. General decay synchronization of state and spatial diffusion coupled delayed memristive neural networks with reaction-diffusion terms. Int. J. Control Autom. Syst. 2024, 22, 2313–2326. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pekař, L. Advances in Study of Time-Delay Systems and Their Applications: A Second Edition. Mathematics 2025, 13, 2005. https://doi.org/10.3390/math13122005
Pekař L. Advances in Study of Time-Delay Systems and Their Applications: A Second Edition. Mathematics. 2025; 13(12):2005. https://doi.org/10.3390/math13122005
Chicago/Turabian StylePekař, Libor. 2025. "Advances in Study of Time-Delay Systems and Their Applications: A Second Edition" Mathematics 13, no. 12: 2005. https://doi.org/10.3390/math13122005
APA StylePekař, L. (2025). Advances in Study of Time-Delay Systems and Their Applications: A Second Edition. Mathematics, 13(12), 2005. https://doi.org/10.3390/math13122005