Some New Sobolev-Type Theorems for the Rough Riesz Potential Operator on Grand Variable Herz Spaces
Abstract
1. Introduction
2. Preliminaries
- (a)
- The Lebesgue space with variable exponent is defined asThe norm in can be defined as
- (b)
- The space can be defined as
- (i)
- Suppose that . Then, the Hardy–Littlewood maximal operator can be given by
- (ii)
- Let be a measurable function and suppose thatThe set consists of all such that and .
- (iii)
- Let . Then, is the class of functions satisfying (1) and the log-condition given by
- (iv)
- For an unbounded set in , is the subset of with values in satisfying the following condition:
- (v)
- . Then, is the collection of for which is bounded on .
- (vi)
- for all , .
3. Sobolev-Type Theorem for Grand Variable Herz Spaces
4. Boundedness of Fractional Hardy Operators on Grand Variable Herz Spaces
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ruzicka, M. Electroreological Fluids: Modeling and Mathematical Theory; Lecture Notes in Math; Springer: Berlin, Germany, 2000; Volume 1748. [Google Scholar]
- Diening, L.; Hästö, P.; Nekvinda, A. Open problems in variable exponent Lebesgue and Sobolev spaces. In Proceedings of the Fsdona04 Proceedings, Milovy, Czech Republic, 28 May 2004; pp. 38–58. [Google Scholar]
- Diening, L.; Harjulehto, P.; Hästö, P.; Ruzicka, M. Lebesgue and Sobolev Spaces with Variable Exponents; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Kokilashvili, V.; Meskhi, A.; Rafeiro, H.; Samko, S. Integral Operators in Non-Standard Function Spaces. Vol. 1: Variable Exponent Lebesgue and Amalgam Spaces; Birkhuser/Springer: Cham, Switerland, 2016. [Google Scholar]
- Kokilashvili, V.; Meskhi, A.; Rafeiro, H.; Samko, S. Integral Operators in Non-Standard Function Spaces. Vol. 2: Variable Exponent Hölder, Morrey-Campanato and Grand Spaces; Birkhuser/Springer: Cham, Switerland, 2016. [Google Scholar]
- Castillo, R.E.; Rafeiro, H. An Introductory Course in Lebesgue Spaces, CMS Books in Mathematics/Ouvrages de Mathematiques de ta SMC; Springer: Cham, Switerland, 2016; p. xii+461. [Google Scholar]
- Beurling, A. Construction and analysis of some convolution algebras. Ann. Inst. Fourier Grenoble 1964, 14, 1–32. [Google Scholar] [CrossRef]
- Herz, C. Lipschitz spaces and Bernstein’s theorem on absolutely convergent Fourier transforms. J. Math. Mech. 1968, 18, 283–324. [Google Scholar] [CrossRef]
- Izuki, M. Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Anal. Math. 2010, 36, 33–50. [Google Scholar] [CrossRef]
- Almeida, A.; Drihem, D. Maximal, potential and singular type operators on Herz spaces with variable exponents. J. Math. Anal. Appl. 2012, 394, 965–974. [Google Scholar] [CrossRef]
- Samko, S. Variable exponent Herz spaces. Mediterr. J. Math. 2013, 10, 2007–2025. [Google Scholar] [CrossRef]
- Meskhi, A.; Rafeiro, H.; Zaighum, M.A. On the boundedness of Marcinkiewicz integrals on continual variable exponent Herz spaces. Georgian Math. J. 2019, 26, 105–116. [Google Scholar] [CrossRef]
- Rafeiro, H.; Samko, S. Riesz potential operator in continual variable exponents Herz spaces. Math. Nachr. 2015, 288, 465–475. [Google Scholar] [CrossRef]
- Morrey, C.B. On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 1938, 43, 126–166. [Google Scholar] [CrossRef]
- Castillo, R.E.; Chaparro, H.C. p-Laplacian operator with potential in generalized Morrey Spaces. arXiv 2023, arXiv:2308.04049. [Google Scholar]
- Akagi, G.; Matsuura, K. Nonlinear diffusion equations driven by the p(·)-Laplacian. Nonlinear Differ. Equ. Appl. 2013, 20, 37–64. [Google Scholar] [CrossRef]
- Sultan, B.; Sultan, M. Boundedness of commutators of rough Hardy operators on grand variable Herz spaces. Forum Math. 2024, 36, 717–733. [Google Scholar] [CrossRef]
- Sultan, B.; Sultan, M.; Khan, I. On Sobolev theorem for higher commutators of fractional integrals in grand variable Herz spaces. Commun. Nonlinear Sci. Numer. Simul. 2023, 126, 107464. [Google Scholar] [CrossRef]
- Sultan, M.; Sultan, B.; Hussain, A. Grand Herz-Morrey spaces with variable exponent. Math. Notes 2023, 114, 957–977. [Google Scholar] [CrossRef]
- Hardy, G. Note on a theorem of Hilbert. Math. Z. 1920, 6, 314–317. [Google Scholar] [CrossRef]
- Christ, M.; Grafakos, L. Best Constants for two non convolution inequalities. Proc. Amer. Math. Soc. 1995, 123, 1687–1693. [Google Scholar] [CrossRef]
