Pinching Results on Totally Real Submanifolds of a Locally Conformal Kähler Manifolds
Abstract
:1. Introduction and Motivations
2. Preliminaries
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smet, P.J.D.; Dillen, F.; Verstraelen, L.; Vrancken, L. A pointwise inequality in submanifold theory. Arch. Math. 1999, 35, 115–128. [Google Scholar]
- Simons, J. Minimal varieties in Riemannian manifolds. Ann. Math. 1968, 88, 62–105. [Google Scholar] [CrossRef]
- Lawson, H.B. Local rigidity theorems for minimal hypersurfaces. Ann. Math. 1969, 89, 187–197. [Google Scholar] [CrossRef]
- Chern, S.-S.; Carmo, M.d.; Kobayashi, S. Minimal submanifolds of a sphere with the second fundamental form of constant length. In Functional Analysis and Related Fields; Browder, F.E., Ed.; Springer: Berlin/Heidelberg, Germany, 1970; pp. 59–75. [Google Scholar]
- Li, A.-M.; Li, J. An intrinsic rigidity theorem for minimal submanifolds in a sphere. Arch. Math. 1992, 58, 582–594. [Google Scholar]
- Chen, Q.; Xu, S. Rigidity of compact minimal submanifolds in a unit sphere. Geom. Dedicata 1993, 45, 83–88. [Google Scholar] [CrossRef]
- Leung, P.F. Minimal submanifolds in a sphere. Math. Z. 1983, 183, 75–86. [Google Scholar] [CrossRef]
- Du, H.Q. Totally real pseudo-umbilical submanifolds in a complex projective space. J. Hangzhou Univ. (Nat. Sci.) 1998, 25, 8–14. [Google Scholar]
- Xu, H.W. A rigidity theorem for submanifold with parallel mean curvature in a sphere. Arch. Math. 1993, 61, 489–496. [Google Scholar] [CrossRef]
- Xu, H.W.; Gu, J.R. A general gap theorem for submanifolds with parallel mean curvature in ℝn+p. Commun. Anal. Geom. 2007, 15, 175–193. [Google Scholar]
- Gu, J.R.; Xu, H.W. On Yao rigidity theorem for minimal submanifolds in spheres. Math. Res. Anal. 2012, 19, 511–523. [Google Scholar]
- Min, L.; Weidong, S. Complete totally real pseudo-umbilical submanifolds in a complex projective space. J. Math. Res. Expo. 2011, 31, 946–950. [Google Scholar]
- Weidong, S.; Weixin, S. Totally real submanifolds with constant scalar curvature in a complex space form. J. Math. (PRC) 2013, 33, 20–26. [Google Scholar]
- Alghamdi, F.; Mofarreh, F.; Ali, A.; Bouleryah, M.L. Some rigidity theorems for totally real submanifolds in complex space forms. AIMS Math. 2025, 10, 8191–8202. [Google Scholar] [CrossRef]
- Li, Y.; Mofarreh, A.; Abolarinwa, A.; Alshehri, N.; Ali, A. Bounds for eigenvalues of q-Laplacian on contact submanifolds of Sasakian space forms. Mathematics 2023, 11, 4717. [Google Scholar] [CrossRef]
- Perdomo, O. First stability eigenvalue characterization of Clifford hypersurfaces. Proc. Am. Math. Soc. 2002, 130, 3379–3384. [Google Scholar] [CrossRef]
- Shen, Y.B. Curvature and stability for minimal submanifolds. Sci. Sin. Ser. A 1988, 31, 787–797. [Google Scholar]
- Alhouiti, N.M.; Alkhaldi, A.H.; Ali, A.; Mofarreh, F.; Laurian-Ioan, P. Eigenvalues for Laplacian operator on submanifolds in locally conformal Kaehler space forms. Axioms 2025, 14, 356. [Google Scholar] [CrossRef]
- Ali, A.; Alkhaldi, A.H.; Laurian-Ioan, P.; Ali, R. Eigenvalue inequalities for the p-Laplacian operator on C-totally real submanifolds in Sasakian space forms. Appl. Anal. 2022, 101, 702–713. [Google Scholar] [CrossRef]
- Ali, A.; Lee, J.W.; Alkhaldi, A.H. The first eigenvalue for the p-Laplacian on Lagrangian submanifolds in complex space forms. Int. J. Math. 2022, 33, 2250016. [Google Scholar] [CrossRef]
