An Efficient Numerical Method for the Fractional Bagley–Torvik Equation of Variable Coefficients with Robin Boundary Conditions
Abstract
:1. Introduction
- We propose a finite difference method for solving the fractional Bagley–Torvik equation with variable coefficients subject to Robin boundary conditions. This type of equation arises in viscoelasticity and structural dynamics and poses computational challenges due to the presence of both integer and fractional derivatives.
- To approximate the Caputo fractional derivative, we employ the classical L1 scheme, which is known for its simplicity and effectiveness in handling weakly singular kernels.
- The second-order spatial derivative is discretized using a second-order central difference scheme on a uniform mesh, allowing the method to retain higher accuracy in space while remaining computationally efficient.
- We establish a rigorous convergence analysis of the proposed scheme and show that it achieves almost first-order accuracy in time under standard regularity assumptions on the exact solution.
- Priori error estimates are derived in a discrete norm, which provide theoretical justification for the reliability of the numerical method.
- Several numerical experiments are carried out to confirm the theoretical error bounds and to demonstrate the practical performance of the method. The results show good agreement with the predicted convergence rates, validating both the stability and accuracy of the scheme.
- denotes the space of functions, where , ,such that
- C is a positive constant independent of N. We write the maximum norm
- .
2. Continuous Problem
3. Discrete Problem
4. Error Analysis
4.1. Local Truncation Error
4.2. Error Estimate
5. Numerical Exemplifications
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Manabe, S. A suggestion of fractional-order controller for flexible spacecraft attitude control. Nonlinear Dyn. 2002, 29, 251–268. [Google Scholar] [CrossRef]
- Fitt, A.D.; Goodwin, A.R.H.; Ronaldson, K.A.; Wakeham, W.A. A fractional differential equation for a MEMS viscometer used in the oil industry. J. Comput. Appl. Math. 2009, 229, 373–381. [Google Scholar] [CrossRef]
- Bagley, R.L.; Torvik, P.J. A different approach to the analysis of viscoelas- tically damped structures. AIAA J. 1983, 21, 741–748. [Google Scholar] [CrossRef]
- Ray, S.S.; Bera, R.K. Analytical solution of the Bagley—Torvik equation by Adomian decomposition method. Appl. Math. Comput. 2005, 168, 398–410. [Google Scholar] [CrossRef]
- Al-Mdallal, Q.; Syam, M.; Anwar, M.N. A collocation-shooting method for solving fractional boundary value problems. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 3814–3822. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Wei, H.M.; Zhong, X.C.; Huang, Q.A. Uniqueness and approximation of solution for fractional Bagley—Torvik equations with variable coefficients. Int. J. Comput. Math. 2017, 94, 1542–1561. [Google Scholar] [CrossRef]
