Event-Triggered Anti-Synchronization of Fuzzy Delay-Coupled Fractional Memristor-Based Discrete-Time Neural Networks
Abstract
1. Introduction
2. Model Description and Preliminaries
2.1. Graph Theory
2.2. T-S Fuzzy Delay-Coupled FMDTNNs
3. Main Results
3.1. Fuzzy Event-Triggered Mechanism
3.2. Main Theorem
3.3. Mitigate the Zeno Phenomenon
4. Numerical Examples
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Snider, G. Cortical computing with memristive nanodevices. SciDAC Rev. 2008, 10, 58–65. [Google Scholar]
- Jo, S.H.; Chang, T.; Ebong, I.; Bhadviya, B.B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 2010, 10, 1297–1301. [Google Scholar] [CrossRef]
- Kumar, D.; Li, H.; Kumbhar, D.D.; Rajbhar, M.K.; Das, U.K.; Syed, A.M.; Melinte, G.; El-Atab, N. Highly efficient back-end-of-line compatible flexible Si-based optical memristive crossbar array for edge neuromorphic physiological signal processing and bionic machine vision. Nano-Micro Lett. 2024, 16, 238. [Google Scholar] [CrossRef]
- Mou, X.; Tang, J.; Lyu, Y.; Zhang, Q.; Yang, S.; Xu, F.; Liu, W.; Xv, M.; Zhou, Y.; Sun, W.; et al. Analog memristive synapse based on topotactic phase transition for high-performance neuromorphic computing and neural network pruning. Sci. Adv. 2021, 7, eabh0648. [Google Scholar] [CrossRef] [PubMed]
- Shekinah Archita, S.; Ravi, V. A hybrid CMOS-memristor based adaptable bidirectional associative memory neural network for pattern recognition applications. Phys. Scr. 2025, 100, 035011. [Google Scholar]
- Huang, Y.; Li, A. General decay anti-synchronization of coupled delayed memristive neural networks with constant and time-varying distributed-delay coupling. Neurocomputing 2025, 618, 129058. [Google Scholar] [CrossRef]
- Cao, Y.; Jiang, W.; Wang, J. Anti-synchronization of delayed memristive neural networks with leakage term and reaction–diffusion terms. Knowl.-Based Syst. 2021, 233, 107539. [Google Scholar] [CrossRef]
- Li, H.; Hu, X.; Wang, Q.; Wang, L. Anti-synchronisation in fixed-/preassigned-time of delayed memristive neural networks with discontinuous activation functions. Int. J. Control 2024, 97, 2140–2150. [Google Scholar] [CrossRef]
- Murthy, G.R. Toward optimal synthesis of discrete-time Hopfield neural network. IEEE Trans. Neural Netw. Learn. Syst. 2022, 34, 9549–9554. [Google Scholar] [CrossRef]
- Ding, S.; Wang, Z.; Rong, N. Intermittent control for quasi-synchronization of delayed discrete-time neural networks. IEEE Trans. Cybern. 2020, 51, 862–873. [Google Scholar] [CrossRef]
- Priyanka, K.S.R.; Nagamani, G. Exponential H∞ synchronization and anti-synchronization of delayed discrete-time complex-valued neural networks with uncertainties. Math. Comput. Simul. 2023, 207, 301–321. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, Y.; Han, S. Exponential heterogeneous anti-synchronization of multi-variable discrete stochastic inertial neural networks with adaptive corrective parameter. Eng. Appl. Artif. Intell. 2025, 142, 109871. [Google Scholar] [CrossRef]
- Liu, F.; Meng, W.; Lu, R. Anti-synchronization of discrete-time fuzzy memristive neural networks via impulse sampled-data communication. IEEE Trans. Cybern. 2022, 53, 4122–4133. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998; Volume 198. [Google Scholar]
- Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Li, R.; Cao, J.; Li, N. Stabilization control of quaternion-valued fractional-order discrete-time memristive neural networks. Neurocomputing 2023, 542, 126255. [Google Scholar] [CrossRef]
