High-Performance Deployment Operational Data Analytics of Pre-Trained Multi-Label Classification Architectures with Differential-Evolution-Based Hyperparameter Optimization (AutoDEHypO)
Abstract
:1. Introduction
1.1. Problem Statement and Objective
1.2. Main Contributions
- We propose AutoDEHypO, a high-performance-computing differential-evolution-based automatic hyperparameter workflow designed to optimize the performance of ML models for energy efficiency and operational data analytics in HPC environments.
- We deploy the AutoDEHypO workflow on the EuroHPC Vega system, utilizing multiple GPUs and Slurm scheduling and submission to execute a specialized fitness function for ML.
- We applied and evaluated this workflow on supervised ML and multi-label classification using the CIFAR10 and CIFAR100 datasets [27].
- We collected runtime data through Slurm within the HPC production environment.
- We evaluated the efficiency of a chosen ML model and DE algorithm strategies according to the ML accuracy and energy efficiency, dependent on ML model architecture, datasets, and resource consumption within the HPC environment.
- We performed aggregated statistical analyses, along with the corresponding post hoc procedures, and validated the collected data using visualizations by evaluating efficiency of combined ML models and applied DE strategies.
- We identified significant differences in key metrics and laid the ground for future work on sustainability and cost-effectiveness using AutoDEHypO.
2. Related Work and Existing Methods
2.1. Machine Learning
2.2. Monitoring and Operational Data Analytics
2.3. Differential Evolution
2.3.1. Differential Evolution Operators
- DE/rand/1: A random vector is chosen as the basis, and a one-sided weighted difference (vector) composed of two other random vectors is added to it.
- DE/best/1: The current best random vector is used as the basis, and an additional random difference (vector) is added to it.
- DE/current-to-best/1: For an individual vector to mutate with the best vector, one random difference (vector) is added.
- DE/rand/2: A random vector is chosen as the basis, and two independent differences (vectors) of four random vectors are added to it.
- DE/best/2: The current best random vector is used as the basis, and two random differences (vectors) of four random vectors are added to it.
2.3.2. Improvements to the Differential Evolution Algorithm and Energy Efficiency
2.4. Comparison of Hyperparameter Optimization Methods
2.5. Automated Machine Learning
2.6. Image Datasets
2.7. Checkpoint and Restart
Algorithm 1 Differential Evolution for Machine Learning Hyperparameter Optimization |
Require: ML hyperparameter optimization problem fitness function , minimum and maximum of the search space of ML hyperparameters S for function , DE parameters: population size , mutation differential weight F, crossover rate , number of generations G.
|
2.8. Predictive Modeling
3. Proposed Methodology: AutoDEHypO
3.1. Experimental Environment
3.2. AutoDEHypO
3.3. Differential-Evolution-Based Hyperparameter Optimization
3.4. Job Scheduling, Training, Evaluation, and Visualization
3.5. Checkpoint and Restart, Collected Logs, and Fault Tolerance
4. Experimental Results
- RuntimeError:
- ProcessGroupNCCL is only supported with GPUs, no GPUs found!
4.1. Obtained Results
4.2. Discussion of the Aggregated Statistics
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Run | Strategy | Max Accuracy (%) | Best LR | Best Accuracy | CPU Time | Elapsed Time | Consumed Energy |
---|---|---|---|---|---|---|---|
Run 1 | rand1bin | 100% | 0.0001716955308133066 | 0.20128 | 07:17:56 | 01:49:29 | 2.39 MJ |
Run 2 | rand1bin | 99.976% | 0.0001716955308133066 | 0.20176 | 08:02:20 | 02:00:35 | 2.63 MJ |
Run 3 | rand1bin | 100% | 0.0001716955308133066 | 0.20128 | 06:35:40 | 01:38:55 | 2.11 MJ |
Run 4 | rand1bin | 100% | 0.0001716955308133066 | 0.20176 | 09:58:56 | 02:29:44 | 3.12 MJ |
Run 5 | rand1bin | 99.96% | 0.0001716955308133066 | 0.198 | 09:54:12 | 02:28:33 | 3.11 MJ |
Run 6 | rand1bin | 100% | 0.0001716955308133066 | 0.20176 | 06:41:04 | 01:40:16 | 2.14 MJ |
Run 7 | rand1bin | 100% | 0.0001716955308133066 | 0.20128 | 10:13:04 | 02:33:16 | 3.27 MJ |
Run 8 | rand1bin | 99.984% | 0.0001716955308133066 | 0.20176 | 07:53:16 | 01:58:19 | 2.52 MJ |
Run 9 | rand1bin | 100% | 0.0001716955308133066 | 0.20176 | 07:58:52 | 01:59:43 | 2.62 MJ |
Run 10 | rand1bin | 100% | 0.0001716955308133066 | 0.20176 | 07:13:28 | 01:48:22 | 2.32 MJ |
Run 1 | best1bin | 99.968% | 0.00013244795866876926 | 0.198 | 08:38:48 | 02:09:42 | 2.82 MJ |
Run 2 | best1bin | 100% | 0.00013244795866876926 | 0.20128 | 09:53:04 | 02:28:16 | 3.20 MJ |
Run 3 | best1bin | 99.96% | 0.00024077230180039115 | 0.19896 | 06:58:32 | 01:44:38 | 2.37 MJ |
Run 4 | best1bin | 99.992% | 0.00013244795866876926 | 0.20176 | 09:38:28 | 02:24:37 | 3.18 MJ |
Run 5 | best1bin | 100% | 0.00024077230180039115 | 0.198 | 05:56:00 | 01:29:00 | 1.95 MJ |
Run 6 | best1bin | 100% | 0.0002162424541476714 | 0.19896 | 08:18:20 | 02:04:35 | 2.86 MJ |
Run 7 | best1bin | 99.968% | 0.00024077230180039115 | 0.20176 | 07:53:16 | 01:58:19 | 2.52 MJ |
Run 8 | best1bin | 99.992% | 0.00024077230180039115 | 0.19896 | 10:41:56 | 02:40:29 | 3.30 MJ |
Run 9 | best1bin | 99.704% | 0.00024077230180039115 | 0.20176 | 10:49:16 | 02:42:19 | 3.47 MJ |
Run 10 | best1bin | 99.936% | 0.00024077230180039115 | 0.20176 | 07:17:32 | 01:49:23 | 2.29 MJ |
Run 1 | currenttobest1bin | 99.952% | 0.00024077230180039115 | 0.20176 | 11:21:40 | 02:50:25 | 3.58 MJ |
Run 2 | currenttobest1bin | 99.984% | 0.00024077230180039115 | 0.20176 | 09:25:32 | 02:21:23 | 3.05 MJ |
Run 3 | currenttobest1bin | 100% | 0.0002162424541476714 | 0.19896 | 09:46:36 | 02:26:39 | 3.14 MJ |
Run 4 | currenttobest1bin | 100% | 0.00024077230180039115 | 0.20176 | 13:04:00 | 03:16:00 | 4.27 MJ |
Run 5 | currenttobest1bin | 99.984% | 0.00013244795866876926 | 0.20176 | 08:57:32 | 02:14:23 | 2.84 MJ |
Run 6 | currenttobest1bin | 100% | 0.00024077230180039115 | 0.19896 | 09:10:16 | 02:17:34 | 3.00 MJ |
Run 7 | currenttobest1bin | 100% | 0.00024077230180039115 | 0.20128 | 09:13:24 | 02:18:21 | 2.95 MJ |
Run 8 | currenttobest1bin | 99.952% | 0.00013244795866876926 | 0.20176 | 09:28:36 | 02:22:09 | 3.06 MJ |
Run 9 | currenttobest1bin | 99.976% | 0.0002162424541476714 | 0.198 | 11:38:12 | 02:54:33 | 3.93 MJ |
Run 10 | currenttobest1bin | 99.264% | 0.00024077230180039115 | 0.20128 | 11:49:40 | 02:57:25 | 3.82 MJ |
Run 1 | rand2bin | 99.624% | 0.00024077230180039115 | 0.20176 | 12:54:56 | 03:13:44 | 4.40 MJ |
Run 2 | rand2bin | 100% | 0.00024077230180039115 | 0.20176 | 11:32:48 | 02:53:12 | 3.73 MJ |
Run 3 | rand2bin | 99.992% | 0.0002162424541476714 | 0.20176 | 10:10:04 | 02:32:31 | 3.30 MJ |
Run 4 | rand2bin | 99.928% | 0.00024077230180039115 | 0.20128 | 09:53:00 | 02:28:15 | 3.21 MJ |
Run 5 | rand2bin | 99.992% | 0.0002486243259268821 | 0.198 | 12:27:56 | 03:06:59 | 4.02 MJ |
Run 6 | rand2bin | 100% | 0.0002162424541476714 | 0.198 | 16:39:40 | 04:09:55 | 5.48 MJ |
Run 7 | rand2bin | 99.944% | 0.00024077230180039115 | 0.20176 | 12:32:40 | 03:08:10 | 4.09 MJ |
Run 8 | rand2bin | 100% | 0.00024077230180039115 | 0.198 | 12:17:04 | 03:04:16 | 3.95 MJ |
Run 9 | rand2bin | 100% | 0.00024077230180039115 | 0.20176 | 08:38:56 | 02:09:44 | 2.82 MJ |
Run 10 | rand2bin | 100% | 0.00028135858111119703 | 0.20176 | 12:44:44 | 03:11:11 | 3.99 MJ |
Run 1 | best2bin | 99.144% | 0.0002021582861747835 | 0.19896 | 14:49:44 | 03:42:26 | 4.75 MJ |
Run 2 | best2bin | 100% | 0.0002021582861747835 | 0.20128 | 10:21:20 | 02:35:20 | 3.30 MJ |
Run 3 | best2bin | 100% | 0.00024077230180039115 | 0.20176 | 11:26:32 | 02:51:38 | 3.62 MJ |
Run 4 | best2bin | 100% | 0.0002021582861747835 | 0.20176 | 10:09:48 | 02:32:27 | 3.29 MJ |
Run 5 | best2bin | 99.896% | 0.0001447530265703141 | 0.20128 | 10:46:08 | 02:41:32 | 3.54 MJ |
Run 6 | best2bin | 100% | 0.0002021582861747835 | 0.20176 | 08:46:40 | 02:11:40 | 2.79 MJ |
Run 7 | best2bin | 100% | 0.00024077230180039115 | 0.20128 | 07:18:08 | 01:49:32 | 2.39 MJ |
Run 8 | best2bin | 100% | 0.00028135858111119703 | 0.20128 | 11:21:12 | 02:50:18 | 3.83 MJ |
Run 9 | best2bin | 99.936% | 0.00024077230180039115 | 0.19896 | 08:07:20 | 02:01:50 | 2.60 MJ |
Run 10 | best2bin | 100% | 0.00012393180074355006 | 0.20176 | 14:49:32 | 03:42:23 | 4.69 MJ |
Run 1 | rand1exp | 99.976% | 0.0001716955308133066 | 0.20176 | 07:19:36 | 01:49:54 | 2.39 MJ |
Run 2 | rand1exp | 100% | 0.0001716955308133066 | 0.20128 | 07:20:20 | 01:50:05 | 2.37 MJ |
Run 3 | rand1exp | 99.984% | 0.0001716955308133066 | 0.198 | 10:16:08 | 02:34:02 | 3.24 MJ |
Run 4 | rand1exp | 99.992% | 0.0001716955308133066 | 0.20176 | 08:01:56 | 02:00:29 | 2.59 MJ |
Run 5 | rand1exp | 99.992% | 0.0001716955308133066 | 0.20128 | 07:12:32 | 01:48:08 | 2.33 MJ |
Run 6 | rand1exp | 100% | 0.0001716955308133066 | 0.20176 | 08:33:16 | 02:08:19 | 2.79 MJ |
Run 7 | rand1exp | 99.992% | 0.0001716955308133066 | 0.19896 | 07:16:08 | 01:49:02 | 2.31 MJ |
Run 8 | rand1exp | 100% | 0.0001716955308133066 | 0.20176 | 08:34:56 | 02:08:44 | 2.76 MJ |
Run 9 | rand1exp | 100% | 0.0001716955308133066 | 0.20176 | 08:35:56 | 02:08:59 | 2.80 MJ |
Run 10 | rand1exp | 99.984% | 0.0001716955308133066 | 0.198 | 10:37:28 | 02:39:22 | 3.45 MJ |
Run 1 | rand2exp | 99.92% | 0.00024077230180039115 | 0.20176 | 11:20:12 | 02:50:03 | 3.81 MJ |
Run 2 | rand2exp | 99.968% | 0.00024077230180039115 | 0.20176 | 12:48:44 | 03:12:11 | 4.04 MJ |
Run 3 | rand2exp | 99.92% | 0.00024077230180039115 | 0.20176 | 14:57:20 | 03:44:20 | 4.86 MJ |
Run 4 | rand2exp | 99.976% | 0.00024077230180039115 | 0.20176 | 13:53:52 | 03:28:28 | 4.52 MJ |