- Fu, Z.; Liu, Z.; Lu, S.; Wang, H. Characterization for commutators of n-dimensional fractional Hardy operators. Sci. China Ser. A Math. 2007, 50, 1418–1426. [Google Scholar] [CrossRef]
- Fu, Z.; Lu, S.; Zhou, F. Commutators of n-dimensional rough Hardy operators. Sci. China Math. 2011, 54, 95–104. [Google Scholar] [CrossRef]
- Younas, J.; Hussain, A.; Alhazmi, H.; Aljohani, A.F.; Khan, I. BMO estimates for commutators of the rough fractional Hausdorff operator on grand-variable-Herz-Morrey spaces. AIMS Math. 2024, 9, 23434–23448. [Google Scholar] [CrossRef]
- Hussain, A.; Gao, G. Multilinear singular integrals and commutators on Herz space with variable exponent. ISRN Math. Anal. 2014, 2014, 626327. [Google Scholar] [CrossRef]
- Hussain, A.; Khan, I.; Mohamed, A. Variable Her-Morrey estimates for rough fractional Hausdorff operator. J. Inequal. Appl. 2024, 2024, 33. [Google Scholar] [CrossRef]
- Ajaib, A.; Hussain, A. Weighted CBMO estimates for commutators of matrix Hausdorff operator on the Heisenberg group. Open Math. 2020, 18, 496–511. [Google Scholar] [CrossRef]
- Hussain, A.; Ajaib, A. Some results for the commutators of generalized Hausdorff operator. J. Math. Inequal. 2019, 13, 1129–1146. [Google Scholar] [CrossRef]
- Sultan, B.; Sultan, M.; Hussain, A. Boundedness of the Bochner–Riesz Operators on the Weighted Herz–Morrey Type Hardy Spaces. Complex Anal. Oper. Theory 2025, 19, 49. [Google Scholar] [CrossRef]
- Sultan, B.; Hussain, A.; Sultan, M. Chracterization of generalized Campanato spaces with variable exponents via fractional integrals. J. Pseudo-Differ. Oper. Appl. 2025, 16, 22. [Google Scholar] [CrossRef]
- Nafis, H.; Rafeiro, H.; Zaighum, M.A. A note on the boundedness of sublinear operators on grand variable Herz spaces. J. Inequal. Appl. 2020, 2020, 1. [Google Scholar] [CrossRef]
- Acyl, B.M.; Tao, S.; Khalill, O. Boundedness of rough operators on grand variable Herz spaces. Appl. Math. 2021, 12, 614–626. [Google Scholar] [CrossRef]
- Frank, R.; Lieb, E.; Seiringer, R. Stability of relativistic matter with magnetic fields for nuclear charges up to the critical value. Comm. Math. Phys. 2007, 275, 479–489. [Google Scholar] [CrossRef]
- Ghoussoub, N.; Robert, F.; Shakerian, S.; Zhao, M. Mass and asymptotics associated to fractional Hardy-Schrödinger operators in critical regimes. Comm. Part. Diff. Eq. 2018, 43, 859–892. [Google Scholar] [CrossRef]
- Frank, R.L.; Lieb, E.H.; Seiringer, R. Hardy–Lieb–Thirring inequalities for fractional Schrödinger operators. J. Amer. Math. Soc. 2008, 21, 925–950. [Google Scholar] [CrossRef]
- Frank, R.L. A simple proof of Hardy-Lieb-Thirring inequalities. Comm. Math. Phys. 2009, 290, 789–800. [Google Scholar] [CrossRef]
- Tzirakis, K. Sharp trace Hardy-Sobolev inequalities and fractional Hardy-Sobolev inequalities. J. Funct. Anal. 2016, 270, 4513–4539. [Google Scholar] [CrossRef]
- Cruz-Uribe, D.; Fiorenza, A. Variable Lebesgue Spaces, Foundations and Harmonic Analysis; Birkhäuser: Heidelberg, Germany, 2013. [Google Scholar]
- Wang, H. Commutators of Marcinkiewicz integrals on Herz spaces with variable exponent. Czech. Math. J. 2016, 66, 251–269. [Google Scholar] [CrossRef]
- Wu, J.L.; Zhao, W.J. Boundedness for fractional Hardy-type operator on variable-exponent Herz-Morrey spaces. Kyoto J. Math. 2016, 56, 831–845. [Google Scholar] [CrossRef]
- Wu, J.L. Boundedness for fractional Hardy-type operator on Herz–Morrey spaces with variable exponent. Bull. Korean Math. Soc. 2014, 51, 423–435. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlNemer, G.; Basendwah, G.A.; Sultan, B.; Popa, I.-L. Some New Sobolev-Type Theorems for the Rough Riesz Potential Operator on Grand Variable Herz Spaces. Mathematics 2025, 13, 1873. https://doi.org/10.3390/math13111873
AlNemer G, Basendwah GA, Sultan B, Popa I-L. Some New Sobolev-Type Theorems for the Rough Riesz Potential Operator on Grand Variable Herz Spaces. Mathematics. 2025; 13(11):1873. https://doi.org/10.3390/math13111873
Chicago/Turabian StyleAlNemer, Ghada, Ghada Ali Basendwah, Babar Sultan, and Ioan-Lucian Popa. 2025. "Some New Sobolev-Type Theorems for the Rough Riesz Potential Operator on Grand Variable Herz Spaces" Mathematics 13, no. 11: 1873. https://doi.org/10.3390/math13111873
APA StyleAlNemer, G., Basendwah, G. A., Sultan, B., & Popa, I.-L. (2025). Some New Sobolev-Type Theorems for the Rough Riesz Potential Operator on Grand Variable Herz Spaces. Mathematics, 13(11), 1873. https://doi.org/10.3390/math13111873