Canonical Commutation Relation Derived from Witt Algebra
Abstract
1. Introduction
1.1. Motivation
1.2. Background
1.3. Contribution of Paper
2. Definition and Properties of Witt Operators
3. Role of Witt Operators in Non-Relativistic QM
3.1. Identification of QM Structures
3.2. Quantization of Harmonic Oscillator
3.3. Derivation of Schrödinger Equation
4. Main Result
5. Discussion
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Girvin, S.M.; MacDonald, A.H.; Platzman, P.M. Magneto-roton theory of collective excitations in the fractional quantum Hall effect. Phys. Rev. B 1986, 33, 2481–2986. [Google Scholar] [CrossRef] [PubMed]
- Ginsparg, P. Lectures given at Les Houches summer session, 28 June–5 August 1988. arXiv 1989. [Google Scholar] [CrossRef]
- Ellis, J.R.; Mavromatos, N.E.; Nanopoulos, D.V. String theory modifies quantum mechanics. Phys. Lett. B 1992, 293, 37–48. [Google Scholar] [CrossRef]
- Katagiri, S.; Sugamoto, A.; Yamaguchi, K.; Yumibayashi, T. Beyond squeezing à la Virasoro algebra. Prog. Theor. Exp. Phys. 2019, 2019, 123B04. [Google Scholar] [CrossRef]
- Veneziano, G. Construction of a crossing-simmetric, Regge-behaved amplitude for linearly rising trajectories. Nuovo Cimento A (1965–1970) 1968, 57, 190–197. [Google Scholar] [CrossRef]
- Virasoro, M.A. Subsidiary Conditions and Ghosts in Dual-Resonance Models. Phys. Rev. D 1970, 1, 2933. [Google Scholar] [CrossRef]
- Brower, R.C. Spectrum-Generating Algebra and No-Ghost Theorem for the Dual Model. Phy. Rev. D 1972, 6, 1655. [Google Scholar] [CrossRef]
- Van Alstine, P. Remark on the c-number anomaly in the Virasoro algebra. Phy. Rev. D 1975, 12, 1834. [Google Scholar] [CrossRef]
- Akhoury, R.; Okada, Y. String in curved space-time: Virasoro algebra in the classical and quantum theory. Phy. Rev. D 1987, 35, 1917. [Google Scholar] [CrossRef]
- Saito, Y. Nonexistence of a ground state and breaking of the no-ghost theorem on a squeezed string. Phy. Rev. D 1987, 36, 3178. [Google Scholar] [CrossRef]
- Scherk, J. An introduction to the theory of dual models and string. Rev. Mod. Phys. 1975, 47, 123. [Google Scholar] [CrossRef]
- Sakai, N.; Suranyi, P. Modification of Virasoro Generators by Kac-Moody Generators. Nucl. Phys. B 1989, 318, 655–668. [Google Scholar] [CrossRef]
- Dotsenko, V.S.; Fateev, V. Conformal algebra and multipoint correlation functions in 2D statistical models. Nucl. Phys. B 1984, 240, 312. [Google Scholar] [CrossRef]
- Chaichian, M.; Presnajder, P. Discrete-time quantum field theory and the deformed super-Virasoro algebra. Phys. Lett. A 2004, 322, 156–165. [Google Scholar] [CrossRef]
- Sakurai, J.J.; Tuan, S.F. Modern Quantum Mechanics; Chap-II, Revised Edition; Pearson Education: London, UK, 1994. [Google Scholar]
- Chinmoy, S.; Aniruddha, C. Exact results for the Schrödinger equation with moving localized potential. Phys. Lett. A 2021, 408, 127485. [Google Scholar]
- Band, Y.B. Quantum Mechanics with Applications to Nanotechnology and Information Science. In The Formalism of Quantum Mechanics; Avishai, Y., Ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 61–104. [Google Scholar]
- Ray, J.R. Exact solutions to the time-dependent Schrödinger equation. Phys. Rev. A 1982, 26, 729. [Google Scholar] [CrossRef]
- Newton, R.G. Representation of the Potential in the Schrödinger Equation. Phys. Rev. Lett. 1984, 53, 1863. [Google Scholar] [CrossRef]
- Caballar, R.C.F.; Ocampo, L.R.; Galapon, E.A. Characterizing multiple solutions to the time-energy canonical commutation relation via internal symmetries. Phys. Rev. A 2010, 81, 062105. [Google Scholar] [CrossRef]
- Shapiro, M. Derivation of the coordinate-momentum commutation relations from canonical invariance. Phys. Rev. A 2006, 74, 042104. [Google Scholar] [CrossRef]
- Pikovski, I.; Vanner, M.; Aspelmeyer, M.; Kim, M.S.; Brukner, Č. Probing Planck-scale physics with quantum optics. Nat. Phys. 2012, 8, 393–397. [Google Scholar] [CrossRef]
- Maggiore, M. A generalized uncertainty principle in quantum gravity. Phys. Lett. B 1993, 304, 65–69. [Google Scholar] [CrossRef]
- Gil Gat, O.W.; Greenberg, M. Canonical commutation relations in the Schwinger model. Phys. Lett. B 2006, 328, 119–122. [Google Scholar] [CrossRef]