- Li, H.L.; Cao, J.; Hu, C.; Jiang, H.; Alsaadi, F.E. Synchronization analysis of discrete-time fractional-order quaternion-valued uncertain neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 14178–14189. [Google Scholar] [CrossRef]
- Perumal, R.; Hymavathi, M.; Ali, M.S.; Mahmoud, B.A.; Osman, W.M.; Ibrahim, T.F. Synchronization of discrete-time fractional-order complex-valued neural networks with distributed delays. Fractal Fract. 2023, 7, 452. [Google Scholar] [CrossRef]
- Yang, J.; Li, H.L.; Zhang, L.; Hu, C.; Jiang, H. Synchronization of discrete-time fractional fuzzy neural networks with delays via quantized control. ISA Trans. 2023, 141, 241–250. [Google Scholar] [CrossRef]
- Cui, X.; Li, H.L.; Zhang, L.; Hu, C.; Bao, H. Complete synchronization for discrete-time fractional-order coupled neural networks with time delays. Chaos Solitons Fractals 2023, 174, 113772. [Google Scholar] [CrossRef]
- Zhang, X.L.; Li, H.L.; Yu, Y.; Zhang, L.; Jiang, H. Quasi-projective and complete synchronization of discrete-time fractional-order delayed neural networks. Neural Netw. 2023, 164, 497–507. [Google Scholar] [CrossRef]
- Ping, J.; Zhu, S.; Liu, X. Finite/fixed-time synchronization of memristive neural networks via event-triggered control. Knowl.-Based Syst. 2022, 258, 110013. [Google Scholar] [CrossRef]
- Wu, J.; Yu, Y.; Ren, G. Leader-following formation control for discrete-time fractional stochastic multi-agent systems by event-triggered strategy. Fractal Fract. 2024, 8, 246. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, X.; Wang, Y.; Huang, L.; Wei, Q. Quantization-based event-triggered H∞ consensus for discrete-time Markov jump fractional-order multiagent systems with DoS attacks. Fractal Fract. 2024, 8, 147. [Google Scholar] [CrossRef]
- Priyanka, K.S.R.; Soundararajan, G.; Kashkynbayev, A.; Nagamani, G. Co-existence of robust output-feedback synchronization and anti-synchronization of delayed discrete-time neural networks with its application. Comput. Appl. Math. 2024, 43, 77. [Google Scholar] [CrossRef]
- Pratap, A.; Raja, R.; Cao, J.; Huang, C.; Niezabitowski, M.; Bagdasar, O. Stability of discrete-time fractional-order time-delayed neural networks in complex field. Math. Methods Appl. Sci. 2021, 44, 419–440. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Atici, F.M. On the definitions of nabla fractional operators. Abstr. Appl. Anal. 2012, 2012, 406757. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Baleanu, D. Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels. Adv. Differ. Equ. 2016, 2016, 232. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Gong, C.; Yue, H.; Wang, Y. Event-Triggered Anti-Synchronization of Fuzzy Delay-Coupled Fractional Memristor-Based Discrete-Time Neural Networks. Mathematics 2025, 13, 1935. https://doi.org/10.3390/math13121935
Wang C, Gong C, Yue H, Wang Y. Event-Triggered Anti-Synchronization of Fuzzy Delay-Coupled Fractional Memristor-Based Discrete-Time Neural Networks. Mathematics. 2025; 13(12):1935. https://doi.org/10.3390/math13121935
Chicago/Turabian StyleWang, Chao, Chunlin Gong, Hongtao Yue, and Yin Wang. 2025. "Event-Triggered Anti-Synchronization of Fuzzy Delay-Coupled Fractional Memristor-Based Discrete-Time Neural Networks" Mathematics 13, no. 12: 1935. https://doi.org/10.3390/math13121935
APA StyleWang, C., Gong, C., Yue, H., & Wang, Y. (2025). Event-Triggered Anti-Synchronization of Fuzzy Delay-Coupled Fractional Memristor-Based Discrete-Time Neural Networks. Mathematics, 13(12), 1935. https://doi.org/10.3390/math13121935