- Karaaslan, M.F.; Celiker, F.; Kurulay, M. Approximate solution of the Bagley—Torvik equation by hybridizable discontinuous Galerkin methods. Appl. Math. Comput. 2016, 285, 51–58. [Google Scholar] [CrossRef]
- Izadi, M.; Negar, M.R. Local discontinuous Galerkin approximations to fractional Bagley—Torvik equation. Math. Methods Appl. Sci. 2020, 43, 4798–4813. [Google Scholar] [CrossRef]
- Balaji, S.; Hariharan, G. An efficient operational matrix method for the numerical solutions of the fractional Bagley–Torvik equation using wavelets. J. Math. Chem. 2019, 57, 1885–1901. [Google Scholar] [CrossRef]
- Chen, J. A fast multiscale Galerkin algorithm for solving boundary value problem of the fractional Bagley—Torvik equation. Bound. Value Probl. 2020, 91, 1–13. [Google Scholar] [CrossRef]
- Wang, L.; Liang, H. Analysis of direct piecewise polynomial collocation methods for the Bagley—Torvik equation. Bit. Numer. Math. 2024, 64, 41. [Google Scholar] [CrossRef]
- Wang, L.; Liang, H. Superconvergence and postprocessing of collocation methods for fractional differential equation. J. Sci. Comput. 2023, 97, 29. [Google Scholar] [CrossRef]
- Liang, H.; Stynes, M. A general collocation analysis for weakly singular Volterra integral equations with variable exponent. IMA J. Numer. Anal. 2024, 44, 2725–2751. [Google Scholar] [CrossRef]
- Mohapatra, J.; Mohapatra, S.P.; Anasuya, N. An approximation technique for a system of time-fractional differential equations arising in population dynamics. J. Math. Model. 2025, 13, 519–531. [Google Scholar]
- Santra, S.; Mohapatra, J. Analysis of the L1 scheme for a time fractional parabolic–elliptic problem involving weak singularity. Math. Methods Appl. Sci. 2021, 44, 1529–1541. [Google Scholar] [CrossRef]
- Santra, S.; Mohapatra, J. Numerical analysis of Volterra integro-differential equations with Caputo fractional derivative. Iran J. Sci. Technol. Trans. Sci. 2021, 45, 1815–1824. [Google Scholar] [CrossRef]
- Sekar, E. Second order singularly perturbed delay differential equations with non-local boundary condition. J. Comput. Appl. Math. 2023, 417, 114498. [Google Scholar]
- Elango, S.; Govindarao, L.; Awadalla, M.; Zaway, H. Efficient Numerical Methods for Reaction–Diffusion Problems Governed by Singularly Perturbed Fredholm Integro-Differential Equations. Mathematics 2025, 13, 1511. [Google Scholar] [CrossRef]
- Raja, V.; Sekar, E.; Loganathan, K. Computational approaches for singularly perturbed turning point problems with non-local boundary conditions. Partial Differ. Equ. Appl. Math. 2025, 13, 101122. [Google Scholar] [CrossRef]
- Gracia, J.; O’Riordan, E.; Stynes, M. Convergence in positive time for a finite difference method applied to a fractional convection-diffusion problem. Comput. Methods Appl. Math. 2018, 18, 33–42. [Google Scholar] [CrossRef]