Run 5 | rand2exp | 100% | 0.0002162424541476714 | 0.19896 | 11:56:04 | 02:59:01 | 3.76 MJ |
Run 6 | rand2exp | 99.808% | 0.00024077230180039115 | 0.198 | 14:34:24 | 03:38:36 | 4.54 MJ |
Run 7 | rand2exp | 99.88% | 0.00024077230180039115 | 0.20176 | 14:13:36 | 03:33:24 | 4.48 MJ |
Run 8 | rand2exp | 100% | 0.00024077230180039115 | 0.20176 | 10:30:48 | 02:37:42 | 3.39 MJ |
Run 9 | rand2exp | 100% | 0.0002162424541476714 | 0.19896 | 09:19:56 | 02:19:59 | 2.99 MJ |
Run 10 | rand2exp | 99.96% | 0.0002162424541476714 | 0.20176 | 19:39:00 | 04:54:45 | 6.27 MJ |
Run 1 | best1exp | 99.976% | 0.00013244795866876926 | 0.20176 | 06:38:40 | 01:39:40 | 2.15 MJ |
Run 2 | best1exp | 99.984% | 0.00013244795866876926 | 0.20128 | 12:34:44 | 03:08:41 | 4.02 MJ |
Run 3 | best1exp | 99.712% | 0.0002162424541476714 | 0.19896 | 11:19:16 | 02:49:49 | 3.67 MJ |
Run 4 | best1exp | 100% | 0.00013244795866876926 | 0.20176 | 11:52:36 | 02:58:09 | 3.74 MJ |
Run 5 | best1exp | 100% | 0.00024077230180039115 | 0.19896 | 11:31:00 | 02:52:45 | 3.68 MJ |
Run 6 | best1exp | 99.96% | 0.00013244795866876926 | 0.20176 | 10:16:44 | 02:34:11 | 3.23 MJ |
Run 7 | best1exp | 99.928% | 0.00013244795866876926 | 0.20128 | 10:52:20 | 02:43:05 | 3.45 MJ |
Run 8 | best1exp | 99.952% | 0.00013244795866876926 | 0.198 | 11:16:32 | 02:49:08 | 3.66 MJ |
Run 9 | best1exp | 100% | 0.00024077230180039115 | 0.20176 | 09:32:08 | 02:23:02 | 3.11 MJ |
Run 10 | best1exp | 99.968% | 0.0002162424541476714 | 0.20128 | 08:45:16 | 02:11:19 | 2.76 MJ |
Run 1 | best2exp | 100% | 0.00024077230180039115 | 0.20176 | 12:03:28 | 03:00:52 | 3.84 MJ |
Run 2 | best2exp | 100% | 0.0002021582861747835 | 0.20176 | 09:13:40 | 02:18:25 | 3.20 MJ |
Run 3 | best2exp | 100% | 0.0002021582861747835 | 0.20176 | 10:47:16 | 02:41:49 | 3.43 MJ |
Run 4 | best2exp | 99.928% | 0.00021097950456378797 | 0.19896 | 13:38:24 | 03:24:36 | 4.24 MJ |
Run 5 | best2exp | 99.584% | 0.00012393180074355006 | 0.20128 | 12:44:44 | 03:11:11 | 4.13 MJ |
Run 6 | best2exp | 100% | 0.00012393180074355006 | 0.20176 | 08:33:20 | 02:08:20 | 2.71 MJ |
Run 7 | best2exp | 99.968% | 0.00024077230180039115 | 0.20128 | 07:16:28 | 01:49:07 | 2.33 MJ |
Run 8 | best2exp | 100% | 0.0002021582861747835 | 0.20176 | 09:07:56 | 02:16:59 | 2.90 MJ |
Run 9 | best2exp | 100% | 0.0002162424541476714 | 0.20128 | 13:31:32 | 03:22:53 | 4.39 MJ |
Run 10 | best2exp | 100% | 0.00024077230180039115 | 0.20176 | 08:55:28 | 02:13:52 | 2.87 MJ |
Run 1 | currenttobest1exp | 100% | 0.00024077230180039115 | 0.19896 | 10:41:24 | 02:40:21 | 3.33 MJ |
Run 2 | currenttobest1exp | 99.984% | 0.00013244795866876926 | 0.20176 | 12:47:04 | 03:11:46 | 4.01 MJ |
Run 3 | currenttobest1exp | 99.872% | 0.00013244795866876926 | 0.19896 | 09:16:40 | 02:19:10 | 2.98 MJ |
Run 4 | currenttobest1exp | 100% | 0.0002162424541476714 | 0.20176 | 06:52:04 | 01:43:01 | 2.24 MJ |
Run 5 | currenttobest1exp | 100% | 0.0002162424541476714 | 0.20176 | 06:27:28 | 01:36:52 | 2.06 MJ |
Run 6 | currenttobest1exp | 99.992% | 0.00013244795866876926 | 0.20176 | 11:03:32 | 02:45:53 | 3.73 MJ |
Run 7 | currenttobest1exp | 99.968% | 0.00024077230180039115 | 0.20176 | 07:45:12 | 01:56:18 | 2.55 MJ |
Run 8 | currenttobest1exp | 100% | 0.00013244795866876926 | 0.20176 | 07:15:28 | 01:48:52 | 2.36 MJ |
Run 9 | currenttobest1exp | 99.976% | 0.00024077230180039115 | 0.198 | 09:52:00 | 02:28:00 | 3.08 MJ |
Run 10 | currenttobest1exp | 99.968% | 0.00013244795866876926 | 0.20176 | 07:17:28 | 01:49:22 | 2.28 MJ |
Run | Strategy | Max Accuracy (%) | Best LR | Best Accuracy | CPU Time | Elapsed Time | Consumed Energy |
---|---|---|---|---|---|---|---|
Run 1 | rand1bin | 91.136% | 0.0002850492178633215 | 0.19464 | 1 d 06:51:08 | 07:42:47 | 10.92 MJ |
Run 2 | rand1bin | 89.84% | 0.00014533476190324503 | 0.1996 | 1 d 15:46:04 | 09:56:31 | 13.54 MJ |
Run 3 | rand1bin | 88.904% | 0.00016212406890736 | 0.20008 | 2 d 08:05:20 | 14:01:20 | 19.72 MJ |
Run 4 | rand1bin | 88.096% | 0.00017447715387706086 | 0.19648 | 2 d 14:03:44 | 15:30:56 | 21.79 MJ |
Run 5 | rand1bin | 78.848% | 0.00013277606163792152 | 0.20008 | 1 d 17:55:48 | 10:28:57 | 14.62 MJ |
Run 6 | rand1bin | 84.84% | 0.00040217263101021024 | 0.19552 | 1 d 16:39:36 | 10:09:54 | 14.22 MJ |
Run 7 | rand1bin | 86.832% | 0.00013772520953436778 | 0.1996 | 1 d 13:27:44 | 09:21:56 | 14.32 MJ |
Run 8 | rand1bin | 91.024% | 0.00024113078304294758 | 0.19984 | 1 d 20:35:00 | 11:08:45 | 15.61 MJ |
Run 9 | rand1bin | 77.488% | 0.00013959268979809545 | 0.19848 | 2 d 07:07:04 | 13:46:46 | 19.14 MJ |
Run 10 | rand1bin | 90.2% | 0.00018376849081430186 | 0.196 | 2 d 02:35:04 | 12:38:46 | 18.53 MJ |
Run 1 | best1bin | 88.888% | 0.00017084651054119834 | 0.19576 | 1 d 05:08:32 | 07:17:08 | 10.27 MJ |
Run 2 | best1bin | 82.096% | 0.00014986999150705122 | 0.19864 | 1 d 07:07:08 | 07:46:47 | 10.74 MJ |
Run 3 | best1bin | 54.912% | 0.0003282363808605963 | 0.19712 | 1 d 16:01:36 | 10:00:24 | 14.08 MJ |
Run 4 | best1bin | 87.728% | 0.0002538875999605611 | 0.19096 | 1 d 06:27:00 | 07:36:45 | 10.75 MJ |
Run 5 | best1bin | 86.24% | 0.00013244795866876926 | 0.19928 | 1 d 14:55:52 | 09:43:58 | 13.72 MJ |
Run 6 | best1bin | 87.232% | 0.00018772599078406988 | 0.19544 | 1 d 10:27:20 | 08:36:50 | 11.88 MJ |
Run 7 | best1bin | 91.024% | 0.0001979983310832409 | 0.19728 | 1 d 11:50:16 | 08:57:34 | 12.46 MJ |
Run 8 | best1bin | 87.048% | 0.00020452079357047135 | 0.19912 | 1 d 22:41:00 | 11:40:15 | 16.45 MJ |
Run 9 | best1bin | 86.744% | 0.00011697855792024446 | 0.19976 | 1 d 16:49:24 | 10:12:21 | 14.36 MJ |
Run 10 | best1bin | 87.848% | 0.00011878144416773795 | 0.19928 | 2 d 01:29:08 | 12:22:17 | 17.48 MJ |
Run 1 | currenttobest1bin | 94.408% | 0.0001777101347875973 | 0.19848 | 1 d 12:49:12 | 09:12:18 | 12.76 MJ |
Run 2 | currenttobest1bin | 91.664% | 0.0001676775123940838 | 0.1968 | 1 d 21:12:36 | 11:18:09 | 15.98 MJ |
Run 3 | currenttobest1bin | 87.704% | 0.00024927427039484336 | 0.19968 | 1 d 17:18:08 | 10:19:32 | 14.53 MJ |
Run 4 | currenttobest1bin | 93.104% | 0.00012525167316710355 | 0.19864 | 1 d 10:23:44 | 08:35:56 | 12.22 MJ |
Run 5 | currenttobest1bin | 76.968% | 0.00011271926575249369 | 0.2008 | 1 d 15:54:48 | 09:58:42 | 13.94 MJ |
Run 6 | currenttobest1bin | 92.656% | 0.00024077230180039115 | 0.19864 | 1 d 15:43:36 | 09:55:54 | 14.74 MJ |
Run 7 | currenttobest1bin | 83.928% | 0.00018005627173263677 | 0.20008 | 2 d 04:49:00 | 13:12:15 | 18.52 MJ |
Run 8 | currenttobest1bin | 89.832% | 0.00018005627173263677 | 0.19728 | 1 d 14:02:00 | 09:30:30 | 13.37 MJ |
Run 9 | currenttobest1bin | 79.304% | 0.00014160970939553836 | 0.20024 | 1 d 18:51:16 | 10:42:49 | 14.97 MJ |
Run 10 | currenttobest1bin | 92.944% | 0.0001709971131053357 | 0.19952 | 1 d 08:37:12 | 08:09:18 | 11.34 MJ |
Run 1 | rand2bin | 87.672% | 0.00014043719752531607 | 0.19864 | 2 d 09:31:28 | 14:22:52 | 20.78 MJ |
Run 2 | rand2bin | 89.04% | 0.00011225716411114573 | 0.19888 | 2 d 10:33:28 | 14:38:22 | 20.83 MJ |
Run 3 | rand2bin | 94.512% | 0.0002133501243124707 | 0.19624 | 2 d 02:37:08 | 12:39:17 | 17.67 MJ |
Run 4 | rand2bin | 83.176% | 0.00014653941889018144 | 0.1964 | 2 d 09:09:08 | 14:17:17 | 19.81 MJ |
Run 5 | rand2bin | 87.024% | 0.00011953364165374843 | 0.19728 | 2 d 05:57:24 | 13:29:21 | 18.39 MJ |
Run 6 | rand2bin | 84.768% | 0.00023553289350598778 | 0.19968 | 2 d 04:24:04 | 13:06:01 | 17.81 MJ |
Run 7 | rand2bin | 87.648% | 0.0002237592246513461 | 0.19936 | 1 d 17:36:36 | 10:24:09 | 14.43 MJ |
Run 8 | rand2bin | 88.624% | 0.00028450076835501793 | 0.19784 | 2 d 14:21:28 | 15:35:22 | 21.70 MJ |
Run 9 | rand2bin | 87.976% | 0.0001381408910283419 | 0.20008 | 2 d 01:54:12 | 12:28:33 | 17.34 MJ |
Run 10 | rand2bin | 88.936% | 0.0003745529083655216 | 0.19664 | 2 d 02:32:40 | 12:38:10 | 17.96 MJ |
Run 1 | best2bin | 87.808% | 0.00019802425459684555 | 0.19792 | 1 d 14:59:48 | 09:44:57 | 13.70 MJ |
Run 2 | best2bin | 92.296% | 0.0001251396171027152 | 0.19944 | 1 d 12:31:36 | 09:07:54 | 12.92 MJ |
Run 3 | best2bin | 90.4% | 0.0001904270337836623 | 0.1964 | 1 d 17:50:44 | 10:27:41 | 14.68 MJ |
Run 4 | best2bin | 81.952% | 0.0001099476225437391 | 0.19888 | 2 d 01:55:36 | 12:28:54 | 17.65 MJ |
Run 5 | best2bin | 75.464% | 0.00020291861982300505 | 0.19672 | 1 d 20:22:48 | 11:05:42 | 15.79 MJ |
Run 6 | best2bin | 86.48% | 0.00010060982197001325 | 0.2004 | 2 d 10:13:32 | 14:33:23 | 20.22 MJ |
Run 7 | best2bin | 88.752% | 0.00016491971624181951 | 0.19968 | 1 d 13:26:40 | 09:21:40 | 12.71 MJ |
Run 8 | best2bin | 93.512% | 0.00024077230180039115 | 0.19824 | 1 d 21:12:12 | 11:18:03 | 16.09 MJ |
Run 9 | best2bin | 89.448% | 0.0001714790474648441 | 0.20008 | 1 d 19:37:00 | 10:54:15 | 15.19 MJ |
Run 10 | best2bin | 84.432% | 0.00014487507677276147 | 0.19928 | 2 d 13:24:04 | 15:21:01 | 21.30 MJ |
Run 1 | rand1exp | 81.736% | 0.00020572836461939112 | 0.19768 | 1 d 12:40:00 | 09:10:00 | 12.93 MJ |
Run 2 | rand1exp | 90.736% | 0.0001223335365317393 | 0.20024 | 1 d 13:13:20 | 09:18:20 | 12.97 MJ |
Run 3 | rand1exp | 81.24% | 0.00028135858111119703 | 0.19888 | 2 d 03:22:28 | 12:50:37 | 18.10 MJ |
Run 4 | rand1exp | 88.952% | 0.0001716955308133066 | 0.1988 | 2 d 01:32:44 | 12:23:11 | 17.78 MJ |
Run 5 | rand1exp | 84.584% | 0.00011738980332550895 | 0.19824 | 1 d 20:13:08 | 11:03:17 | 15.40 MJ |
Run 6 | rand1exp | 88.16% | 0.0001716955308133066 | 0.19688 | 2 d 12:53:48 | 15:13:27 | 21.12 MJ |
Run 7 | rand1exp | 79.792% | 0.0003402733735045603 | 0.19656 | 1 d 12:26:08 | 09:06:32 | 12.72 MJ |
Run 8 | rand1exp | 90.84% | 0.0001870614498054844 | 0.19968 | 1 d 22:59:52 | 11:44:58 | 16.24 MJ |
Run 9 | rand1exp | 85.648% | 0.00031983860861568045 | 0.19824 | 1 d 19:27:24 | 10:51:51 | 15.32 MJ |
