Finite Difference/Fractional Pertrov–Galerkin Spectral Method for Linear Time-Space Fractional Reaction–Diffusion Equation
Abstract
1. Introduction
2. Weighted Sobolev Spaces
3. Numerical Scheme and Implementation
3.1. Temporal Discretization on a Graded Mesh
3.2. The L1–Pertrov–Galerkin Spectral Scheme
4. Stability Analysis
5. Convergence Analysis
6. Numerical Results
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Murray, J.D. Mathematical Biology: I. An Introduction; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007; Volume 17. [Google Scholar]
- del Castillo-Negrete, D.; Carreras, B.; Lynch, V. Front Dynamics in Reaction-Diffusion Systems with Levy Flights: A Fractional Diffusion Approach. Phys. Rev. Lett. 2003, 91, 018302. [Google Scholar] [CrossRef]
- Hanert, E.; Schumacher, E.; Deleersnijder, E. Front dynamics in fractional-order epidemic models. J. Theor. Biol. 2011, 279, 9–16. [Google Scholar] [CrossRef]
- Valdinoci, E. From the long jump random walk to the fractional Laplacian. SeMA J. Boletín Soc. Espa Nola Matemática Apl. 2009, 355, 33–44. [Google Scholar]
- Kullberg, A.; del Castillo-Negrete, D.; Morales, G.; Maggs, J. Isotropic model of fractional transport in two-dimensional bounded domains. Phys. Rev. E-Stat. Nonlinear Soft Matter Phys. 2013, 87, 052115. [Google Scholar] [CrossRef] [PubMed]
- Izsák, F.; Szekeres, B.J. Models of space-fractional diffusion: A critical review. Appl. Math. Lett. 2017, 71, 38–43. [Google Scholar] [CrossRef]
- Duo, S.; Zhang, Y. Accurate numerical methods for two and three dimensional integral fractional Laplacian with applications. Comput. Methods Appl. Mech. Eng. 2019, 355, 639–662. [Google Scholar] [CrossRef]
- Wei, L.; Yang, Y. Optimal order finite difference/local discontinuous Galerkin method for variable-order time-fractional diffusion equation. J. Comput. Appl. Math. 2021, 383, 113129. [Google Scholar] [CrossRef]
- Kheybari, S.; Darvishi, M.T.; Alizadeh, F.; Hincal, E.; Hosseini, K.; Chen, X. Solving Multi-Point Boundary Value Differential Equations with a Novel Semi-Analytical Algorithm. Int. J. Comput. Methods 2025, 22, 2450086. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, Y.; Luo, Z.; Liu, J. A spatial sixth-order numerical scheme for solving fractional partial differential equation. Appl. Math. Lett. 2025, 159, 109265. [Google Scholar] [CrossRef]
- Alsaedi, A.; Kirane, M.; Torebek, B.T. Global existence and blow-up for a space and time nonlocal reaction-diffusion equation. Quaest. Math. 2021, 44, 747–753. [Google Scholar] [CrossRef]
- Kolokoltsov, V.N.; Veretennikova, M. Well-posedness and regularity of the Cauchy problem for nonlinear fractional in time and space equations. Fract. Differ. Calc. 2014, 4, 1–30. [Google Scholar] [CrossRef]
- Jia, J.; Li, K. Maximum principles for a time–space fractional diffusion equation. Appl. Math. Lett. 2016, 62, 23–28. [Google Scholar] [CrossRef]
- Gu, X.M.; Sun, H.W.; Zhang, Y.; Zhao, Y.L. Fast implicit difference schemes for time-space fractional diffusion equations with the integral fractional Laplacian. Math. Methods Appl. Sci. 2021, 44, 441–463. [Google Scholar] [CrossRef]