- Saini, G.; Ghosh, B.; Sunita, C.; Mohapatra, J. An iterative-based difference scheme for nonlinear fractional integro-differential equations of Volterra type. Partial Differ. Equ. Appl. Math. 2025, 13, 101138. [Google Scholar] [CrossRef]
- Ghosh, B.; Mohapatra, J. An iterative difference scheme for solving arbitrary order nonlinear Volterra integro-differential population growth model. J. Anal. 2024, 32, 57–72. [Google Scholar] [CrossRef]
- Huang, Q.A.; Zhong, X.C.; Guo, B.L. Approximate solution of Bagley—Torvik equations with variable coefficients and three-point boundary-value conditions. Int. J. Appl. Comput. Math. 2016, 215, 327–347. [Google Scholar] [CrossRef]
- Zhong, X.; Liu, X.; Liao, S.L. On a generalized Bagley–Torvik equation with a fractional integral boundary condition. Int. J. Appl. Comput. Math. 2017, 3, 727–746. [Google Scholar] [CrossRef]
- Pedas, A.; Tamme, E. Piecewise polynomial collocation for linear boundary value problems of fractional differential equations. J. Comput. Appl. Math. 2012, 236, 3349–3359. [Google Scholar] [CrossRef]
- Luchko, Y. Maximum principle for the generalized time-fractional diffusion equation. J. Math. Anal. Appl. 2009, 351, 218–223. [Google Scholar] [CrossRef]
- Stynes, M.; Gracia, J. A finite difference method for a two-point boundary value problem with a Caputo fractional derivative. IMA J. Numer. Anal. 2015, 35, 698–721. [Google Scholar] [CrossRef]
- Li, C.; Zeng, F. Numerical Methods for Fractional Calculus; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2015. [Google Scholar]
- Gracia, J.; O’Riordan, E.; Stynes, M. Convergence outside the initial layer for a numerical method for the time-fractional heat equation. In International Conference on Numerical Analysis and Its Applications; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Farrell, P.A.; Hegarty, A.F.; Miller, J.J.H.; O’Riordan, E.; Shishkin, G.I. Robust Computational Techniques for Boundary Layers; Applied Mathematics; Chapman & Hall/CRC: Boca Raton, FL, USA, 2000. [Google Scholar]
64 | 128 | 256 | 512 | 1024 | 2048 | 4096 | |
---|---|---|---|---|---|---|---|
0.01 | 1.866e-03 | 9.385e-04 | 4.706e-04 | 2.356e-04 | 1.179e-04 | 5.897e-05 | 2.949e-05 |
0.9917 | 0.9958 | 0.9979 | 0.9989 | 0.9994 | 0.9997 | - | |
0.1 | 1.894e-03 | 9.528e-04 | 4.779e-04 | 2.393e-04 | 1.197e-04 | 5.990e-05 | 2.995e-05 |
0.9910 | 0.9955 | 0.9977 | 0.9988 | 0.9994 | 0.9997 | - | |
0.2 | 1.926e-03 | 9.698e-04 | 4.866e-04 | 2.437e-04 | 1.219e-04 | 6.101e-05 | 3.051e-05 |
0.9901 | 0.9950 | 0.9974 | 0.9987 | 0.9993 | 0.9996 | - | |
0.3 | 1.960e-03 | 9.877e-04 | 4.958e-04 | 2.484e-04 | 1.243e-04 | 6.220e-05 | 3.111e-05 |
0.9889 | 0.9943 | 0.9970 | 0.9984 | 0.9991 | 0.9995 | - | |
0.4 | 1.994e-03 | 1.006e-03 | 5.054e-04 | 2.533e-04 | 1.268e-04 | 6.347e-05 | 3.175e-05 |
0.9872 | 0.9932 | 0.9963 | 0.9979 | 0.9988 | 0.9993 | - | |
0.5 | 2.027e-03 | 1.024e-03 | 5.151e-04 | 2.584e-04 | 1.294e-04 | 6.480e-05 | 3.242e-05 |