Run 10 | rand1exp | 92.024% | 0.00018074543621654791 | 0.19968 | 1 d 22:00:36 | 11:30:09 | 15.91 MJ |
Run 1 | rand2exp | 77.792% | 0.0003611529289675765 | 0.19576 | 2 d 13:49:20 | 15:27:20 | 21.95 MJ |
Run 2 | rand2exp | 88.48% | 0.00017837840176632527 | 0.1988 | 2 d 03:06:40 | 12:46:40 | 17.93 MJ |
Run 3 | rand2exp | 89.08% | 0.0002653847058764622 | 0.19568 | 1 d 19:58:40 | 10:59:40 | 14.96 MJ |
Run 4 | rand2exp | 93.68% | 0.00012525167316710355 | 0.19568 | 2 d 09:39:20 | 14:24:50 | 21.03 MJ |
Run 5 | rand2exp | 79.16% | 0.00011407140713999342 | 0.19768 | 1 d 18:18:16 | 10:34:34 | 14.92 MJ |
Run 6 | rand2exp | 83.536% | 0.00017301348280091672 | 0.19856 | 2 d 02:53:24 | 12:43:21 | 17.94 MJ |
Run 7 | rand2exp | 88.992% | 0.0002842880760057267 | 0.19664 | 1 d 19:29:40 | 10:52:25 | 15.56 MJ |
Run 8 | rand2exp | 87.232% | 0.0003750159877137128 | 0.19952 | 2 d 15:49:40 | 15:57:25 | 22.13 MJ |
Run 9 | rand2exp | 83.456% | 0.00015812824020433673 | 0.19816 | 1 d 21:09:08 | 11:17:17 | 16.10 MJ |
Run 10 | rand2exp | 91.888% | 0.00017793388252216702 | 0.19624 | 1 d 22:20:52 | 11:35:13 | 16.15 MJ |
Run 1 | best1exp | 88.696% | 0.00014033836854647334 | 0.19736 | 1 d 02:15:36 | 06:33:54 | 9.31 MJ |
Run 2 | best1exp | 86.968% | 0.0002162424541476714 | 0.19768 | 1 d 15:12:56 | 09:48:14 | 14.52 MJ |
Run 3 | best1exp | 92.84% | 0.00023638094901782316 | 0.19736 | 1 d 07:52:08 | 07:58:02 | 11.21 MJ |
Run 4 | best1exp | 86.672% | 0.00010427195475288474 | 0.194 | 1 d 10:19:28 | 08:34:52 | 12.09 MJ |
Run 5 | best1exp | 80.672% | 0.00019427705638157093 | 0.19888 | 1 d 15:29:56 | 09:52:29 | 13.53 MJ |
Run 6 | best1exp | 77.904% | 0.00015164326800967044 | 0.19792 | 1 d 10:28:24 | 08:37:06 | 12.13 MJ |
Run 7 | best1exp | 88.776% | 0.00012525167316710355 | 0.19952 | 1 d 11:42:52 | 08:55:43 | 12.57 MJ |
Run 8 | best1exp | 86.32% | 0.00010635183372531933 | 0.19792 | 1 d 05:52:40 | 07:28:10 | 10.53 MJ |
Run 9 | best1exp | 90.912% | 0.00016403359809686588 | 0.19832 | 1 d 13:23:48 | 09:20:57 | 12.89 MJ |
Run 10 | best1exp | 86.616% | 0.00017251878232963605 | 0.19832 | 1 d 13:11:04 | 09:17:46 | 13.27 MJ |
Run 1 | best2exp | 84.392% | 0.00017548419506410967 | 0.19736 | 1 d 13:47:56 | 09:26:59 | 13.40 MJ |
Run 2 | best2exp | 85.904% | 0.00021438513173642015 | 0.19648 | 2 d 02:36:56 | 12:39:14 | 17.28 MJ |
Run 3 | best2exp | 80.952% | 0.00010615086490952649 | 0.19864 | 1 d 15:33:16 | 09:53:19 | 13.77 MJ |
Run 4 | best2exp | 91.496% | 0.0002586226136233186 | 0.19576 | 1 d 18:41:24 | 10:40:21 | 14.70 MJ |
Run 5 | best2exp | 80.376% | 0.00017880463506925198 | 0.19584 | 2 d 00:10:20 | 12:02:35 | 16.64 MJ |
Run 6 | best2exp | 75.912% | 0.00010719837238676701 | 0.19888 | 2 d 10:04:16 | 14:31:04 | 20.64 MJ |
Run 7 | best2exp | 89.456% | 0.00018524895070882503 | 0.19928 | 1 d 23:31:00 | 11:52:45 | 16.85 MJ |
Run 8 | best2exp | 87.856% | 0.00015637847083356613 | 0.19592 | 2 d 03:50:20 | 12:57:35 | 19.63 MJ |
Run 9 | best2exp | 83.952% | 0.0002894986036949542 | 0.19528 | 1 d 12:47:00 | 09:11:45 | 13.00 MJ |
Run 10 | best2exp | 90.384% | 0.00021267203704380358 | 0.19528 | 1 d 23:50:36 | 11:57:39 | 16.27 MJ |
Run 1 | currenttobest1exp | 86.328% | 0.00016110168325251075 | 0.19984 | 1 d 15:00:12 | 09:45:03 | 13.84 MJ |
Run 2 | currenttobest1exp | 83.032% | 0.0001741558151819849 | 0.1992 | 1 d 12:21:16 | 09:05:19 | 12.90 MJ |
Run 3 | currenttobest1exp | 74.632% | 0.0001900681595332386 | 0.19712 | 1 d 15:17:16 | 09:49:19 | 14.05 MJ |
Run 4 | currenttobest1exp | 94.304% | 0.0001737849051304597 | 0.19632 | 1 d 07:09:24 | 07:47:21 | 10.74 MJ |
Run 5 | currenttobest1exp | 87.336% | 0.00033922214947209337 | 0.19384 | 1 d 12:41:56 | 09:10:29 | 13.80 MJ |
Run 6 | currenttobest1exp | 81.44% | 0.00016020731429975277 | 0.19896 | 2 d 13:42:48 | 15:25:42 | 21.54 MJ |
Run 7 | currenttobest1exp | 89.128% | 0.00015818566275308356 | 0.19768 | 2 d 02:56:52 | 12:44:13 | 18.15 MJ |
Run 8 | currenttobest1exp | 88.272% | 0.0002178707118915058 | 0.19824 | 1 d 13:46:40 | 09:26:40 | 12.99 MJ |
Run 9 | currenttobest1exp | 84.672% | 0.00017059161098273808 | 0.1992 | 2 d 06:39:44 | 13:39:56 | 18.98 MJ |
Run 10 | currenttobest1exp | 77.736% | 0.00021096296316773999 | 0.19936 | 2 d 00:41:40 | 12:10:25 | 16.82 MJ |
Run | Strategy | Max Accuracy (%) | Best LR | Best Accuracy | CPU Time | Elapsed Time | Consumed Energy |
---|---|---|---|---|---|---|---|
Run 1 | rand1bin | 95.976% | 0.0006654030079491737 | 0.2012 | 16:28:40 | 04:07:10 | 5.76 MJ |
Run 2 | rand1bin | 98.152% | 0.0005503782814261585 | 0.20064 | 13:47:44 | 03:26:56 | 4.93 MJ |
Run 3 | rand1bin | 98.12% | 0.0002672795926582179 | 0.19744 | 18:00:04 | 04:30:01 | 6.28 MJ |
Run 4 | rand1bin | 97.648% | 0.0005503782814261585 | 0.19992 | 17:16:40 | 04:19:10 | 6.12 MJ |
Run 5 | rand1bin | 98.104% | 0.0002162424541476714 | 0.19728 | 15:15:16 | 03:48:49 | 5.21 MJ |
Run 6 | rand1bin | 98.112% | 0.0005473609425533086 | 0.19712 | 19:51:44 | 04:57:56 | 7.05 MJ |
Run 7 | rand1bin | 98.832% | 0.0006082014966333853 | 0.19992 | 18:50:00 | 04:42:30 | 6.60 MJ |
Run 8 | rand1bin | 97.464% | 0.00034871425456294697 | 0.19976 | 20:47:36 | 05:11:54 | 7.69 MJ |
Run 9 | rand1bin | 96.952% | 0.0005355373902815665 | 0.19704 | 19:18:52 | 04:49:43 | 7.12 MJ |
Run 10 | rand1bin | 97.312% | 0.0005712439495039969 | 0.19712 | 15:20:44 | 03:50:11 | 5.34 MJ |
Run 1 | best1bin | 98.184% | 0.0007927504106257327 | 0.19736 | 17:57:28 | 04:29:22 | 6.28 MJ |
Run 2 | best1bin | 97.912% | 0.0007927504106257327 | 0.20056 | 12:20:32 | 03:05:08 | 4.39 MJ |
Run 3 | best1bin | 97.752% | 0.0008678928687917702 | 0.1972 | 16:14:16 | 04:03:34 | 5.78 MJ |
Run 4 | best1bin | 97.384% | 0.0008678928687917702 | 0.19984 | 18:27:04 | 04:36:46 | 6.55 MJ |
Run 5 | best1bin | 97.656% | 0.0006654030079491737 | 0.2 | 15:18:44 | 03:49:41 | 5.40 MJ |
Run 6 | best1bin | 98.496% | 0.0006654030079491737 | 0.20088 | 15:22:52 | 03:50:43 | 5.35 MJ |
Run 7 | best1bin | 95.768% | 0.00033879562805403946 | 0.20072 | 17:17:56 | 04:19:29 | 6.06 MJ |
Run 8 | best1bin | 97.44% | 0.0008678928687917702 | 0.19968 | 16:44:52 | 04:11:13 | 5.80 MJ |
Run 9 | best1bin | 97.592% | 0.0006654030079491737 | 0.20088 | 16:20:48 | 04:05:12 | 5.62 MJ |
Run 10 | best1bin | 98.184% | 0.0005503782814261585 | 0.19832 | 18:05:00 | 04:31:15 | 6.62 MJ |
Run 1 | currenttobest1bin | 98.576% | 0.0007734768031311363 | 0.20072 | 15:54:32 | 03:58:38 | 5.87 MJ |
Run 2 | currenttobest1bin | 97.408% | 0.0005739712323314084 | 0.19936 | 16:11:08 | 04:02:47 | 5.49 MJ |
Run 3 | currenttobest1bin | 98.264% | 0.0007901080473489402 | 0.20088 | 20:10:40 | 05:02:40 | 7.23 MJ |
Run 4 | currenttobest1bin | 97.288% | 0.00028135858111119703 | 0.20016 | 16:00:52 | 04:00:13 | 5.54 MJ |
Run 5 | currenttobest1bin | 97.72% | 0.00034871425456294697 | 0.19776 | 15:13:04 | 03:48:16 | 5.21 MJ |
Run 6 | currenttobest1bin | 98.824% | 0.0005503782814261585 | 0.19752 | 13:17:36 | 03:19:24 | 4.75 MJ |
Run 7 | currenttobest1bin | 98.544% | 0.0003862608341030343 | 0.2012 | 13:04:48 | 03:16:12 | 4.70 MJ |
Run 8 | currenttobest1bin | 97.24% | 0.0003906300656803601 | 0.19976 | 15:54:08 | 03:58:32 | 5.59 MJ |
Run 9 | currenttobest1bin | 98.752% | 0.0008925326625563701 | 0.20088 | 14:28:52 | 03:37:13 | 5.24 MJ |
Run 10 | currenttobest1bin | 97.344% | 0.0007901080473489402 | 0.20104 | 14:14:00 | 03:33:30 | 4.25 MJ |
Run 1 | rand2bin | 97.64% | 0.00028135858111119703 | 0.20112 | 16:13:36 | 04:03:24 | 5.71 MJ |
Run 2 | rand2bin | 97.456% | 0.0007901080473489402 | 0.19704 | 19:27:44 | 04:51:56 | 6.88 MJ |
Run 3 | rand2bin | 98.112% | 0.0007901080473489402 | 0.19728 | 16:18:44 | 04:04:41 | 5.68 MJ |
Run 4 | rand2bin | 98.568% | 0.0007525478022450478 | 0.1992 | 16:20:12 | 04:05:03 | 5.71 MJ |
Run 5 | rand2bin | 98.84% | 0.0009 | 0.20128 | 13:02:12 | 03:15:33 | 4.58 MJ |
Run 6 | rand2bin | 98.032% | 0.0002162424541476714 | 0.20024 | 17:50:16 | 04:27:34 | 6.38 MJ |
Run 7 | rand2bin | 97.904% | 0.0006654030079491737 | 0.1968 | 14:55:04 | 03:43:46 | 5.28 MJ |
Run 8 | rand2bin | 97.688% | 0.0002162424541476714 | 0.1976 | 17:33:12 | 04:23:18 | 6.12 MJ |
Run 9 | rand2bin | 98.6% | 0.0003958488676549701 | 0.2012 | 19:04:12 | 04:46:03 | 6.78 MJ |
Run 10 | rand2bin | 98.672% | 0.0005503782814261585 | 0.19744 | 18:23:00 | 04:35:45 | 6.55 MJ |
Run 1 | best2bin | 97.984% | 0.0007886925738553567 | 0.20112 | 14:59:12 | 03:44:48 | 5.36 MJ |
Run 2 | best2bin | 98.008% | 0.0008678928687917702 | 0.20112 | 16:20:20 | 04:05:05 | 5.76 MJ |
Run 3 | best2bin | 98.576% | 0.0007901080473489402 | 0.19648 | 15:18:52 | 03:49:43 | 5.37 MJ |
Run 4 | best2bin | 97.688% | 0.0006654030079491737 | 0.19792 | 15:37:12 | 03:54:18 | 5.47 MJ |
Run 5 | best2bin | 98.2% | 0.0004894533183428303 | 0.19696 | 14:56:44 | 03:44:11 | 5.24 MJ |
Run 6 | best2bin | 97.272% | 0.00034871425456294697 | 0.19808 | 22:47:20 | 05:41:50 | 8.26 MJ |
Run 7 | best2bin | 97.664% | 0.0004894533183428303 | 0.20064 | 13:16:40 | 03:19:10 | 4.91 MJ |
Run 8 | best2bin | 96.464% | 0.0008721269190922968 | 0.19736 | 16:35:20 | 04:08:50 | 6.26 MJ |
Run 9 | best2bin | 97.6% | 0.0004894533183428303 | 0.19696 | 16:07:00 | 04:01:45 | 5.74 MJ |
Run 10 | best2bin | 96.928% | 0.0007901080473489402 | 0.198 | 14:11:08 | 03:32:47 | 4.97 MJ |
Run 1 | rand1exp | 98.672% | 0.00028135858111119703 | 0.20008 | 17:44:28 | 04:26:07 | 6.06 MJ |
Run 2 | rand1exp | 95.208% | 0.0006654030079491737 | 0.19952 | 20:37:28 | 05:09:22 | 7.23 MJ |
Run 3 | rand1exp | 98.544% | 0.0005503782814261585 | 0.19744 | 15:33:00 | 03:53:15 | 5.52 MJ |
Run 4 | rand1exp | 98.424% | 0.00028135858111119703 | 0.19976 | 17:59:16 | 04:29:49 | 6.30 MJ |
Run 5 | rand1exp | 98.6% | 0.00024077230180039115 | 0.19952 | 17:27:32 | 04:21:53 | 6.11 MJ |