- Hao, Z.; Zhang, Z.; Du, R. Fractional centered difference scheme for high-dimensional integral fractional Laplacian. J. Comput. Phys. 2021, 424, 109851. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, H. Finite Element Method on locally refined composite meshes for Dirichlet fractional Laplacian. J. Comput. Sci. 2024, 82, 102433. [Google Scholar] [CrossRef]
- Huang, Y.; Oberman, A. Numerical methods for the fractional Laplacian: A finite difference-quadrature approach. SIAM J. Numer. Anal. 2014, 52, 3056–3084. [Google Scholar] [CrossRef]
- Gao, T.; Duan, J.; Li, X.; Song, R. Mean exit time and escape probability for dynamical systems driven by Lévy noises. SIAM J. Sci. Comput. 2014, 36, A887–A906. [Google Scholar] [CrossRef]
- Acosta, G.; Borthagaray, J.P. A fractional Laplace equation: Regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 2017, 55, 472–495. [Google Scholar] [CrossRef]
- Ainsworth, M.; Glusa, C. Aspects of an adaptive finite element method for the fractional Laplacian: A priori and a posteriori error estimates, efficient implementation and multigrid solver. Comput. Methods Appl. Mech. Eng. 2017, 327, 4–35. [Google Scholar] [CrossRef]
- Tian, X.; Du, Q.; Gunzburger, M. Asymptotically compatible schemes for the approximation of fractional Laplacian and related nonlocal diffusion problems on bounded domains. Adv. Comput. Math. 2016, 42, 1363–1380. [Google Scholar] [CrossRef]
- Mao, Z.; Shen, J. Hermite spectral methods for fractional PDEs in unbounded domains. SIAM J. Sci. Comput. 2017, 39, A1928–A1950. [Google Scholar] [CrossRef]
- Tang, T.; Wang, L.L.; Yuan, H.; Zhou, T. Rational spectral methods for PDEs involving fractional Laplacian in unbounded domains. SIAM J. Sci. Comput. 2020, 42, A585–A611. [Google Scholar] [CrossRef]
- Abbaszadeh, M.; Zaky, M.A.; Dehghan, M. Virtual element approximation and BDF2 time-discrete scheme for a partial integro-differential equation with a singular Abel’s kernel. Appl. Math. Comput. 2025, 501, 129451. [Google Scholar] [CrossRef]
- Moussa, H.; Saker, M.; Zaky, M.; Babatin, M.; Ezz-Eldien, S. Mapped Legendre-spectral method for high-dimensional multi-term time-fractional diffusion-wave equation with non-smooth solution. Comput. Appl. Math. 2025, 44, 167. [Google Scholar] [CrossRef]
- Ghoreyshi, A.; Abbaszadeh, M.; Zaky, M.A.; Dehghan, M. Finite block method for nonlinear time-fractional partial integro-differential equations: Stability, convergence, and numerical analysis. Appl. Numer. Math. 2025, 214, 82–103. [Google Scholar] [CrossRef]
- Moghaddam, B.P.; Zaky, M.A.; Lopes, A.M.; Galhano, A. A Fractional Time–Space Stochastic Advection–Diffusion Equation for Modeling Atmospheric Moisture Transport at Ocean–Atmosphere Interfaces. Fractal Fract. 2025, 9, 211. [Google Scholar] [CrossRef]
- Zaky, M.A.; Al Kenany, A.; Alhazmi, S.; Ezz-Eldien, S.S. Numerical treatment of tempered space–fractional Zeldovich–Frank–Kamenetskii equation. Rom. Rep. Phys. 2025. Available online: https://rrp.nipne.ro/IP/AP821.pdf (accessed on 10 May 2025).