0.9850 | 0.9916 | 0.9952 | 0.9971 | 0.9982 | 0.9989 | - | |
0.6 | 2.055e-03 | 1.040e-03 | 5.241e-04 | 2.632e-04 | 1.320e-04 | 6.613e-05 | 3.311e-05 |
0.9819 | 0.9894 | 0.9934 | 0.9958 | 0.9971 | 0.9980 | - | |
0.7 | 2.072e-03 | 1.051e-03 | 5.308e-04 | 2.671e-04 | 1.341e-04 | 6.728e-05 | 3.372e-05 |
0.9782 | 0.9864 | 0.9909 | 0.9936 | 0.9953 | 0.9964 | - | |
0.8 | 2.066e-03 | 1.051e-03 | 5.320e-04 | 2.682e-04 | 1.349e-04 | 6.782e-05 | 3.405e-05 |
0.9744 | 0.9831 | 0.9879 | 0.9908 | 0.9926 | 0.9939 | - | |
0.9 | 2.018e-03 | 1.028e-03 | 5.206e-04 | 2.627e-04 | 1.323e-04 | 6.659e-05 | 3.348e-05 |
0.9729 | 0.9818 | 0.9866 | 0.9892 | 0.9908 | 0.9919 | - | |
0.99 | 1.911e-03 | 9.693e-04 | 4.884e-04 | 2.453e-04 | 1.230e-04 | 6.165e-05 | 3.087e-05 |
0.9797 | 0.9888 | 0.9934 | 0.9957 | 0.9968 | 0.9974 | - | |
2.072e-03 | 1.051e-03 | 5.320e-04 | 2.682e-04 | 1.349e-04 | 6.782e-05 | 3.405e-05 | |
0.9782 | 0.9833 | 0.9879 | 0.9908 | 0.9926 | 0.9939 | - |
64 | 128 | 256 | 512 | 1024 | 2048 | 4096 | |
---|---|---|---|---|---|---|---|
0.01 | 2.594e-03 | 1.299e-03 | 6.506e-04 | 3.255e-04 | 1.628e-04 | 8.141e-05 | 4.071e-05 |
0.9967 | 0.9983 | 0.9992 | 0.9996 | 0.9998 | 0.9999 | - | |
0.1 | 2.551e-03 | 1.278e-03 | 6.401e-04 | 3.202e-04 | 1.601e-04 | 8.010e-05 | 4.005e-05 |
0.9966 | 0.9983 | 0.9991 | 0.9995 | 0.9997 | 0.9998 | - | |
0.2 | 2.503e-03 | 1.255e-03 | 6.283e-04 | 3.143e-04 | 1.572e-04 | 7.863e-05 | 3.931e-05 |
0.9963 | 0.9981 | 0.9990 | 0.9995 | 0.9997 | 0.9998 | - | |
0.3 | 2.453e-03 | 1.230e-03 | 6.161e-04 | 3.083e-04 | 1.542e-04 | 7.713e-05 | 3.857e-05 |
0.9958 | 0.9978 | 0.9988 | 0.9993 | 0.9996 | 0.9998 | - | |
0.4 | 2.402e-03 | 1.205e-03 | 6.036e-04 | 3.021e-04 | 1.511e-04 | 7.561e-05 | 3.781e-05 |
0.9951 | 0.9973 | 0.9985 | 0.9991 | 0.9995 | 0.9997 | - | |
0.5 | 2.347e-03 | 1.178e-03 | 5.906e-04 | 2.957e-04 | 1.480e-04 | 7.404e-05 | 3.703e-05 |
0.9942 | 0.9966 | 0.9979 | 0.9987 | 0.9991 | 0.9994 | - | |
0.6 | 2.287e-03 | 1.149e-03 | 5.765e-04 | 2.888e-04 | 1.446e-04 | 7.239e-05 | 3.622e-05 |
0.9929 | 0.9955 | 0.9970 | 0.9979 | 0.9985 | 0.9989 | - | |
0.7 | 2.240e-03 | 1.123e-03 | 5.621e-04 | 2.811e-04 | 1.408e-04 | 7.056e-05 | 3.532e-05 |
0.9965 | 0.9985 | 0.9993 | 0.9969 | 0.9975 | 0.9981 | - | |
0.8 | 2.280e-03 | 1.143e-03 | 5.725e-04 | 2.864e-04 | 1.432e-04 | 7.162e-05 | 3.580e-05 |
0.9955 | 0.9980 | 0.9992 | 0.9997 | 1.0000 | 1.0000 | - | |
0.9 | 2.334e-03 | 1.172e-03 | 5.875e-04 | 2.939e-04 | 1.470e-04 | 7.351e-05 | 3.675e-05 |
0.9935 | 0.9971 | 0.9988 | 0.9996 | 1.0000 | 1.0000 | - | |
0.99 | 2.403e-03 | 1.210e-03 | 6.070e-04 | 3.040e-04 | 1.521e-04 | 7.610e-05 | 3.805e-05 |
0.9900 | 0.9950 | 0.9975 | 0.9988 | 0.9995 | 0.9998 | - | |
2.594e-03 | 1.299e-03 | 6.506e-04 | 3.255e-04 | 1.628e-04 | 8.141e-05 | 4.071e-05 | |
0.9967 | 0.9983 | 0.9992 | 0.9996 | 0.9998 | 0.9999 | - |
64 | 128 | 256 | 512 | 1024 | 2048 | 4096 | |
---|---|---|---|---|---|---|---|