Run 6 | rand1exp | 97.984% | 0.00028135858111119703 | 0.19992 | 12:34:04 | 03:08:31 | 4.45 MJ |
Run 7 | rand1exp | 98.4% | 0.0005503782814261585 | 0.19688 | 20:49:48 | 05:12:27 | 7.56 MJ |
Run 8 | rand1exp | 98.184% | 0.0006175667336409383 | 0.2 | 19:21:28 | 04:50:22 | 6.77 MJ |
Run 9 | rand1exp | 98.224% | 0.0006082014966333853 | 0.19792 | 15:44:04 | 03:56:01 | 5.47 MJ |
Run 10 | rand1exp | 98.288% | 0.0005472994801986106 | 0.19696 | 17:46:52 | 04:26:43 | 6.27 MJ |
Run 1 | rand2exp | 98.928% | 0.0009 | 0.20064 | 13:29:28 | 03:22:22 | 4.74 MJ |
Run 2 | rand2exp | 97.432% | 0.0007901080473489402 | 0.19992 | 15:01:40 | 03:45:25 | 5.18 MJ |
Run 3 | rand2exp | 97.512% | 0.0005503782814261585 | 0.19752 | 16:30:44 | 04:07:41 | 5.77 MJ |
Run 4 | rand2exp | 97.648% | 0.0007830609600370624 | 0.1968 | 14:53:44 | 03:43:26 | 5.07 MJ |
Run 5 | rand2exp | 98.512% | 0.0008678928687917702 | 0.20112 | 16:14:44 | 04:03:41 | 5.74 MJ |
Run 6 | rand2exp | 97.48% | 0.0005503782814261585 | 0.1968 | 14:13:24 | 03:33:21 | 4.98 MJ |
Run 7 | rand2exp | 98.56% | 0.00024077230180039115 | 0.19744 | 20:20:04 | 05:05:01 | 7.29 MJ |
Run 8 | rand2exp | 98.28% | 0.0003690036337254874 | 0.20064 | 17:17:52 | 04:19:28 | 6.07 MJ |
Run 9 | rand2exp | 96.912% | 0.00028135858111119703 | 0.20128 | 20:23:28 | 05:05:52 | 7.83 MJ |
Run 10 | rand2exp | 97.904% | 0.0006998089423710386 | 0.198 | 15:21:20 | 03:50:20 | 5.42 MJ |
Run 1 | best1exp | 98.336% | 0.0007901080473489402 | 0.20024 | 16:19:36 | 04:04:54 | 6.11 MJ |
Run 2 | best1exp | 98.168% | 0.0005503782814261585 | 0.19736 | 17:31:16 | 04:22:49 | 6.67 MJ |
Run 3 | best1exp | 97.912% | 0.0004894533183428303 | 0.20112 | 15:44:28 | 03:56:07 | 5.51 MJ |
Run 4 | best1exp | 98% | 0.0006082014966333853 | 0.1972 | 15:38:28 | 03:54:37 | 5.59 MJ |
Run 5 | best1exp | 96.976% | 0.0007901080473489402 | 0.20008 | 14:57:48 | 03:44:27 | 5.29 MJ |
Run 6 | best1exp | 98.688% | 0.0004894533183428303 | 0.19768 | 16:05:32 | 04:01:23 | 5.80 MJ |
Run 7 | best1exp | 98.184% | 0.0008678928687917702 | 0.19664 | 14:58:40 | 03:44:40 | 5.23 MJ |
Run 8 | best1exp | 98.248% | 0.00034871425456294697 | 0.20088 | 15:40:44 | 03:55:11 | 5.54 MJ |
Run 9 | best1exp | 98.224% | 0.0006654030079491737 | 0.1976 | 17:06:24 | 04:16:36 | 6.13 MJ |
Run 10 | best1exp | 98.44% | 0.000607815328369001 | 0.19968 | 15:13:48 | 03:48:27 | 5.38 MJ |
Run 1 | best2exp | 98.072% | 0.0005498722582829092 | 0.19712 | 20:04:36 | 05:01:09 | 7.13 MJ |
Run 2 | best2exp | 98.168% | 0.0008710360124656422 | 0.19744 | 18:09:28 | 04:32:22 | 6.40 MJ |
Run 3 | best2exp | 98.416% | 0.0007092619923939011 | 0.19752 | 14:38:44 | 03:39:41 | 5.13 MJ |
Run 4 | best2exp | 98.56% | 0.00034871425456294697 | 0.20096 | 17:38:56 | 04:24:44 | 6.26 MJ |
Run 5 | best2exp | 98.952% | 0.0008678928687917702 | 0.19792 | 13:22:08 | 03:20:32 | 4.77 MJ |
Run 6 | best2exp | 97.632% | 0.0008678928687917702 | 0.19784 | 14:26:16 | 03:36:34 | 5.07 MJ |
Run 7 | best2exp | 96.784% | 0.00024095502886257157 | 0.1996 | 16:36:12 | 04:09:03 | 5.79 MJ |
Run 8 | best2exp | 98.008% | 0.00028135858111119703 | 0.20096 | 14:44:00 | 03:41:00 | 5.32 MJ |
Run 9 | best2exp | 98.112% | 0.0003690036337254874 | 0.20112 | 18:54:08 | 04:43:32 | 6.61 MJ |
Run 10 | best2exp | 97.88% | 0.0005503782814261585 | 0.19992 | 16:35:04 | 04:08:46 | 5.82 MJ |
Run 1 | currenttobest1exp | 97.44% | 0.0005355373902815665 | 0.19704 | 17:23:00 | 04:20:45 | 6.06 MJ |
Run 2 | currenttobest1exp | 98.736% | 0.0005481461251974725 | 0.1976 | 13:52:32 | 03:28:08 | 4.79 MJ |
Run 3 | currenttobest1exp | 98.104% | 0.000364520908205892 | 0.2004 | 19:24:44 | 04:51:11 | 6.78 MJ |
Run 4 | currenttobest1exp | 97.152% | 0.0004894533183428303 | 0.19672 | 16:59:32 | 04:14:53 | 5.96 MJ |
Run 5 | currenttobest1exp | 98.104% | 0.00034809976312238206 | 0.19984 | 17:24:12 | 04:21:03 | 6.12 MJ |
Run 6 | currenttobest1exp | 97.104% | 0.0004894533183428303 | 0.20016 | 16:53:24 | 04:13:21 | 5.91 MJ |
Run 7 | currenttobest1exp | 98.248% | 0.0006757524345484006 | 0.19992 | 13:20:08 | 03:20:02 | 4.73 MJ |
Run 8 | currenttobest1exp | 98.032% | 0.0005503782814261585 | 0.1972 | 17:52:36 | 04:28:09 | 6.45 MJ |
Run 9 | currenttobest1exp | 97.144% | 0.0006082014966333853 | 0.19704 | 15:00:40 | 03:45:10 | 5.23 MJ |
Run 10 | currenttobest1exp | 97.888% | 0.0006082014966333853 | 0.19688 | 16:37:08 | 04:09:17 | 5.74 MJ |
Run | Strategy | Max Accuracy (%) | Best LR | Best Accuracy | CPU Time | Elapsed Time | Consumed Energy |
---|---|---|---|---|---|---|---|
Run 1 | rand1bin | 91.136% | 0.0002850492178633215 | 0.19464 | 1 d 06:51:08 | 07:42:47 | 10.92 MJ |
Run 2 | rand1bin | 89.84% | 0.00014533476190324503 | 0.1996 | 1 d 15:46:04 | 09:56:31 | 13.54 MJ |
Run 3 | rand1bin | 88.904% | 0.00016212406890736 | 0.20008 | 2 d 08:05:20 | 14:01:20 | 19.72 MJ |
Run 4 | rand1bin | 88.096% | 0.00017447715387706086 | 0.19648 | 2 d 14:03:44 | 15:30:56 | 21.79 MJ |
Run 5 | rand1bin | 78.848% | 0.00013277606163792152 | 0.20008 | 1 d 17:55:48 | 10:28:57 | 14.62 MJ |
Run 6 | rand1bin | 84.84% | 0.00040217263101021024 | 0.19552 | 1 d 16:39:36 | 10:09:54 | 14.22 MJ |
Run 7 | rand1bin | 86.832% | 0.00013772520953436778 | 0.1996 | 1 d 13:27:44 | 09:21:56 | 14.32 MJ |
Run 8 | rand1bin | 91.024% | 0.00024113078304294758 | 0.19984 | 1 d 20:35:00 | 11:08:45 | 15.61 MJ |
Run 9 | rand1bin | 77.488% | 0.00013959268979809545 | 0.19848 | 2 d 07:07:04 | 13:46:46 | 19.14 MJ |
Run 10 | rand1bin | 90.2% | 0.00018376849081430186 | 0.196 | 2 d 02:35:04 | 12:38:46 | 18.53 MJ |
Run 1 | best1bin | 88.888% | 0.00017084651054119834 | 0.19576 | 1 d 05:08:32 | 07:17:08 | 10.27 MJ |
Run 2 | best1bin | 82.096% | 0.00014986999150705122 | 0.19864 | 1 d 07:07:08 | 07:46:47 | 10.74 MJ |
Run 3 | best1bin | 54.912% | 0.0003282363808605963 | 0.19712 | 1 d 16:01:36 | 10:00:24 | 14.08 MJ |
Run 4 | best1bin | 87.728% | 0.0002538875999605611 | 0.19096 | 1 d 06:27:00 | 07:36:45 | 10.75 MJ |
Run 5 | best1bin | 86.24% | 0.00013244795866876926 | 0.19928 | 1 d 14:55:52 | 09:43:58 | 13.72 MJ |
Run 6 | best1bin | 87.232% | 0.00018772599078406988 | 0.19544 | 1 d 10:27:20 | 08:36:50 | 11.88 MJ |
Run 7 | best1bin | 91.024% | 0.0001979983310832409 | 0.19728 | 1 d 11:50:16 | 08:57:34 | 12.46 MJ |
Run 8 | best1bin | 87.048% | 0.00020452079357047135 | 0.19912 | 1 d 22:41:00 | 11:40:15 | 16.45 MJ |
Run 9 | best1bin | 86.744% | 0.00011697855792024446 | 0.19976 | 1 d 16:49:24 | 10:12:21 | 14.36 MJ |
Run 10 | best1bin | 87.848% | 0.00011878144416773795 | 0.19928 | 2 d 01:29:08 | 12:22:17 | 17.48 MJ |
Run 1 | currenttobest1bin | 94.408% | 0.0001777101347875973 | 0.19848 | 1 d 12:49:12 | 09:12:18 | 12.76 MJ |
Run 2 | currenttobest1bin | 91.664% | 0.0001676775123940838 | 0.1968 | 1 d 21:12:36 | 11:18:09 | 15.98 MJ |
Run 3 | currenttobest1bin | 87.704% | 0.00024927427039484336 | 0.19968 | 1 d 17:18:08 | 10:19:32 | 14.53 MJ |
Run 4 | currenttobest1bin | 93.104% | 0.00012525167316710355 | 0.19864 | 1 d 10:23:44 | 08:35:56 | 12.22 MJ |
Run 5 | currenttobest1bin | 76.968% | 0.00011271926575249369 | 0.2008 | 1 d 15:54:48 | 09:58:42 | 13.94 MJ |
Run 6 | currenttobest1bin | 92.656% | 0.00024077230180039115 | 0.19864 | 1 d 15:43:36 | 09:55:54 | 14.74 MJ |
Run 7 | currenttobest1bin | 83.928% | 0.00018005627173263677 | 0.20008 | 2 d 04:49:00 | 13:12:15 | 18.52 MJ |
Run 8 | currenttobest1bin | 89.832% | 0.00018005627173263677 | 0.19728 | 1 d 14:02:00 | 09:30:30 | 13.37 MJ |
Run 9 | currenttobest1bin | 79.304% | 0.00014160970939553836 | 0.20024 | 1 d 18:51:16 | 10:42:49 | 14.97 MJ |
Run 10 | currenttobest1bin | 92.944% | 0.0001709971131053357 | 0.19952 | 1 d 08:37:12 | 08:09:18 | 11.34 MJ |
Run 1 | rand2bin | 87.672% | 0.00014043719752531607 | 0.19864 | 2 d 09:31:28 | 14:22:52 | 20.78 MJ |
Run 2 | rand2bin | 89.04% | 0.00011225716411114573 | 0.19888 | 2 d 10:33:28 | 14:38:22 | 20.83 MJ |
Run 3 | rand2bin | 94.512% | 0.0002133501243124707 | 0.19624 | 2 d 02:37:08 | 12:39:17 | 17.67 MJ |
Run 4 | rand2bin | 83.176% | 0.00014653941889018144 | 0.1964 | 2 d 09:09:08 | 14:17:17 | 19.81 MJ |
Run 5 | rand2bin | 87.024% | 0.00011953364165374843 | 0.19728 | 2 d 05:57:24 | 13:29:21 | 18.39 MJ |
Run 6 | rand2bin | 84.768% | 0.00023553289350598778 | 0.19968 | 2 d 04:24:04 | 13:06:01 | 17.81 MJ |
Run 7 | rand2bin | 87.648% | 0.0002237592246513461 | 0.19936 | 1 d 17:36:36 | 10:24:09 | 14.43 MJ |
Run 8 | rand2bin | 88.624% | 0.00028450076835501793 | 0.19784 | 2 d 14:21:28 | 15:35:22 | 21.70 MJ |
Run 9 | rand2bin | 87.976% | 0.0001381408910283419 | 0.20008 | 2 d 01:54:12 | 12:28:33 | 17.34 MJ |
Run 10 | rand2bin | 88.936% | 0.0003745529083655216 | 0.19664 | 2 d 02:32:40 | 12:38:10 | 17.96 MJ |
Run 1 | best2bin | 87.808% | 0.00019802425459684555 | 0.19792 | 1 d 14:59:48 | 09:44:57 | 13.70 MJ |
Run 2 | best2bin | 92.296% | 0.0001251396171027152 | 0.19944 | 1 d 12:31:36 | 09:07:54 | 12.92 MJ |
Run 3 | best2bin | 90.4% | 0.0001904270337836623 | 0.1964 | 1 d 17:50:44 | 10:27:41 | 14.68 MJ |
Run 4 | best2bin | 81.952% | 0.0001099476225437391 | 0.19888 | 2 d 01:55:36 | 12:28:54 | 17.65 MJ |
Run 5 | best2bin | 75.464% | 0.00020291861982300505 | 0.19672 | 1 d 20:22:48 | 11:05:42 | 15.79 MJ |
Run 6 | best2bin | 86.48% | 0.00010060982197001325 | 0.2004 | 2 d 10:13:32 | 14:33:23 | 20.22 MJ |
Run 7 | best2bin | 88.752% | 0.00016491971624181951 | 0.19968 | 1 d 13:26:40 | 09:21:40 | 12.71 MJ |
Run 8 | best2bin | 93.512% | 0.00024077230180039115 | 0.19824 | 1 d 21:12:12 | 11:18:03 | 16.09 MJ |
Run 9 | best2bin | 89.448% | 0.0001714790474648441 | 0.20008 | 1 d 19:37:00 | 10:54:15 | 15.19 MJ |
Run 10 | best2bin | 84.432% | 0.00014487507677276147 | 0.19928 | 2 d 13:24:04 | 15:21:01 | 21.30 MJ |