- Dirac, P.A.M. The Principles of Quantum Mechanics, 4th ed.; Oxford University Press: Oxford, UK, 1958. [Google Scholar]
- Chaichian, M.; Isaev, A.P.; Lukierski, J.; Popowicz, Z.; Prešnajder, P. q-deformations of Virasoro algebra and conformal dimensions. Phys. Lett. B 1991, 262, 32–38. [Google Scholar] [CrossRef]
- Frenkel, E.; Reshetikhin, N. Quantum affine algebras and deformations of the Virasoro and W-algebras. Comm. Math. Phys. 1996, 178, 237–264. [Google Scholar] [CrossRef]
- Strade, H. Representations of the Witt algebra. J. Algebra 1977, 49, 595–605. [Google Scholar] [CrossRef]
- Blattner, R.J. Induced and produced representations of Lie algebras. Trans. Am. Math. Sot. 1969, 114, 457–474. [Google Scholar] [CrossRef]
- Veneziano, G. An introduction to dual models of strong interactions and their physical motivations. Phys. Rep. 1974, 9, 199–242. [Google Scholar] [CrossRef]
- Redlich, A.N. When is the central charge of the Virasoro algebra in string theories in curved space-time not a numerical constant? Phys. Rev. D 1986, 33, 1094. [Google Scholar] [CrossRef]
- Bagger, J.; Nemeschansky, D.; Yankielowicz, S. Virasoro algebras with central charge c>1. Phys. Rev. Lett. 1988, 60, 389. [Google Scholar] [CrossRef]
- Banados, M. Embeddings of the Virasoro Algebra and Black Hole Entropy. Phys. Rev. Lett. 1999, 82, 2030. [Google Scholar] [CrossRef]
- Johnson, C.V. Supersymmetric Virasoro minimal string. Phys. Rev. D 2024, 110, 066016. [Google Scholar] [CrossRef]
- Johnson, C.V. Random matrix model of the Virasoro minimal string. Phys. Rev. D 2024, 110, 066015. [Google Scholar] [CrossRef]
- Sakamoto, R. Explicit formula for singular vectors of the Virasoro algebra with central charge less than 1. Chaos Solitons Fractals 2005, 25, 147–151. [Google Scholar] [CrossRef]
- Fortin, J.-F.; Quintavalle, L.; Skiba, W. Casimirs of the Virasoro algebra. Phys. Lett. B 2024, 858, 139080. [Google Scholar] [CrossRef]
- Iohara, K.; Koga, Y. Representation Theory of the Virasoro Algebra Springer Monographs in Mathematics; Springer: London, UK, 2011. [Google Scholar]
- Dong, C.; Zhang, W. On classification of rational vertex operator algebras with central charges less than 1. J. Algebra 2008, 320, 86–93. [Google Scholar] [CrossRef]
- Curtright, T.L.; Fairlie, D.B.; Zachos, C.K. Ternary Virasoro–Witt algebra. Phys. Lett. B 2008, 666, 386–390. [Google Scholar] [CrossRef]
- Arfken, G.B.; Weber, H.J. Mathematical Methods for Physicists, 4th ed.; Academic Press: San Diego, CA, USA, 1995. [Google Scholar]
- Butkov, E. Mathematical Physics; Addison-Wesley: Reading, UK, 1968. [Google Scholar]
- Mathews, J.; Walker, R.L. Mathematical Methods of Physics, 2nd ed.; W. A. Benjamin: New York, NY, USA, 1970. [Google Scholar]
- Callan, C.G.; Thorlacius, L. Open String Theory as Dissipative Quantum Mechanics. Nucl. Phys. B 1990, 329, 117–138. [Google Scholar] [CrossRef]
- Ellis, J.; Mavromatos, N.E.; Nanopoulos, D.V. Quantum mechanics and black holes in four-dimensional string theory. Phys. Lett. B 1992, 278, 246–256. [Google Scholar] [CrossRef]
- Bars, I.; Rychkov, D. Is string interaction the origin of quantum mechanics? Phys. Lett. B 2014, 739, 451–456. [Google Scholar] [CrossRef]
- Marquette, I.; Zhang, J.; Zhang, Y.-Z. Algebraic structures and Hamiltonians from the equivalence classes of 2D conformal algebras. Ann. Phys. 2025, 477, 169998. [Google Scholar] [CrossRef]
- Fidelis, C.; Diniz, D.; Koshlukov, P. Z-graded identities of the Virasoro algebra. J. Algebra 2024, 640, 401–431. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nieto-Chaupis, H. Canonical Commutation Relation Derived from Witt Algebra. Mathematics 2025, 13, 1910. https://doi.org/10.3390/math13121910
Nieto-Chaupis H. Canonical Commutation Relation Derived from Witt Algebra. Mathematics. 2025; 13(12):1910. https://doi.org/10.3390/math13121910
Chicago/Turabian StyleNieto-Chaupis, Huber. 2025. "Canonical Commutation Relation Derived from Witt Algebra" Mathematics 13, no. 12: 1910. https://doi.org/10.3390/math13121910
APA StyleNieto-Chaupis, H. (2025). Canonical Commutation Relation Derived from Witt Algebra. Mathematics, 13(12), 1910. https://doi.org/10.3390/math13121910