0.01 | 1.581e-02 | 7.936e-03 | 3.976e-03 | 1.990e-03 | 9.954e-04 | 4.978e-04 | 2.489e-04 |
0.9943 | 0.9971 | 0.9985 | 0.9993 | 0.9996 | 0.9998 | - | |
0.1 | 1.642e-02 | 8.245e-03 | 4.130e-03 | 2.067e-03 | 1.034e-03 | 5.171e-04 | 2.586e-04 |
0.9943 | 0.9972 | 0.9986 | 0.9993 | 0.9997 | 0.9998 | - | |
0.2 | 1.709e-02 | 8.581e-03 | 4.298e-03 | 2.151e-03 | 1.076e-03 | 5.382e-04 | 2.691e-04 |
0.9944 | 0.9972 | 0.9986 | 0.9992 | 0.9997 | 0.9998 | - | |
0.3 | 1.775e-02 | 8.911e-03 | 4.464e-03 | 2.234e-03 | 1.117e-03 | 5.588e-04 | 2.794e-04 |
0.9944 | 0.9973 | 0.9987 | 0.9993 | 0.9997 | 0.9998 | - | |
0.4 | 1.840e-02 | 9.238e-03 | 4.627e-03 | 2.315e-03 | 1.158e-03 | 5.792e-04 | 2.896e-04 |
0.9945 | 0.9974 | 0.9987 | 0.9995 | 0.9997 | 0.9999 | - | |
0.5 | 1.905e-02 | 9.562e-03 | 4.789e-03 | 2.396e-03 | 1.198e-03 | 5.992e-04 | 2.996e-04 |
0.9946 | 0.9976 | 0.9989 | 0.9996 | 0.9999 | 0.9999 | - | |
0.6 | 1.970e-02 | 9.889e-03 | 4.952e-03 | 2.477e-03 | 1.238e-03 | 6.193e-04 | 3.096e-04 |
0.9947 | 0.9978 | 0.9992 | 0.9998 | 1.000 | 1.000 | - | |
0.7 | 2.037e-02 | 1.022e-02 | 5.118e-03 | 2.560e-03 | 1.279e-03 | 6.397e-04 | 3.197e-04 |
0.9949 | 0.9982 | 0.9996 | 1.000 | 1.000 | 1.000 | - | |
0.8 | 2.108e-02 | 1.057e-02 | 5.295e-03 | 2.648e-03 | 1.323e-03 | 6.613e-04 | 3.304e-04 |
0.9949 | 0.9983 | 0.9999 | 1.000 | 1.000 | 1.000 | - | |
0.9 | 2.185e-02 | 1.097e-02 | 5.493e-03 | 2.747e-03 | 1.372e-03 | 6.859e-04 | 3.427e-04 |
0.9942 | 0.9979 | 0.9997 | 1.000 | 1.001 | 1.001 | - | |
0.99 | 2.263e-02 | 1.137e-02 | 5.704e-03 | 2.855e-03 | 1.428e-03 | 7.142e-04 | 3.571e-04 |
0.9923 | 0.9963 | 0.9983 | 0.9992 | 0.9998 | 1.000 | - | |
2.263e-02 | 1.137e-02 | 5.704e-03 | 2.855e-03 | 1.428e-03 | 7.142e-04 | 3.571e-04 | |
0.9923 | 0.9963 | 0.9983 | 0.9992 | 0.9998 | 1.000 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joe Christin Mary, S.; Elango, S.; Awadalla, M.; Alzahrani, R. An Efficient Numerical Method for the Fractional Bagley–Torvik Equation of Variable Coefficients with Robin Boundary Conditions. Mathematics 2025, 13, 1899. https://doi.org/10.3390/math13111899
Joe Christin Mary S, Elango S, Awadalla M, Alzahrani R. An Efficient Numerical Method for the Fractional Bagley–Torvik Equation of Variable Coefficients with Robin Boundary Conditions. Mathematics. 2025; 13(11):1899. https://doi.org/10.3390/math13111899
Chicago/Turabian StyleJoe Christin Mary, S., Sekar Elango, Muath Awadalla, and Rabab Alzahrani. 2025. "An Efficient Numerical Method for the Fractional Bagley–Torvik Equation of Variable Coefficients with Robin Boundary Conditions" Mathematics 13, no. 11: 1899. https://doi.org/10.3390/math13111899
APA StyleJoe Christin Mary, S., Elango, S., Awadalla, M., & Alzahrani, R. (2025). An Efficient Numerical Method for the Fractional Bagley–Torvik Equation of Variable Coefficients with Robin Boundary Conditions. Mathematics, 13(11), 1899. https://doi.org/10.3390/math13111899