Run 1 | rand1exp | 81.736% | 0.00020572836461939112 | 0.19768 | 1 d 12:40:00 | 09:10:00 | 12.93 MJ |
Run 2 | rand1exp | 90.736% | 0.0001223335365317393 | 0.20024 | 1 d 13:13:20 | 09:18:20 | 12.97 MJ |
Run 3 | rand1exp | 81.24% | 0.00028135858111119703 | 0.19888 | 2 d 03:22:28 | 12:50:37 | 18.10 MJ |
Run 4 | rand1exp | 88.952% | 0.0001716955308133066 | 0.1988 | 2 d 01:32:44 | 12:23:11 | 17.78 MJ |
Run 5 | rand1exp | 84.584% | 0.00011738980332550895 | 0.19824 | 1 d 20:13:08 | 11:03:17 | 15.40 MJ |
Run 6 | rand1exp | 88.16% | 0.0001716955308133066 | 0.19688 | 2 d 12:53:48 | 15:13:27 | 21.12 MJ |
Run 7 | rand1exp | 79.792% | 0.0003402733735045603 | 0.19656 | 1 d 12:26:08 | 09:06:32 | 12.72 MJ |
Run 8 | rand1exp | 90.84% | 0.0001870614498054844 | 0.19968 | 1 d 22:59:52 | 11:44:58 | 16.24 MJ |
Run 9 | rand1exp | 85.648% | 0.00031983860861568045 | 0.19824 | 1 d 19:27:24 | 10:51:51 | 15.32 MJ |
Run 10 | rand1exp | 92.024% | 0.00018074543621654791 | 0.19968 | 1 d 22:00:36 | 11:30:09 | 15.91 MJ |
Run 1 | rand2exp | 77.792% | 0.0003611529289675765 | 0.19576 | 2 d 13:49:20 | 15:27:20 | 21.95 MJ |
Run 2 | rand2exp | 88.48% | 0.00017837840176632527 | 0.1988 | 2 d 03:06:40 | 12:46:40 | 17.93 MJ |
Run 3 | rand2exp | 89.08% | 0.0002653847058764622 | 0.19568 | 1 d 19:58:40 | 10:59:40 | 14.96 MJ |
Run 4 | rand2exp | 93.68% | 0.00012525167316710355 | 0.19568 | 2 d 09:39:20 | 14:24:50 | 21.03 MJ |
Run 5 | rand2exp | 79.16% | 0.00011407140713999342 | 0.19768 | 1 d 18:18:16 | 10:34:34 | 14.92 MJ |
Run 6 | rand2exp | 83.536% | 0.00017301348280091672 | 0.19856 | 2 d 02:53:24 | 12:43:21 | 17.94 MJ |
Run 7 | rand2exp | 88.992% | 0.0002842880760057267 | 0.19664 | 1 d 19:29:40 | 10:52:25 | 15.56 MJ |
Run 8 | rand2exp | 87.232% | 0.0003750159877137128 | 0.19952 | 2 d 15:49:40 | 15:57:25 | 22.13 MJ |
Run 9 | rand2exp | 83.456% | 0.00015812824020433673 | 0.19816 | 1 d 21:09:08 | 11:17:17 | 16.10 MJ |
Run 10 | rand2exp | 91.888% | 0.00017793388252216702 | 0.19624 | 1 d 22:20:52 | 11:35:13 | 16.15 MJ |
Run 1 | best1exp | 88.696% | 0.00014033836854647334 | 0.19736 | 1 d 02:15:36 | 06:33:54 | 9.31 MJ |
Run 2 | best1exp | 86.968% | 0.0002162424541476714 | 0.19768 | 1 d 15:12:56 | 09:48:14 | 14.52 MJ |
Run 3 | best1exp | 92.84% | 0.00023638094901782316 | 0.19736 | 1 d 07:52:08 | 07:58:02 | 11.21 MJ |
Run 4 | best1exp | 86.672% | 0.00010427195475288474 | 0.194 | 1 d 10:19:28 | 08:34:52 | 12.09 MJ |
Run 5 | best1exp | 80.672% | 0.00019427705638157093 | 0.19888 | 1 d 15:29:56 | 09:52:29 | 13.53 MJ |
Run 6 | best1exp | 77.904% | 0.00015164326800967044 | 0.19792 | 1 d 10:28:24 | 08:37:06 | 12.13 MJ |
Run 7 | best1exp | 88.776% | 0.00012525167316710355 | 0.19952 | 1 d 11:42:52 | 08:55:43 | 12.57 MJ |
Run 8 | best1exp | 86.32% | 0.00010635183372531933 | 0.19792 | 1 d 05:52:40 | 07:28:10 | 10.53 MJ |
Run 9 | best1exp | 90.912% | 0.00016403359809686588 | 0.19832 | 1 d 13:23:48 | 09:20:57 | 12.89 MJ |
Run 10 | best1exp | 86.616% | 0.00017251878232963605 | 0.19832 | 1 d 13:11:04 | 09:17:46 | 13.27 MJ |
Run 1 | best2exp | 84.392% | 0.00017548419506410967 | 0.19736 | 1 d 13:47:56 | 09:26:59 | 13.40 MJ |
Run 2 | best2exp | 85.904% | 0.00021438513173642015 | 0.19648 | 2 d 02:36:56 | 12:39:14 | 17.28 MJ |
Run 3 | best2exp | 80.952% | 0.00010615086490952649 | 0.19864 | 1 d 15:33:16 | 09:53:19 | 13.77 MJ |
Run 4 | best2exp | 91.496% | 0.0002586226136233186 | 0.19576 | 1 d 18:41:24 | 10:40:21 | 14.70 MJ |
Run 5 | best2exp | 80.376% | 0.00017880463506925198 | 0.19584 | 2 d 00:10:20 | 12:02:35 | 16.64 MJ |
Run 6 | best2exp | 75.912% | 0.00010719837238676701 | 0.19888 | 2 d 10:04:16 | 14:31:04 | 20.64 MJ |
Run 7 | best2exp | 89.456% | 0.00018524895070882503 | 0.19928 | 1 d 23:31:00 | 11:52:45 | 16.85 MJ |
Run 8 | best2exp | 87.856% | 0.00015637847083356613 | 0.19592 | 2 d 03:50:20 | 12:57:35 | 19.63 MJ |
Run 9 | best2exp | 83.952% | 0.0002894986036949542 | 0.19528 | 1 d 12:47:00 | 09:11:45 | 13.00 MJ |
Run 10 | best2exp | 90.384% | 0.00021267203704380358 | 0.19528 | 1 d 23:50:36 | 11:57:39 | 16.27 MJ |
Run 1 | currenttobest1exp | 86.328% | 0.00016110168325251075 | 0.19984 | 1 d 15:00:12 | 09:45:03 | 13.84 MJ |
Run 2 | currenttobest1exp | 83.032% | 0.0001741558151819849 | 0.1992 | 1 d 12:21:16 | 09:05:19 | 12.90 MJ |
Run 3 | currenttobest1exp | 74.632% | 0.0001900681595332386 | 0.19712 | 1 d 15:17:16 | 09:49:19 | 14.05 MJ |
Run 4 | currenttobest1exp | 94.304% | 0.0001737849051304597 | 0.19632 | 1 d 07:09:24 | 07:47:21 | 10.74 MJ |
Run 5 | currenttobest1exp | 87.336% | 0.00033922214947209337 | 0.19384 | 1 d 12:41:56 | 09:10:29 | 13.80 MJ |
Run 6 | currenttobest1exp | 81.44% | 0.00016020731429975277 | 0.19896 | 2 d 13:42:48 | 15:25:42 | 21.54 MJ |
Run 7 | currenttobest1exp | 89.128% | 0.00015818566275308356 | 0.19768 | 2 d 02:56:52 | 12:44:13 | 18.15 MJ |
Run 8 | currenttobest1exp | 88.272% | 0.0002178707118915058 | 0.19824 | 1 d 13:46:40 | 09:26:40 | 12.99 MJ |
Run 9 | currenttobest1exp | 84.672% | 0.00017059161098273808 | 0.1992 | 2 d 06:39:44 | 13:39:56 | 18.98 MJ |
Run 10 | currenttobest1exp | 77.736% | 0.00021096296316773999 | 0.19936 | 2 d 00:41:40 | 12:10:25 | 16.82 MJ |
Run | Strategy | Max Accuracy (%) | Best LR | Best Accuracy | CPU Time | Elapsed Time | Consumed Energy |
---|---|---|---|---|---|---|---|
Run 1 | rand1bin | 86.208% | 0.0006898492093877413 | 0.0208 | 1 d 18:49:56 | 10:42:29 | 14.01 MJ |
Run 2 | rand1bin | 86.912% | 0.0006288162385445066 | 0.0208 | 1 d 19:05:16 | 10:46:19 | 14.15 MJ |
Run 3 | rand1bin | 88.992% | 0.0006483502360866756 | 0.02072 | 2 d 02:11:48 | 12:32:57 | 16.05 MJ |
Run 4 | rand1bin | 89.6% | 0.0006959478723656961 | 0.02064 | 1 d 21:23:48 | 11:20:57 | 14.19 MJ |
Run 5 | rand1bin | 84.64% | 0.000326904766534731 | 0.02088 | 2 d 07:04:16 | 13:46:04 | 17.39 MJ |
Run 6 | rand1bin | 92.368% | 0.0005630059148061578 | 0.01952 | 2 d 02:48:00 | 12:42:00 | 16.57 MJ |
Run 7 | rand1bin | 86.184% | 0.0005503782814261585 | 0.02072 | 1 d 17:27:24 | 10:21:51 | 12.85 MJ |
Run 8 | rand1bin | 92.056% | 0.00028135858111119703 | 0.02072 | 2 d 04:50:28 | 13:12:37 | 16.78 MJ |
Run 9 | rand1bin | 85.8% | 0.0006648693450992239 | 0.0196 | 2 d 05:45:12 | 13:26:18 | 16.98 MJ |
Run 10 | rand1bin | 86.008% | 0.00034871425456294697 | 0.02088 | 2 d 06:00:08 | 13:30:02 | 17.20 MJ |
Run 1 | best1bin | 85.728% | 0.0005163082557605252 | 0.01912 | 1 d 16:27:08 | 10:06:47 | 13.08 MJ |
Run 2 | best1bin | 92.064% | 0.0004670748833529715 | 0.01936 | 1 d 23:05:04 | 11:46:16 | 15.44 MJ |
Run 3 | best1bin | 87.264% | 0.0006221503699548439 | 0.01912 | 1 d 08:42:52 | 08:10:43 | 10.45 MJ |
Run 4 | best1bin | 92.472% | 0.0005562307211625986 | 0.01928 | 2 d 01:43:08 | 12:25:47 | 16.01 MJ |
Run 5 | best1bin | 87.312% | 0.00043021019243692554 | 0.0196 | 1 d 08:56:52 | 08:14:13 | 10.45 MJ |
Run 6 | best1bin | 91.048% | 0.0008620171163876546 | 0.0196 | 2 d 08:03:24 | 14:00:51 | 17.56 MJ |
Run 7 | best1bin | 89.144% | 0.0005771545954761216 | 0.02064 | 1 d 07:14:32 | 07:48:38 | 9.91 MJ |
Run 8 | best1bin | 88.952% | 0.0006351275253172771 | 0.02072 | 1 d 16:52:00 | 10:13:00 | 13.30 MJ |
Run 9 | best1bin | 89.512% | 0.0005090810436596196 | 0.01928 | 1 d 15:08:32 | 09:47:08 | 13.28 MJ |
Run 10 | best1bin | 88.976% | 0.00056150086412815 | 0.02088 | 1 d 17:22:08 | 10:20:32 | 13.43 MJ |
Run 1 | currenttobest1bin | 87.6% | 0.00027984706770922403 | 0.02072 | ¸1-11:50:04 | 08:57:31 | 11.53 MJ |
Run 2 | currenttobest1bin | 92.32% | 0.0007272597820887875 | 0.02072 | 1 d 16:04:40 | 10:01:10 | 12.72 MJ |
Run 3 | currenttobest1bin | 89.832% | 0.0005856894554353199 | 0.01944 | 1 d 18:41:52 | 10:40:28 | 13.40 MJ |
Run 4 | currenttobest1bin | 91.152% | 0.00035727426149585967 | 0.02072 | 1 d 06:32:04 | 07:38:01 | 9.78 MJ |
Run 5 | currenttobest1bin | 87.176% | 0.0005665614364174747 | 0.02056 | 1 d 06:41:24 | 07:40:21 | 9.99 MJ |
Run 6 | currenttobest1bin | 84.704% | 0.0004177038014207181 | 0.02064 | 1 d 23:06:44 | 11:46:41 | 15.39 MJ |
Run 7 | currenttobest1bin | 84.368% | 0.0005230841039713556 | 0.02088 | 1 d 20:33:48 | 11:08:27 | 14.57 MJ |
Run 8 | currenttobest1bin | 90.44% | 0.00033751071001580414 | 0.0196 | 1 d 15:52:28 | 09:58:07 | 13.47 MJ |
Run 9 | currenttobest1bin | 90.448% | 0.0006533110680923715 | 0.0192 | 2 d 05:18:24 | 13:19:36 | 17.36 MJ |
Run 10 | currenttobest1bin | 83.344% | 0.0005997052554795654 | 0.02064 | 1 d 15:49:32 | 09:57:23 | 12.94 MJ |
Run 1 | rand2bin | 91.8% | 0.00045961835771137746 | 0.02064 | 1 d 21:38:00 | 11:24:30 | 14.84 MJ |
Run 2 | rand2bin | 85.976% | 0.0008678928687917702 | 0.0192 | 1 d 21:09:52 | 11:17:28 | 14.38 MJ |
Run 3 | rand2bin | 89.632% | 0.0005148477807337315 | 0.02072 | 2 d 00:54:24 | 12:13:36 | 15.97 MJ |
Run 4 | rand2bin | 90.064% | 0.0005650098673563139 | 0.01912 | 1 d 14:39:56 | 09:39:59 | 12.22 MJ |
Run 5 | rand2bin | 93.344% | 0.0004267791506738104 | 0.02056 | 2 d 05:05:24 | 13:16:21 | 17.06 MJ |
Run 6 | rand2bin | 87.56% | 0.0005477842532692508 | 0.02072 | 1 d 08:54:00 | 08:13:30 | 10.46 MJ |
Run 7 | rand2bin | 91.312% | 0.0006928286607639406 | 0.02088 | 1 d 15:54:20 | 09:58:35 | 13.12 MJ |
Run 8 | rand2bin | 90.288% | 0.000545421981502821 | 0.0208 | 2 d 00:31:48 | 12:07:57 | 15.45 MJ |
Run 9 | rand2bin | 86.84% | 0.0005502949547294259 | 0.02048 | 2 d 00:12:48 | 12:03:12 | 15.34 MJ |
Run 10 | rand2bin | 88.464% | 0.0007410591842543507 | 0.01944 | 1 d 08:31:12 | 08:07:48 | 10.15 MJ |
Run 1 | best2bin | 84.672% | 0.0004761816434291391 | 0.01912 | 2 d 01:09:28 | 12:17:22 | 15.34 MJ |
Run 2 | best2bin | 87.872% | 0.0006654030079491737 | 0.0208 | 1 d 21:00:52 | 11:15:13 | 14.19 MJ |
Run 3 | best2bin | 90.928% | 0.0007928241652003503 | 0.02064 | 1 d 12:51:44 | 09:12:56 | 12.57 MJ |
Run 4 | best2bin | 92.216% | 0.0008678928687917702 | 0.0204 | 1 d 15:06:52 | 09:46:43 | 12.68 MJ |