- Li, Y.L.; Ali, A.; Mofarreh, F.; Abolarinwa, A.; Ali, R. Some eigenvalues estimate for the ϕ-Laplace operator on slant submanifolds of Sasakian space forms. J. Funct. Spaces 2021, 2021, 6195939. [Google Scholar]
- Li, Y.L.; Mofarreh, F.; Agrawal, R.P.; Ali, A. Reilly-type inequality for the Φ-Laplace operator on semi-slant submanifolds of Sasakian space forms. J. Inequal. Appl. 2022, 2022, 102. [Google Scholar] [CrossRef]
- Alluhaibi, N.; Ali, A. The eigenvalue estimates of p-Laplacian of totally real submanifolds in generalized complex space forms. Ric. Mat. 2024, 73, 1307–1321. [Google Scholar] [CrossRef]
- Dragomir, S.; Ornea, L. Locally Conformal Kähler Geometry; Progress in Mathematics; Birkhäuser Boston, Inc.: Boston, MA, USA, 1998; Volume 155, pp. xiv + 327. ISBN 0-8176-4020-7. [Google Scholar]
- Kashiwada, T. Some properties of locally conformally Kaehler manifolds. Hokkaido J. Math. 1979, 8, 191–198. [Google Scholar] [CrossRef]
- Vaisman, I. On locally and globally conformal Kähler manifolds. Trans. Am. Math. Soc. 1980, 262, 533–542. [Google Scholar]
- Matsumoto, K.; Mihai, I. An obstruction to the existence of minimal totally real immersions in a locally conformal Kähler space form. Bull. Yamagata Univ. Natur. Sci. 1997, 14, 83–87. [Google Scholar]
- Mutlu, P.; Sentürk, Z. On locally conformal Kaehler space forms. Filomat 2015, 29, 593–597. [Google Scholar] [CrossRef]
- Carriazo, A.; Kim, Y.H.; Yoon, D.N. Some inequalities on totally real submanifolds in locally conformal Kaehler space forms. J. Korean Math. Soc. 2004, 41, 795–808. [Google Scholar]
- Chen, B.-Y.; Ogiue, K. On totally real submanifolds. Trans. Am. Math. Soc. 1974, 193, 257–266. [Google Scholar] [CrossRef]
- Lu, Z. Normal scalar curvature conjecture and its applications. J. Funct. Anal. 2011, 261, 1284–1308. [Google Scholar] [CrossRef]
- Zhao, G.S. An intrinsic rigidity theorem for totally real minimal submanifolds in a complex projective space. J. Sichuan Univ. 1992, 29, 174–178. [Google Scholar]
- Zhou, J.-D.; Xu, C.-Y.; Song, W.-D. The rigidity of total real submanifolds in a complex projective space. J. Math. (PRC) 2015, 35, 1139–1147. [Google Scholar]
- Zhang, L. Some remarks on pseudo-umbilical totally real submanifolds in a complex projective space. Appl. Math. J. Chin. Univ. Ser. B 2008, 23, 227–232. [Google Scholar] [CrossRef]
- Luo, Y.; Sun, L.; Yin, J. An optimal pinching theorem of minimal Legendrian submanifolds in the unit sphere. Calc. Var. Partial. Differ. Equ. 2022, 61, 192. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Houiti, N.M.; Alkhaldi, A.H.; Ali, A.; Laurian-Ioan, P. Pinching Results on Totally Real Submanifolds of a Locally Conformal Kähler Manifolds. Mathematics 2025, 13, 1682. https://doi.org/10.3390/math13101682
Al-Houiti NM, Alkhaldi AH, Ali A, Laurian-Ioan P. Pinching Results on Totally Real Submanifolds of a Locally Conformal Kähler Manifolds. Mathematics. 2025; 13(10):1682. https://doi.org/10.3390/math13101682
Chicago/Turabian StyleAl-Houiti, Noura M., Ali H. Alkhaldi, Akram Ali, and Piscoran Laurian-Ioan. 2025. "Pinching Results on Totally Real Submanifolds of a Locally Conformal Kähler Manifolds" Mathematics 13, no. 10: 1682. https://doi.org/10.3390/math13101682
APA StyleAl-Houiti, N. M., Alkhaldi, A. H., Ali, A., & Laurian-Ioan, P. (2025). Pinching Results on Totally Real Submanifolds of a Locally Conformal Kähler Manifolds. Mathematics, 13(10), 1682. https://doi.org/10.3390/math13101682