On the Laplace Transforms of Derivatives of Special Functions with Respect to Parameters
Abstract
1. Introduction
2. Laplace Transforms of the Derivatives of the Mittag–Leffler Functions
3. Laplace Transforms of the Derivatives of the Wright Function
4. Laplace Transforms of the Derivatives of the Three- and Four-Parametric Mittag–Leffler Functions
5. Laplace Transforms of the Derivatives of the Le Roy-Type Function
6. Convoluted Forms of the Derivatives of Mittag–Leffler and Wright-Type Functions with Respect to Parameters
7. Discussion and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Landau, L.J. Bessel functions: Monotonicity and bounds. J. Lond. Math. Soc. 2000, 61, 197–215. [Google Scholar] [CrossRef]
- Apelblat, A.; Kravitsky, N. Integral representations of derivatives and integrals with respect to the order of the Bessel functions, the Anger function and the integral Bessel function. IMA J. Appl. Math. 1985, 34, 187–210. [Google Scholar] [CrossRef]
- Brychkov, Y.A. Higher derivatives of the Bessel functions with respect to the order. Integral Transform. Spec. Funct. 2016, 27, 566–577. [Google Scholar] [CrossRef]
- Dunster, T.M. On the order derivatives of Bessel functions. Constr. Approx. 2017, 46, 47–68. [Google Scholar] [CrossRef]
- Apelblat, A. Differentiation of the Mittag-Leffler function with respect to parameters in the Laplace transform approach. Mathematics 2020, 8, 657. [Google Scholar] [CrossRef]
- Apelblat, A.; Mainardi, F. Differentiation of the Wright functions with respect to parameters and other results. Appl. Sci. 2022, 12, 12825. [Google Scholar] [CrossRef]
- Gorenflo, R.; Kilbas, A.; Mainardi, F.; Rogosin, S. Mittag-Leffler Functions, Related Topics and Applications, 2nd ed.; First Edition 2014; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Rogosin, S.; Giraldi, F.; Mainardi, F. On differentiation with respect to parameters of the functions of the Mittag-Leffler type. Int. Transf. Spec. Funct. 2024, 36, 400–412. [Google Scholar] [CrossRef]
- Debnath, L.; Bhatta, D. Integral Transforms and Their Applications, 3rd ed.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2015. [Google Scholar]
- Apelblat, A. Personal experience in the application of the Laplace transform. In The Laplace Transform and Its Applications in Science; Martinez-Luaces, V., Ed.; Nova Science Publishers: New York, NY, USA, 2025; pp. 201–283. ISBN 979-8-89113-747-9. [Google Scholar]
- Apelblat, A. Laplace Transforms and Their Applications; Nova Publishers: New York, NY, USA, 2012. [Google Scholar]
- Efros, A.M. Some applications of operational calculus in analysis. Mat. Sbornik 1935, 42, 699–705. [Google Scholar]
- Graf, U. Applied Laplace Transforms and z-Transforms for Sciences and Engineers; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Wlodarski, L. Sur une formule de Eftros. Studia Math. 1952, 13, 183–187. [Google Scholar] [CrossRef]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Handbook of Mathematical Functions; National Institute of Standards and Technology: Gaithersburg, MD, USA; Cambridge University Press: New York, NY, USA, 2010; pp. 951 + xv pages and a CD. [Google Scholar]
- Alzer, H. On some inequalities for the Gamma and Psi functions. Math. Comput. 1997, 66, 373–389. [Google Scholar] [CrossRef]
- Guo, B.-N.; Qi, F. Sharp inequalities for the psi function and harmonic numbers. Analysis 2014, 34, 201–208. [Google Scholar] [CrossRef]
- Luchko, Y. The Wright function and its applications. In Handbook of Fractional Calculus with Applications; Machado, J.T., Ed.; Volume 1: Basic Theory, Kochubei, A., Luchko, Y., Eds.; De Gruyter Brill: Berlin, Germany, 2019; Volume 1, pp. 241–268. [Google Scholar]
- Rogosin, S.; Dubatovskaya, M. Multi-parametric Le Roy function. Fract. Calc. Appl. Anal. 2023, 26, 54–69. [Google Scholar] [CrossRef]
- Rogosin, S.; Dubatovskaya, M. Multi-parametric Le Roy function revisited. Fract. Calc. Appl. Anal. 2023, 27, 64–81. [Google Scholar] [CrossRef]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series; Gordon and Breach Science: New York, NY, USA, 1992; Volumes 1, 4 and 5. [Google Scholar]
- Nigmatullin, R.R.; Mainardi, F. The Efros theorem for Laplace transforms in fractional calculus. In Proceedings of the 14th IMACS World Congress on Computational and Applied Mathematics, IMACS ’94, Atlanta, GA, USA, 11–15 July 1994; pp. 370–374. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rogosin, S.; Giraldi, F.; Mainardi, F. On the Laplace Transforms of Derivatives of Special Functions with Respect to Parameters. Mathematics 2025, 13, 1980. https://doi.org/10.3390/math13121980
Rogosin S, Giraldi F, Mainardi F. On the Laplace Transforms of Derivatives of Special Functions with Respect to Parameters. Mathematics. 2025; 13(12):1980. https://doi.org/10.3390/math13121980
Chicago/Turabian StyleRogosin, Sergei, Filippo Giraldi, and Francesco Mainardi. 2025. "On the Laplace Transforms of Derivatives of Special Functions with Respect to Parameters" Mathematics 13, no. 12: 1980. https://doi.org/10.3390/math13121980
APA StyleRogosin, S., Giraldi, F., & Mainardi, F. (2025). On the Laplace Transforms of Derivatives of Special Functions with Respect to Parameters. Mathematics, 13(12), 1980. https://doi.org/10.3390/math13121980