Run 5 | best2bin | 87.256% | 0.0008907358893952029 | 0.01944 | 1 d 10:50:32 | 08:42:38 | 10.86 MJ |
Run 6 | best2bin | 91.592% | 0.00048186653263607886 | 0.01968 | 2 d 03:55:24 | 12:58:51 | 16.20 MJ |
Run 7 | best2bin | 90.336% | 0.0005503782814261585 | 0.01888 | 1 d 08:30:12 | 08:07:33 | 10.23 MJ |
Run 8 | best2bin | 89.12% | 0.00029693532449463636 | 0.01944 | 1 d 10:44:08 | 08:41:02 | 10.95 MJ |
Run 9 | best2bin | 90.456% | 0.0004894533183428303 | 0.01912 | 1 d 10:40:44 | 08:40:11 | 11.33 MJ |
Run 10 | best2bin | 91.448% | 0.00042551815420156525 | 0.0208 | 2 d 03:48:24 | 12:57:06 | 16.85 MJ |
Run 1 | rand1exp | 86.608% | 0.0005473609425533086 | 0.01912 | 1 d 19:23:32 | 10:50:53 | 13.95 MJ |
Run 2 | rand1exp | 89.832% | 0.000786296559836572 | 0.02072 | 2 d 01:47:12 | 12:26:48 | 15.72 MJ |
Run 3 | rand1exp | 85.256% | 0.00034871425456294697 | 0.01944 | 1 d 02:00:52 | 06:30:13 | 8.21 MJ |
Run 4 | rand1exp | 88.92% | 0.0006082014966333853 | 0.02064 | 1 d 20:51:32 | 11:12:53 | 14.37 MJ |
Run 5 | rand1exp | 88.168% | 0.00047811603912254033 | 0.02072 | 1 d 21:33:28 | 11:23:22 | 14.69 MJ |
Run 6 | rand1exp | 84.736% | 0.0008893519038559766 | 0.02072 | 2 d 00:20:44 | 12:05:11 | 15.44 MJ |
Run 7 | rand1exp | 92.112% | 0.0007901080473489402 | 0.01912 | 1 d 09:10:36 | 08:17:39 | 10.51 MJ |
Run 8 | rand1exp | 91.304% | 0.0005438169990203926 | 0.01912 | 1 d 11:56:56 | 08:59:14 | 11.46 MJ |
Run 9 | rand1exp | 90.808% | 0.0007679084792402333 | 0.02088 | 2 d 06:16:56 | 13:34:14 | 17.70 MJ |
Run 10 | rand1exp | 87.128% | 0.0006002695549843218 | 0.0196 | 2 d 06:08:56 | 13:32:14 | 17.20 MJ |
Run 1 | rand2exp | 85.656% | 0.0003127600179395311 | 0.02064 | 1 d 17:26:00 | 10:21:30 | 12.91 MJ |
Run 2 | rand2exp | 90.152% | 0.00048186653263607886 | 0.02072 | 1 d 22:14:12 | 11:33:33 | 14.81 MJ |
Run 3 | rand2exp | 88.856% | 0.0005323176852089923 | 0.0196 | 1 d 11:39:48 | 08:54:57 | 11.54 MJ |
Run 4 | rand2exp | 88.592% | 0.0003405499303596778 | 0.0192 | 1 d 14:34:52 | 09:38:43 | 11.98 MJ |
Run 5 | rand2exp | 92.376% | 0.0005862625485870474 | 0.01896 | 2 d 01:45:28 | 12:26:22 | 17.13 MJ |
Run 6 | rand2exp | 90.496% | 0.0006451815193168959 | 0.0208 | 1 d 13:49:20 | 09:27:20 | 12.45 MJ |
Run 7 | rand2exp | 91.048% | 0.00048108878499610323 | 0.02088 | 2 d 04:12:24 | 13:03:06 | 16.81 MJ |
Run 8 | rand2exp | 83.296% | 0.0004894533183428303 | 0.02072 | 1 d 05:34:56 | 07:23:44 | 9.28 MJ |
Run 9 | rand2exp | 85.08% | 0.00028135858111119703 | 0.02072 | 2 d 04:23:36 | 13:05:54 | 17.13 MJ |
Run 10 | rand2exp | 84.264% | 0.000365490467163625 | 0.0192 | 1 d 17:33:20 | 10:23:20 | 13.18 MJ |
Run 1 | best1exp | 93.064% | 0.0005433789960932856 | 0.01912 | 1 d 13:59:44 | 09:29:56 | 12.15 MJ |
Run 2 | best1exp | 87.8% | 0.0005472544967914471 | 0.02064 | 1 d 21:07:48 | 11:16:57 | 14.13 MJ |
Run 3 | best1exp | 90.168% | 0.0005472544967914471 | 0.02064 | 1 d 18:50:20 | 10:42:35 | 13.72 MJ |
Run 4 | best1exp | 89.512% | 0.0004906326786790181 | 0.0196 | 1 d 20:49:44 | 11:12:26 | 14.60 MJ |
Run 5 | best1exp | 89.624% | 0.000699942960102872 | 0.01912 | 1 d 10:07:24 | 08:31:51 | 10.92 MJ |
Run 6 | best1exp | 87.144% | 0.0005969144833575155 | 0.01968 | 1 d 19:11:56 | 10:47:59 | 14.06 MJ |
Run 7 | best1exp | 89.528% | 0.000564013851333992 | 0.0208 | 2 d 01:29:44 | 12:22:26 | 15.76 MJ |
Run 8 | best1exp | 78.872% | 0.0004902443310631703 | 0.01912 | 1 d 15:10:12 | 09:47:33 | 13.32 MJ |
Run 9 | best1exp | 82.184% | 0.0006654030079491737 | 0.02064 | 1 d 08:45:40 | 08:11:25 | 10.76 MJ |
Run 10 | best1exp | 90.832% | 0.0006654030079491737 | 0.0208 | 1 d 19:13:00 | 10:48:15 | 13.44 MJ |
Run 1 | best2exp | 88.608% | 0.00040434269297750776 | 0.01912 | 1 d 18:05:08 | 10:31:17 | 13.43 MJ |
Run 2 | best2exp | 91.648% | 0.000425369222658114 | 0.01944 | 2 d 04:18:36 | 13:04:39 | 17.01 MJ |
Run 3 | best2exp | 93.136% | 0.0005355373902815665 | 0.0208 | 1 d 23:33:48 | 11:53:27 | 15.06 MJ |
Run 4 | best2exp | 88.712% | 0.0005503782814261585 | 0.01888 | 1 d 15:01:16 | 09:45:19 | 12.12 MJ |
Run 5 | best2exp | 89.272% | 0.0007901080473489402 | 0.02072 | 1 d 14:47:04 | 09:41:46 | 12.18 MJ |
Run 6 | best2exp | 84.12% | 0.0005730828877445376 | 0.0196 | 1 d 19:36:20 | 10:54:05 | 13.81 MJ |
Run 7 | best2exp | 88.176% | 0.0003690036337254874 | 0.0208 | 1 d 11:44:00 | 08:56:00 | 11.46 MJ |
Run 8 | best2exp | 88.624% | 0.00043974693346348514 | 0.0196 | 1 d 16:58:44 | 10:14:41 | 13.09 MJ |
Run 9 | best2exp | 88.912% | 0.0008332518117024622 | 0.01936 | 1 d 07:06:12 | 07:46:33 | 10.04 MJ |
Run 10 | best2exp | 85.536% | 0.00042551815420156525 | 0.02072 | 1 d 21:11:12 | 11:17:48 | 14.50 MJ |
Run 1 | currenttobest1exp | 87.472% | 0.0008678928687917702 | 0.02096 | 1 d 23:35:16 | 11:53:49 | 14.96 MJ |
Run 2 | currenttobest1exp | 85.928% | 0.0005104975572802508 | 0.01968 | 1 d 19:12:12 | 10:48:03 | 13.85 MJ |
Run 3 | currenttobest1exp | 86.992% | 0.0006967732791334938 | 0.0208 | 1 d 22:33:08 | 11:38:17 | 15.21 MJ |
Run 4 | currenttobest1exp | 88.152% | 0.0005115646370382424 | 0.02088 | 2 d 09:01:56 | 14:15:29 | 18.32 MJ |
Run 5 | currenttobest1exp | 81.56% | 0.0003992713190217374 | 0.0188 | 1 d 08:30:52 | 08:07:43 | 10.46 MJ |
Run 6 | currenttobest1exp | 91.048% | 0.0008432099878544876 | 0.02072 | 1 d 20:49:16 | 11:12:19 | 14.58 MJ |
Run 7 | currenttobest1exp | 86.016% | 0.0004894533183428303 | 0.02088 | 1 d 06:42:04 | 07:40:31 | 9.97 MJ |
Run 8 | currenttobest1exp | 89.528% | 0.0006390182997286093 | 0.02096 | 1 d 20:04:16 | 11:01:04 | 13.92 MJ |
Run 9 | currenttobest1exp | 93.392% | 0.0006779766206922889 | 0.02064 | 2 d 07:44:16 | 13:56:04 | 17.74 MJ |
Run 10 | currenttobest1exp | 86.768% | 0.00028135858111119703 | 0.0208 | 2 d 06:11:20 | 13:32:50 | 17.20 MJ |
Run | Strategy | Max Accuracy (%) | Best LR | Best Accuracy | CPU Time | Elapsed Time | Consumed Energy |
---|---|---|---|---|---|---|---|
Run 1 | rand1bin | 12.28% | 0.0004758440842318624 | 0.01184 | 3 d 16:49:04 | 22:12:16 | 31.68 MJ |
Run 2 | rand1bin | 3.136% | 0.00028198177902085796 | 0.00856 | 3 d 18:30:20 | 22:37:35 | 31.84 MJ |
Run 3 | rand1bin | 7.8% | 0.000423680887632644 | 0.00752 | 3 d 17:03:16 | 22:15:49 | 30.87 MJ |
Run 4 | rand1bin | 8.232% | 0.0002135600102883045 | 0.00744 | 3 d 18:26:08 | 22:36:32 | 31.36 MJ |
Run 5 | rand1bin | 4.248% | 0.0002612096849320728 | 0.00752 | 3 d 18:13:28 | 22:33:22 | 31.14 MJ |
Run 6 | rand1bin | 8.496% | 0.0001948423383643041 | 0.01016 | 3 d 20:05:36 | 23:01:24 | 32.09 MJ |
Run 7 | rand1bin | 12.176% | 0.00027093494246908825 | 0.01288 | 3 d 19:56:52 | 22:59:13 | 32.37 MJ |
Run 8 | rand1bin | 9.056% | 0.0002804668217405539 | 0.0128 | 3 d 19:09:16 | 22:47:19 | 32.17 MJ |
Run 9 | rand1bin | 11.696% | 0.00010634429367092576 | 0.00896 | 3 d 16:50:24 | 22:12:36 | 31.03 MJ |
Run 10 | rand1bin | 11.744% | 0.0002167074546496962 | 0.00792 | 3 d 20:46:40 | 23:11:40 | 32.23 MJ |
Run 1 | best1bin | 2.48% | 0.0003172322326393795 | 0.0076 | 3 d 18:38:40 | 22:39:40 | 31.27 MJ |
Run 2 | best1bin | 3.616% | 0.0005807374261780628 | 0.00808 | 3 d 16:38:12 | 22:09:33 | 31.24 MJ |
Run 3 | best1bin | 4.576% | 0.00026301063254584913 | 0.01208 | 3 d 18:53:48 | 22:43:27 | 32.50 MJ |
Run 4 | best1bin | 8.296% | 0.00028539835409513285 | 0.00808 | 3 d 22:39:40 | 23:39:55 | 33.27 MJ |
Run 5 | best1bin | 6.304% | 0.00015481075283293468 | 0.01272 | 3 d 21:24:32 | 23:21:08 | 32.89 MJ |
Run 6 | best1bin | 11.888% | 0.00033471506346695876 | 0.00832 | 3 d 16:45:36 | 22:11:24 | 30.62 MJ |
Run 7 | best1bin | 10.416% | 0.0005499402033940177 | 0.01264 | 3 d 18:37:12 | 22:39:18 | 31.22 MJ |
Run 8 | best1bin | 12.752% | 0.0004243900849161208 | 0.01256 | 3 d 19:31:28 | 22:52:52 | 31.19 MJ |
Run 9 | best1bin | 6.832% | 0.00025781904627593686 | 0.01264 | 3 d 19:30:56 | 22:52:44 | 32.49 MJ |
Run 10 | best1bin | 4.792% | 0.0001946738068552768 | 0.01056 | 3 d 20:33:24 | 23:08:21 | 32.96 MJ |
Run 1 | currenttobest1bin | 11.456% | 0.0005631487308943299 | 0.01232 | 3 d 21:13:28 | 23:18:22 | 32.47 MJ |
Run 2 | currenttobest1bin | 10.064% | 0.00015089334163755292 | 0.00928 | 3 d 20:25:56 | 23:06:29 | 32.70 MJ |
Run 3 | currenttobest1bin | 14.8% | 0.0002860525956062903 | 0.00808 | 3 d 20:16:40 | 23:04:10 | 32.45 MJ |
Run 4 | currenttobest1bin | 8.448% | 0.00012517510179303477 | 0.00928 | 3 d 21:55:40 | 23:28:55 | 32.90 MJ |
Run 5 | currenttobest1bin | 8.352% | 0.00018690680230060093 | 0.00832 | 3 d 21:26:48 | 23:21:42 | 33.46 MJ |
Run 6 | currenttobest1bin | 10.168% | 0.00018857903833168356 | 0.01264 | 3 d 18:19:36 | 22:34:54 | 31.69 MJ |
Run 7 | currenttobest1bin | 12.568% | 0.00049620070890269 | 0.012 | 3 d 14:53:12 | 21:43:18 | 30.73 MJ |
Run 8 | currenttobest1bin | 8.728% | 0.00022051121985955288 | 0.01328 | 3 d 17:43:08 | 22:25:47 | 31.10 MJ |
Run 9 | currenttobest1bin | 5.608% | 0.00032645793042611023 | 0.00792 | 3 d 18:37:12 | 22:39:18 | 31.60 MJ |
Run 10 | currenttobest1bin | 6.488% | 0.00025815632809305706 | 0.008 | 3 d 19:09:52 | 22:47:28 | 31.44 MJ |
Run 1 | rand2bin | 1.08% | 0.0006003062784437555 | 0.01224 | 3 d 16:14:24 | 22:03:36 | 30.24 MJ |
Run 2 | rand2bin | 9.376% | 0.00011776502032561731 | 0.0084 | 3 d 18:53:48 | 22:43:27 | 33.35 MJ |
Run 3 | rand2bin | 9.952% | 0.00016914995299162984 | 0.00864 | 3 d 21:59:24 | 23:29:51 | 32.14 MJ |
Run 4 | rand2bin | 11.336% | 0.000720189407482924 | 0.012 | 3 d 15:40:36 | 21:55:09 | 30.06 MJ |
Run 5 | rand2bin | 4.76% | 0.00015913542344085668 | 0.01336 | 3 d 20:21:16 | 23:05:19 | 32.07 MJ |
Run 6 | rand2bin | 12.36% | 0.00017388615860504657 | 0.00816 | 3 d 18:23:32 | 22:35:53 | 31.91 MJ |
Run 7 | rand2bin | 3.416% | 0.0001876385671549055 | 0.0084 | 3 d 18:58:52 | 22:44:43 | 32.16 MJ |