- Guo, B.y.; Wang, L.l. Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces. J. Approx. Theory 2004, 128, 1–41. [Google Scholar] [CrossRef]
- Babuska, I.; Guo, B. Direct and inverse approximation theorems for the p-version of the finite element method in the framework of weighted Besov spaces. Part I: Approximability of functions in the weighted Besov spaces. SIAM J. Numer. Anal. 2002, 39, 1512–1538. [Google Scholar] [CrossRef]
- Fdez-Manin, G.; Munoz-Sola, R. Polynomial approximation of some singular solutions in weighted Sobolev space. In Proceedings of the Third International Conference on Spectral and Higher Order Methods, Houston, TX, USA, 5–9 June 1995. [Google Scholar]
- Stynes, M.; O’Riordan, E.; Gracia, J.L. Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 2017, 55, 1057–1079. [Google Scholar] [CrossRef]
- Chen, H.; Stynes, M. Blow-up of error estimates in time-fractional initial-boundary value problems. IMA J. Numer. Anal. 2021, 41, 974–997. [Google Scholar] [CrossRef]
- Acosta, G.; Borthagaray, J.P.; Bruno, O.; Maas, M. Regularity theory and high order numerical methods for the (1D)-fractional Laplacian. Math. Comput. 2018, 87, 1821–1857. [Google Scholar] [CrossRef]
- Zeng, F.; Liu, F.; Li, C.; Burrage, K.; Turner, I.; Anh, V. A Crank–Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation. SIAM J. Numer. Anal. 2014, 52, 2599–2622. [Google Scholar] [CrossRef]
- Huang, C.; Stynes, M. α-robust error analysis of a mixed finite element method for a time-fractional biharmonic equation. Numer. Algorithms 2021, 87, 1749–1766. [Google Scholar] [CrossRef]
- Chen, H.; Hu, X.; Ren, J.; Sun, T.; Tang, Y. L1 scheme on graded mesh for the linearized time fractional KdV equation with initial singularity. Int. J. Mod. Sim. Sci. Comp. 2019, 10, 18. [Google Scholar] [CrossRef]
- Ma, H.; Sun, W. Optimal error estimates of the Legendre–Petrov–Galerkin method for the Korteweg–de Vries equation. SIAM J. Numer. Anal. 2001, 39, 1380–1394. [Google Scholar] [CrossRef]
- Zhang, Z. Error estimates of spectral Galerkin methods for a linear fractional reaction–diffusion equation. J. Sci. Comput. 2019, 78, 1087–1110. [Google Scholar] [CrossRef]
K | ||||||
---|---|---|---|---|---|---|
Error | Order | Error | Order | Error | Order | |
50 | - | - | - | |||
100 | 0.287 | 0.745 | 1.496 | |||
200 | 0.308 | 0.767 | 1.528 | |||
400 | 0.326 | 0.781 | 1.544 | |||
800 | 0.341 | 0.789 | 1.555 | |||
1000 | 0.350 | 0.792 | 1.560 | |||
K | ||||||
---|---|---|---|---|---|---|
Error | Order | Error | Order | Error | Order | |
50 | - | - | - | |||
100 | 0.700 | 1.021 | 1.146 | |||
200 | 0.740 | 1.057 | 1.169 | |||
400 | 0.756 | 1.085 | 1.182 | |||
800 | 0.770 | 1.107 | 1.190 | |||
1000 | 0.780 | 1.119 | 1.193 | |||
N | ||
---|---|---|
10 | ||
20 | ||
30 | ||
40 | ||
50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaky, M.A. Finite Difference/Fractional Pertrov–Galerkin Spectral Method for Linear Time-Space Fractional Reaction–Diffusion Equation. Mathematics 2025, 13, 1864. https://doi.org/10.3390/math13111864
Zaky MA. Finite Difference/Fractional Pertrov–Galerkin Spectral Method for Linear Time-Space Fractional Reaction–Diffusion Equation. Mathematics. 2025; 13(11):1864. https://doi.org/10.3390/math13111864
Chicago/Turabian StyleZaky, Mahmoud A. 2025. "Finite Difference/Fractional Pertrov–Galerkin Spectral Method for Linear Time-Space Fractional Reaction–Diffusion Equation" Mathematics 13, no. 11: 1864. https://doi.org/10.3390/math13111864
APA StyleZaky, M. A. (2025). Finite Difference/Fractional Pertrov–Galerkin Spectral Method for Linear Time-Space Fractional Reaction–Diffusion Equation. Mathematics, 13(11), 1864. https://doi.org/10.3390/math13111864