On the Laplace Transforms of Derivatives of Special Functions with Respect to Parameters
Abstract
:1. Introduction
2. Laplace Transforms of the Derivatives of the Mittag–Leffler Functions
3. Laplace Transforms of the Derivatives of the Wright Function
4. Laplace Transforms of the Derivatives of the Three- and Four-Parametric Mittag–Leffler Functions
5. Laplace Transforms of the Derivatives of the Le Roy-Type Function
6. Convoluted Forms of the Derivatives of Mittag–Leffler and Wright-Type Functions with Respect to Parameters
7. Discussion and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Landau, L.J. Bessel functions: Monotonicity and bounds. J. Lond. Math. Soc. 2000, 61, 197–215. [Google Scholar] [CrossRef]
- Apelblat, A.; Kravitsky, N. Integral representations of derivatives and integrals with respect to the order of the Bessel functions, the Anger function and the integral Bessel function. IMA J. Appl. Math. 1985, 34, 187–210. [Google Scholar] [CrossRef]
- Brychkov, Y.A. Higher derivatives of the Bessel functions with respect to the order. Integral Transform. Spec. Funct. 2016, 27, 566–577. [Google Scholar] [CrossRef]
- Dunster, T.M. On the order derivatives of Bessel functions. Constr. Approx. 2017, 46, 47–68. [Google Scholar] [CrossRef]
- Apelblat, A. Differentiation of the Mittag-Leffler function with respect to parameters in the Laplace transform approach. Mathematics 2020, 8, 657. [Google Scholar] [CrossRef]
- Apelblat, A.; Mainardi, F. Differentiation of the Wright functions with respect to parameters and other results. Appl. Sci. 2022, 12, 12825. [Google Scholar] [CrossRef]
- Gorenflo, R.; Kilbas, A.; Mainardi, F.; Rogosin, S. Mittag-Leffler Functions, Related Topics and Applications, 2nd ed.; First Edition 2014; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Rogosin, S.; Giraldi, F.; Mainardi, F. On differentiation with respect to parameters of the functions of the Mittag-Leffler type. Int. Transf. Spec. Funct. 2024, 36, 400–412. [Google Scholar] [CrossRef]
- Debnath, L.; Bhatta, D. Integral Transforms and Their Applications, 3rd ed.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2015. [Google Scholar]
- Apelblat, A. Personal experience in the application of the Laplace transform. In The Laplace Transform and Its Applications in Science; Martinez-Luaces, V., Ed.; Nova Science Publishers: New York, NY, USA, 2025; pp. 201–283. ISBN 979-8-89113-747-9. [Google Scholar]
- Apelblat, A. Laplace Transforms and Their Applications; Nova Publishers: New York, NY, USA, 2012. [Google Scholar]
- Efros, A.M. Some applications of operational calculus in analysis. Mat. Sbornik 1935, 42, 699–705. [Google Scholar]
- Graf, U. Applied Laplace Transforms and z-Transforms for Sciences and Engineers; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Wlodarski, L. Sur une formule de Eftros. Studia Math. 1952, 13, 183–187. [Google Scholar] [CrossRef]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Handbook of Mathematical Functions; National Institute of Standards and Technology: Gaithersburg, MD, USA; Cambridge University Press: New York, NY, USA, 2010; pp. 951 + xv pages and a CD. [Google Scholar]
- Alzer, H. On some inequalities for the Gamma and Psi functions. Math. Comput. 1997, 66, 373–389. [Google Scholar] [CrossRef]
- Guo, B.-N.; Qi, F. Sharp inequalities for the psi function and harmonic numbers. Analysis 2014, 34, 201–208. [Google Scholar] [CrossRef]
- Luchko, Y. The Wright function and its applications. In Handbook of Fractional Calculus with Applications; Machado, J.T., Kochubei, A., Luchko, Y., Eds.; Basic Theory; De Gruyter Brill: Berlin, Germany, 2019; Volume 1, pp. 241–268. [Google Scholar]
- Rogosin, S.; Dubatovskaya, M. Multi-parametric Le Roy function. Fract. Calc. Appl. Anal. 2023, 26, 54–69, Erratum in Fract. Calc. Appl. Anal. 2024, 27, 64–81. [Google Scholar] [CrossRef]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series; Gordon and Breach Science: New York, NY, USA, 1992; Volumes 1, 4 and 5. [Google Scholar]
- Nigmatullin, R.R.; Mainardi, F. The Efros theorem for Laplace transforms in fractional calculus. In Proceedings of the 14th IMACS World Congress on Computational and Applied Mathematics, IMACS ’94, Atlanta, GA, USA, 11–15 July 1994; pp. 370–374. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rogosin, S.; Giraldi, F.; Mainardi, F. On the Laplace Transforms of Derivatives of Special Functions with Respect to Parameters. Mathematics 2025, 13, 1980. https://doi.org/10.3390/math13121980
Rogosin S, Giraldi F, Mainardi F. On the Laplace Transforms of Derivatives of Special Functions with Respect to Parameters. Mathematics. 2025; 13(12):1980. https://doi.org/10.3390/math13121980
Chicago/Turabian StyleRogosin, Sergei, Filippo Giraldi, and Francesco Mainardi. 2025. "On the Laplace Transforms of Derivatives of Special Functions with Respect to Parameters" Mathematics 13, no. 12: 1980. https://doi.org/10.3390/math13121980
APA StyleRogosin, S., Giraldi, F., & Mainardi, F. (2025). On the Laplace Transforms of Derivatives of Special Functions with Respect to Parameters. Mathematics, 13(12), 1980. https://doi.org/10.3390/math13121980