Run 8 | rand2bin | 3.752% | 0.0006056778045111888 | 0.00808 | 3 d 17:12:40 | 22:18:10 | 31.03 MJ |
Run 9 | rand2bin | 1.104% | 0.00029903040059517453 | 0.00792 | 3 d 19:36:56 | 22:54:14 | 32.24 MJ |
Run 10 | rand2bin | 9.472% | 0.00055288865025198 | 0.00832 | 3 d 16:42:28 | 22:10:37 | 32.48 MJ |
Run 1 | best2bin | 3.536% | 0.00031516116382460075 | 0.00824 | 3 d 17:27:04 | 22:21:46 | 31.42 MJ |
Run 2 | best2bin | 1.104% | 0.00047945358603187127 | 0.00816 | 3 d 17:03:20 | 22:15:50 | 31.38 MJ |
Run 3 | best2bin | 7.808% | 0.00047069820985687696 | 0.012 | 3 d 18:12:24 | 22:33:06 | 31.44 MJ |
Run 4 | best2bin | 10.816% | 0.00048034952396599237 | 0.01192 | 3 d 20:37:12 | 23:09:18 | 31.99 MJ |
Run 5 | best2bin | 8.384% | 0.0002073530253546591 | 0.01304 | 3 d 19:33:44 | 22:53:26 | 33.49 MJ |
Run 6 | best2bin | 9.128% | 0.00022210847523862416 | 0.01312 | 3 d 15:46:08 | 21:56:32 | 30.58 MJ |
Run 7 | best2bin | 10.336% | 0.00023812048965750771 | 0.00824 | 3 d 18:12:32 | 22:33:08 | 33.00 MJ |
Run 8 | best2bin | 9.632% | 0.00044376146033904166 | 0.01256 | 3 d 17:34:12 | 22:23:33 | 31.00 MJ |
Run 9 | best2bin | 7.96% | 0.00011955722907107348 | 0.00768 | 3 d 18:27:52 | 22:36:58 | 31.57 MJ |
Run 10 | best2bin | 9.464% | 0.00041128106586232817 | 0.00744 | 3 d 15:48:32 | 21:57:08 | 30.42 MJ |
Run 1 | rand1exp | 3.744% | 0.00017785144953584564 | 0.0084 | 3 d 17:36:44 | 22:24:11 | 31.61 MJ |
Run 2 | rand1exp | 6.32% | 0.00023122861952963884 | 0.00768 | 3 d 18:25:44 | 22:36:26 | 31.52 MJ |
Run 3 | rand1exp | 10.728% | 0.00025930895432845055 | 0.00824 | 3 d 18:17:12 | 22:34:18 | 31.46 MJ |
Run 4 | rand1exp | 7.568% | 0.0003338349379970329 | 0.00768 | 3 d 19:57:28 | 22:59:22 | 31.56 MJ |
Run 5 | rand1exp | 14.32% | 0.0003017895220101695 | 0.00784 | 3 d 19:44:20 | 22:56:05 | 31.35 MJ |
Run 6 | rand1exp | 10.576% | 0.0004401082955140203 | 0.008 | 3 d 16:56:32 | 22:14:08 | 30.49 MJ |
Run 7 | rand1exp | 7.424% | 0.00016894407653567827 | 0.00856 | 3 d 18:07:56 | 22:31:59 | 31.75 MJ |
Run 8 | rand1exp | 2.072% | 0.00028582383118045074 | 0.00688 | 3 d 18:17:04 | 22:34:16 | 30.64 MJ |
Run 9 | rand1exp | 10.528% | 0.00022873983152868184 | 0.00744 | 3 d 18:55:36 | 22:43:54 | 32.56 MJ |
Run 10 | rand1exp | 9.416% | 0.00022362696961414423 | 0.012 | 3 d 19:33:36 | 22:53:24 | 32.41 MJ |
Run 1 | rand2exp | 11.736% | 0.0006199789406184711 | 0.014 | 3 d 17:02:24 | 22:15:36 | 31.43 MJ |
Run 2 | rand2exp | 9.872% | 0.0004279177077527727 | 0.00768 | 3 d 17:46:00 | 22:26:30 | 31.44 MJ |
Run 3 | rand2exp | 8.336% | 0.00017631974141915944 | 0.00768 | 3 d 18:45:12 | 22:41:18 | 31.49 MJ |
Run 4 | rand2exp | 7.512% | 0.0005678937041351777 | 0.01168 | 3 d 23:10:40 | 23:47:40 | 33.71 MJ |
Run 5 | rand2exp | 13.488% | 0.000570132408104643 | 0.01344 | 3 d 15:35:20 | 21:53:50 | 30.36 MJ |
Run 6 | rand2exp | 6.992% | 0.0005123690073092089 | 0.01296 | 3 d 18:45:56 | 22:41:29 | 32.21 MJ |
Run 7 | rand2exp | 11.96% | 0.00010449537090628753 | 0.00904 | 3 d 21:32:08 | 23:23:02 | 33.40 MJ |
Run 8 | rand2exp | 8.992% | 0.0007376484761629621 | 0.01192 | 3 d 19:52:52 | 22:58:13 | 31.66 MJ |
Run 9 | rand2exp | 9.68% | 0.00020687898172008128 | 0.00696 | 3 d 18:52:08 | 22:43:02 | 31.40 MJ |
Run 10 | rand2exp | 6.912% | 0.00017552466146082978 | 0.01472 | 3 d 19:54:00 | 22:58:30 | 32.53 MJ |
Run 1 | best1exp | 9.488% | 0.00023131294853765756 | 0.00752 | 3 d 20:08:28 | 23:02:07 | 32.57 MJ |
Run 2 | best1exp | 5.376% | 0.0003467824856387895 | 0.00736 | 3 d 20:37:52 | 23:09:28 | 32.15 MJ |
Run 3 | best1exp | 4.656% | 0.0005472544967914471 | 0.01208 | 3 d 16:19:16 | 22:04:49 | 32.43 MJ |
Run 4 | best1exp | 9.088% | 0.0002195071360625721 | 0.0132 | 3 d 19:25:12 | 22:51:18 | 31.09 MJ |
Run 5 | best1exp | 10.32% | 0.0007070396261164571 | 0.01192 | 3 d 17:19:00 | 22:19:45 | 31.00 MJ |
Run 6 | best1exp | 8.968% | 0.00040001364440978113 | 0.00776 | 3 d 17:12:00 | 22:18:00 | 31.42 MJ |
Run 7 | best1exp | 9.352% | 0.0006085674993746426 | 0.01176 | 3 d 18:15:20 | 22:33:50 | 31.41 MJ |
Run 8 | best1exp | 5.912% | 0.0002333466258855149 | 0.00736 | 3 d 19:12:28 | 22:48:07 | 31.99 MJ |
Run 9 | best1exp | 5.496% | 0.0004786371674660226 | 0.00808 | 3 d 17:39:00 | 22:24:45 | 31.38 MJ |
Run 10 | best1exp | 12.632% | 0.00021593342404912472 | 0.008 | 3 d 18:00:28 | 22:30:07 | 31.64 MJ |
Run 1 | best2exp | 13.896% | 0.0006167135308129644 | 0.01264 | 3 d 17:46:28 | 22:26:37 | 30.52 MJ |
Run 2 | best2exp | 4.352% | 0.00017632288556868205 | 0.00744 | 3 d 17:51:52 | 22:27:58 | 31.16 MJ |
Run 3 | best2exp | 11.44% | 0.0005211581986643281 | 0.01328 | 3 d 17:56:28 | 22:29:07 | 31.05 MJ |
Run 4 | best2exp | 10.936% | 0.00011551338510091164 | 0.00888 | 3 d 20:16:36 | 23:04:09 | 31.66 MJ |
Run 5 | best2exp | 11.936% | 0.0002579550274880725 | 0.00736 | 3 d 21:41:04 | 23:25:16 | 32.77 MJ |
Run 6 | best2exp | 14.464% | 0.00020308846468167224 | 0.01216 | 3 d 21:53:48 | 23:28:27 | 32.60 MJ |
Run 7 | best2exp | 7.72% | 0.000247896213090593 | 0.01256 | 3 d 17:55:48 | 22:28:57 | 32.04 MJ |
Run 8 | best2exp | 7.544% | 0.00014886380231794087 | 0.00848 | 3 d 21:18:40 | 23:19:40 | 32.27 MJ |
Run 9 | best2exp | 9.896% | 0.00025405591553419765 | 0.00808 | 3 d 19:19:08 | 22:49:47 | 33.55 MJ |
Run 10 | best2exp | 7.424% | 0.0005553197851163659 | 0.0084 | 3 d 15:02:44 | 21:45:41 | 30.28 MJ |
Run 1 | currenttobest1exp | 12.896% | 0.00041364689657383735 | 0.01248 | 3 d 19:28:20 | 22:52:05 | 32.15 MJ |
Run 2 | currenttobest1exp | 9.288% | 0.0005264679390351683 | 0.01248 | 3 d 15:57:36 | 21:59:24 | 30.83 MJ |
Run 3 | currenttobest1exp | 7.104% | 0.00019117767808024858 | 0.01208 | 3 d 20:12:16 | 23:03:04 | 31.82 MJ |
Run 4 | currenttobest1exp | 3.24% | 0.0001510797914778076 | 0.00824 | 3 d 19:59:28 | 22:59:52 | 31.85 MJ |
Run 5 | currenttobest1exp | 8.952% | 0.00048267406041127396 | 0.01232 | 3 d 22:45:16 | 23:41:19 | 33.33 MJ |
Run 6 | currenttobest1exp | 6.56% | 0.00019670530113206582 | 0.00808 | 3 d 16:54:08 | 22:13:32 | 30.96 MJ |
Run 7 | currenttobest1exp | 8.856% | 0.00020656584365016256 | 0.008 | 3 d 20:54:44 | 23:13:41 | 32.03 MJ |
Run 8 | currenttobest1exp | 6.824% | 0.0005982859399029891 | 0.01216 | 3 d 19:25:04 | 22:51:16 | 32.40 MJ |
Run 9 | currenttobest1exp | 11.28% | 0.00025674744573364155 | 0.0148 | 3 d 19:32:16 | 22:53:04 | 33.62 MJ |
Run 10 | currenttobest1exp | 4.776% | 0.00021676993339812383 | 0.00824 | 3 d 19:14:48 | 22:48:42 | 31.50 MJ |
Run | Strategy | Max Accuracy (%) | Best LR | Best Accuracy | CPU Time | Elapsed Time | Consumed Energy |
---|---|---|---|---|---|---|---|
Run 1 | rand1bin | 96.856% | 0.0007901080473489402 | 0.02096 | 1 d 08:40:24 | 08:10:06 | 11.65 MJ |
Run 2 | rand1bin | 95.152% | 0.0006889420612678595 | 0.02096 | 23:50:36 | 05:57:39 | 8.54 MJ |
Run 3 | rand1bin | 95.912% | 0.0004894533183428303 | 0.02088 | 1 d 03:21:36 | 06:50:24 | 10.06 MJ |
Run 4 | rand1bin | 96.96% | 0.0007901080473489402 | 0.01968 | 1 d 03:52:36 | 06:58:09 | 10.06 MJ |
Run 5 | rand1bin | 95.168% | 0.0007724669579759172 | 0.02096 | 1 d 13:22:32 | 09:20:38 | 13.23 MJ |
Run 6 | rand1bin | 97.6% | 0.0006821091229623088 | 0.02096 | 1 d 03:10:08 | 06:47:32 | 9.21 MJ |
Run 7 | rand1bin | 96.544% | 0.0005843108361629204 | 0.02096 | 22:45:32 | 05:41:23 | 8.04 MJ |
Run 8 | rand1bin | 94.272% | 0.0007724669579759172 | 0.0196 | 17:44:40 | 04:26:10 | 6.23 MJ |
Run 9 | rand1bin | 96.624% | 0.0007901080473489402 | 0.02096 | 1 d 02:34:32 | 06:38:38 | 9.60 MJ |
Run 10 | rand1bin | 94.296% | 0.0007901080473489402 | 0.02088 | 22:40:04 | 05:40:01 | 8.16 MJ |
Run 1 | best1bin | 96.768% | 0.0006654030079491737 | 0.02096 | 18:06:16 | 04:31:34 | 6.50 MJ |
Run 2 | best1bin | 98.4% | 0.0007525478022450478 | 0.02096 | 1 d 01:08:04 | 06:17:01 | 8.86 MJ |
Run 3 | best1bin | 97.84% | 0.0007294670352147221 | 0.01968 | 1 d 02:39:40 | 06:39:55 | 9.31 MJ |
Run 4 | best1bin | 97.184% | 0.0007228400548920162 | 0.01968 | 19:41:56 | 04:55:29 | 6.83 MJ |
Run 5 | best1bin | 98.24% | 0.0006082014966333853 | 0.02096 | 19:04:24 | 04:46:06 | 6.84 MJ |
Run 6 | best1bin | 95.816% | 0.0005503782814261585 | 0.02096 | 18:34:04 | 04:38:31 | 6.92 MJ |
Run 7 | best1bin | 94.456% | 0.0008721269190922968 | 0.02096 | 1 d 01:10:52 | 06:17:43 | 8.88 MJ |
Run 8 | best1bin | 97.152% | 0.0006959478723656961 | 0.0196 | 22:53:32 | 05:43:23 | 7.94 MJ |
Run 9 | best1bin | 97.592% | 0.0006976934222919324 | 0.01928 | 16:39:08 | 04:09:47 | 5.83 MJ |
Run 10 | best1bin | 96.296% | 0.0006001143469740924 | 0.02088 | 23:14:36 | 05:48:39 | 8.32 MJ |
Run 1 | currenttobest1bin | 97.448% | 0.0007901080473489402 | 0.01968 | 20:32:32 | 05:08:08 | 7.84 MJ |
Run 2 | currenttobest1bin | 96.792% | 0.0006082014966333853 | 0.02096 | 1 d 02:38:32 | 06:39:38 | 9.94 MJ |
Run 3 | currenttobest1bin | 98.48% | 0.0006260315644530029 | 0.0196 | 21:25:04 | 05:21:16 | 7.69 MJ |
Run 4 | currenttobest1bin | 85.752% | 0.0005285031237901842 | 0.02096 | 1 d 01:10:48 | 06:17:42 | 9.12 MJ |
Run 5 | currenttobest1bin | 98.36% | 0.0006654030079491737 | 0.01968 | 18:50:56 | 04:42:44 | 6.71 MJ |
Run 6 | currenttobest1bin | 98.208% | 0.0007538518067250492 | 0.02096 | 22:32:08 | 05:38:02 | 8.64 MJ |
Run 7 | currenttobest1bin | 98.312% | 0.0005739712323314084 | 0.02096 | 1 d 02:36:48 | 06:39:12 | 9.61 MJ |
Run 8 | currenttobest1bin | 97.296% | 0.0006654030079491737 | 0.01968 | 1 d 01:29:24 | 06:22:21 | 9.14 MJ |
Run 9 | currenttobest1bin | 89.992% | 0.0006053438969846567 | 0.02096 | 19:02:48 | 04:45:42 | 6.71 MJ |
Run 10 | currenttobest1bin | 98.448% | 0.0008678928687917702 | 0.01968 | 1 d 05:51:12 | 07:27:48 | 10.39 MJ |
Run 1 | rand2bin | 98.624% | 0.0006025519794752405 | 0.01968 | 1 d 07:56:28 | 07:59:07 | 11.09 MJ |
Run 2 | rand2bin | 98.032% | 0.0006082014966333853 | 0.02096 | 1 d 00:00:20 | 06:00:05 | 8.28 MJ |
Run 3 | rand2bin | 95.968% | 0.0006082014966333853 | 0.01968 | 21:12:48 | 05:18:12 | 7.49 MJ |
Run 4 | rand2bin | 94.856% | 0.0005867294920739194 | 0.01968 | 1 d 07:18:04 | 07:49:31 | 10.94 MJ |
Run 5 | rand2bin | 98.888% | 0.000518783386256142 | 0.02096 | 1 d 06:55:56 | 07:43:59 | 11.38 MJ |
Run 6 | rand2bin | 95.056% | 0.0006654030079491737 | 0.0196 | 23:30:08 | 05:52:32 | 8.33 MJ |
Run 7 | rand2bin | 93.936% | 0.000716417524233165 | 0.01968 | 1 d 08:31:40 | 08:07:55 | 11.33 MJ |
Run 8 | rand2bin | 96.896% | 0.0007074116266477621 | 0.01968 | 22:51:08 | 05:42:47 | 8.10 MJ |
Run 9 | rand2bin | 97.248% | 0.0005018975833192116 | 0.02096 | 1 d 14:38:40 | 09:39:40 | 13.91 MJ |
Run 10 | rand2bin | 96.256% | 0.0007107141212986745 | 0.02096 | 23:21:16 | 05:50:19 | 8.32 MJ |
Run 1 | best2bin | 94.432% | 0.0007901080473489402 | 0.02096 | 22:57:44 | 05:44:26 | 8.12 MJ |
Run 2 | best2bin | 93.88% | 0.0006082014966333853 | 0.0196 | 1 d 10:21:56 | 08:35:29 | 12.41 MJ |
Run 3 | best2bin | 96.88% | 0.0007730846229734456 | 0.01968 | 1 d 06:32:52 | 07:38:13 | 10.71 MJ |
Run 4 | best2bin | 99.024% | 0.0008432099878544876 | 0.02096 | 22:23:52 | 05:35:58 | 7.84 MJ |
Run 5 | best2bin | 92.024% | 0.0004894533183428303 | 0.02096 | 1 d 10:07:48 | 08:31:57 | 12.03 MJ |
Run 6 | best2bin | 95.936% | 0.0006980972232017339 | 0.02096 | 21:42:16 | 05:25:34 | 7.68 MJ |
Run 7 | best2bin | 97.44% | 0.0006654030079491737 | 0.02096 | 1 d 01:37:48 | 06:24:27 | 9.08 MJ |
Run 8 | best2bin | 97.008% | 0.0008710360124656422 | 0.02096 | 1 d 00:09:16 | 06:02:19 | 8.28 MJ |
Run 9 | best2bin | 96.92% | 0.0006654030079491737 | 0.01928 | 23:56:08 | 05:59:02 | 8.24 MJ |
Run 10 | best2bin | 97.76% | 0.0006975880985105572 | 0.02096 | 1 d 00:20:36 | 06:05:09 | 8.74 MJ |
Run 1 | rand1exp | 97.584% | 0.0006204154396845862 | 0.02096 | 1 d 12:53:20 | 09:13:20 | 13.00 MJ |
Run 2 | rand1exp | 97.904% | 0.0007901080473489402 | 0.02096 | 23:29:40 | 05:52:25 | 8.39 MJ |
Run 3 | rand1exp | 96.616% | 0.0007901080473489402 | 0.0196 | 1 d 03:11:24 | 06:47:51 | 9.43 MJ |
Run 4 | rand1exp | 96.984% | 0.0007186427786502296 | 0.02096 | 1 d 03:09:44 | 06:47:26 | 9.52 MJ |
Run 5 | rand1exp | 93.584% | 0.0006654030079491737 | 0.01968 | 1 d 04:23:12 | 07:05:48 | 10.24 MJ |
Run 6 | rand1exp | 97.376% | 0.0005843108361629204 | 0.01968 | 22:00:04 | 05:30:01 | 7.74 MJ |
Run 7 | rand1exp | 97.616% | 0.0005952230222502635 | 0.01968 | 1 d 01:26:56 | 06:21:44 | 8.82 MJ |
Run 8 | rand1exp | 96.904% | 0.0005503782814261585 | 0.0196 | 1 d 08:47:16 | 08:11:49 | 11.58 MJ |
Run 9 | rand1exp | 97.16% | 0.0006082014966333853 | 0.01968 | 1 d 05:34:48 | 07:23:42 | 10.62 MJ |
Run 10 | rand1exp | 95.544% | 0.0006654030079491737 | 0.01968 | 23:23:36 | 05:50:54 | 8.18 MJ |
Run 1 | rand2exp | 90.96% | 0.0007107141212986745 | 0.0196 | 1 d 03:47:16 | 06:56:49 | 9.98 MJ |
Run 2 | rand2exp | 95.184% | 0.0007901080473489402 | 0.0196 | 21:52:44 | 05:28:11 | 8.15 MJ |
Run 3 | rand2exp | 94.6% | 0.0008678928687917702 | 0.02096 | 23:46:20 | 05:56:35 | 8.43 MJ |
Run 4 | rand2exp | 96.08% | 0.0004894533183428303 | 0.02088 | 1 d 02:51:36 | 06:42:54 | 9.64 MJ |
Run 5 | rand2exp | 94.264% | 0.0007901080473489402 | 0.0196 | 1 d 01:25:08 | 06:21:17 | 8.80 MJ |
Run 6 | rand2exp | 97.808% | 0.0006981023602417849 | 0.01968 | 22:51:08 | 05:42:47 | 8.02 MJ |
Run 7 | rand2exp | 95.88% | 0.0006396423253417437 | 0.02096 | 1 d 12:57:44 | 09:14:26 | 12.77 MJ |
Run 8 | rand2exp | 94.184% | 0.0006654030079491737 | 0.02096 | 1 d 06:18:28 | 07:34:37 | 10.81 MJ |
Run 9 | rand2exp | 92.704% | 0.0006015937509008642 | 0.02096 | 1 d 00:18:12 | 06:04:33 | 9.11 MJ |
Run 10 | rand2exp | 95.224% | 0.0007525478022450478 | 0.02096 | 1 d 09:31:12 | 08:22:48 | 11.82 MJ |
Run 1 | best1exp | 97.856% | 0.0006854628207936492 | 0.02096 | 20:46:16 | 05:11:34 | 7.74 MJ |
Run 2 | best1exp | 96.96% | 0.0007927504106257327 | 0.02096 | 1 d 01:59:36 | 06:29:54 | 9.21 MJ |
Run 3 | best1exp | 97.592% | 0.0007189822463493425 | 0.02096 | 1 d 00:07:36 | 06:01:54 | 8.46 MJ |
Run 4 | best1exp | 97.6% | 0.0008864446965370434 | 0.01928 | 20:34:44 | 05:08:41 | 7.31 MJ |
Run 5 | best1exp | 98.088% | 0.0005503782814261585 | 0.02096 | 22:47:12 | 05:41:48 | 8.20 MJ |
Run 6 | best1exp | 95.664% | 0.0006654030079491737 | 0.02096 | 23:48:16 | 05:57:04 | 8.81 MJ |
Run 7 | best1exp | 96.312% | 0.0007189822463493425 | 0.02096 | 21:01:48 | 05:15:27 | 7.23 MJ |
Run 8 | best1exp | 96.536% | 0.0004592908741909575 | 0.02096 | 20:25:40 | 05:06:25 | 7.11 MJ |
Run 9 | best1exp | 97.88% | 0.0008678928687917702 | 0.02096 | 19:37:24 | 04:54:21 | 6.93 MJ |
Run 10 | best1exp | 97.952% | 0.0005817525102614234 | 0.01968 | 22:56:48 | 05:44:12 | 8.34 MJ |
Run 1 | best2exp | 79.408% | 0.0007901080473489402 | 0.02096 | 1 d 10:02:44 | 08:30:41 | 11.73 MJ |
Run 2 | best2exp | 96.832% | 0.0006999346845686593 | 0.0196 | 1 d 16:31:24 | 10:07:51 | 14.08 MJ |
Run 3 | best2exp | 93.768% | 0.0007901080473489402 | 0.02096 | 19:07:16 | 04:46:49 | 6.67 MJ |
Run 4 | best2exp | 97.744% | 0.0005720037520182216 | 0.0196 | 1 d 08:50:28 | 08:12:37 | 11.38 MJ |
Run 5 | best2exp | 92.44% | 0.0007410591842543507 | 0.01968 | 1 d 01:40:08 | 06:25:02 | 8.87 MJ |
Run 6 | best2exp | 98.048% | 0.0007901080473489402 | 0.01968 | 23:16:52 | 05:49:13 | 8.29 MJ |
Run 7 | best2exp | 95.672% | 0.0008678928687917702 | 0.02096 | 1 d 02:20:32 | 06:35:08 | 9.34 MJ |
Run 8 | best2exp | 95.016% | 0.0007901080473489402 | 0.02096 | 18:33:28 | 04:38:22 | 6.65 MJ |
Run 9 | best2exp | 98.256% | 0.000609450316148117 | 0.01968 | 1 d 05:41:48 | 07:25:27 | 10.45 MJ |
Run 10 | best2exp | 94.192% | 0.0005748075218202315 | 0.01968 | 23:10:24 | 05:47:36 | 8.57 MJ |
Run 1 | currenttobest1exp | 98.488% | 0.0007901080473489402 | 0.01968 | 1 d 00:31:16 | 06:07:49 | 8.57 MJ |
Run 2 | currenttobest1exp | 86.744% | 0.0006519191589097266 | 0.01968 | 1 d 01:54:44 | 06:28:41 | 9.06 MJ |
Run 3 | currenttobest1exp | 98.408% | 0.000747574786423565 | 0.02096 | 20:26:00 | 05:06:30 | 7.22 MJ |
Run 4 | currenttobest1exp | 97.512% | 0.0006654030079491737 | 0.0196 | 1 d 04:42:44 | 07:10:41 | 10.71 MJ |
Run 5 | currenttobest1exp | 97.88% | 0.0006082014966333853 | 0.02096 | 22:45:52 | 05:41:28 | 8.12 MJ |
Run 6 | currenttobest1exp | 98.288% | 0.0005631057606785751 | 0.0196 | 20:57:44 | 05:14:26 | 7.52 MJ |
Run 7 | currenttobest1exp | 95.728% | 0.0006411974249065124 | 0.0196 | 1 d 06:36:20 | 07:39:05 | 10.78 MJ |
Run 8 | currenttobest1exp | 97.032% | 0.0007901080473489402 | 0.02096 | 1 d 01:05:24 | 06:16:21 | 8.77 MJ |
Run 9 | currenttobest1exp | 98.24% | 0.0006082014966333853 | 0.02096 | 23:59:00 | 05:59:45 | 8.62 MJ |
Run 10 | currenttobest1exp | 96.096% | 0.0006379725003334835 | 0.02096 | 1 d 00:45:40 | 06:11:25 | 8.66 MJ |
Run | Strategy | Max Accuracy (%) | Best LR | Best Accuracy | CPU Time | Elapsed Time | Consumed Energy |
---|---|---|---|---|---|---|---|
Run 1 | rand1bin | 82.92% | 0.0006654030079491737 | 0.02056 | 3 d 15:07:36 | 21:46:54 | 29.99 MJ |
Run 2 | rand1bin | 82.888% | 0.0006202047668125793 | 0.02064 | 4 d 22:05:44 | 1 d 05:31:26 | 40.69 MJ |
Run 3 | rand1bin | 76.512% | 0.00048564505518037464 | 0.02064 | 4 d 10:00:44 | 1 d 02:30:11 | 36.86 MJ |
Run 4 | rand1bin | 78.048% | 0.0008053856824962536 | 0.02048 | 4 d 02:18:40 | 1 d 00:34:40 | 33.63 MJ |
Run 5 | rand1bin | 79.576% | 0.000675975688771568 | 0.02016 | 3 d 17:07:48 | 22:16:57 | 31.05 MJ |
Run 6 | rand1bin | 78.408% | 0.0008767364540890501 | 0.0204 | 4 d 15:57:36 | 1 d 03:59:24 | 41.03 MJ |
Run 7 | rand1bin | 76.92% | 0.00060540286447946 | 0.02048 | 3 d 17:13:40 | 22:18:25 | 29.91 MJ |
Run 8 | rand1bin | 82.168% | 0.0008721269190922968 | 0.02048 | 4 d 14:04:20 | 1 d 03:31:05 | 37.22 MJ |
Run 9 | rand1bin | 81.704% | 0.000829737184952023 | 0.02048 | 3 d 03:12:24 | 18:48:06 | 26.43 MJ |
Run 10 | rand1bin | 84.112% | 0.0005476379869519423 | 0.02032 | 3 d 05:33:04 | 19:23:16 | 26.64 MJ |
Run 1 | best1bin | 76.288% | 0.0007423530742001329 | 0.0204 | 3 d 18:22:12 | 22:35:33 | 32.99 MJ |
Run 2 | best1bin | 76.696% | 0.0005326948380079542 | 0.02048 | 3 d 22:52:12 | 23:43:03 | 34.44 MJ |
Run 3 | best1bin | 78.616% | 0.0005797679228218648 | 0.02008 | 3 d 15:27:40 | 21:51:55 | 29.34 MJ |
Run 4 | best1bin | 77.696% | 0.0006200823353455683 | 0.02048 | 2 d 22:40:48 | 17:40:12 | 24.30 MJ |
Run 5 | best1bin | 75.056% | 0.0007564207094200043 | 0.02064 | 4 d 06:46:44 | 1 d 01:41:41 | 35.42 MJ |
Run 6 | best1bin | 77.44% | 0.0003997420427603187 | 0.0188 | 4 d 14:41:48 | 1 d 03:40:27 | 38.67 MJ |
Run 7 | best1bin | 79.648% | 0.0004894533183428303 | 0.02024 | 3 d 02:49:00 | 18:42:15 | 26.21 MJ |
Run 8 | best1bin | 78.52% | 0.0006120682152581484 | 0.01896 | 4 d 16:57:12 | 1 d 04:14:18 | 39.48 MJ |
Run 9 | best1bin | 77.112% | 0.0007901080473489402 | 0.01864 | 3 d 07:10:32 | 19:47:38 | 27.21 MJ |
Run 10 | best1bin | 78.352% | 0.0005549515933290077 | 0.02056 | 4 d 10:42:16 | 1 d 02:40:34 | 36.58 MJ |
Run 1 | currenttobest1bin | 76.92% | 0.0007132299248766175 | 0.02008 | 3 d 22:39:52 | 23:39:58 | 31.86 MJ |
Run 2 | currenttobest1bin | 78.784% | 0.0006362783276563835 | 0.0204 | 3 d 21:18:48 | 23:19:42 | 32.47 MJ |
Run 3 | currenttobest1bin | 78.712% | 0.000654213208490852 | 0.01872 | 3 d 20:55:28 | 23:13:52 | 31.95 MJ |
Run 4 | currenttobest1bin | 76.224% | 0.000787288991867034 | 0.01896 | 3 d 17:49:12 | 22:27:18 | 30.72 MJ |
Run 5 | currenttobest1bin | 81.304% | 0.0007980896882381098 | 0.02048 | 4 d 03:24:00 | 1 d 00:51:00 | 34.48 MJ |
Run 6 | currenttobest1bin | 80.384% | 0.0005753402905043697 | 0.01848 | 3 d 17:36:28 | 22:24:07 | 32.39 MJ |
Run 7 | currenttobest1bin | 81% | 0.0005047913723943186 | 0.02048 | 4 d 05:25:16 | 1 d 01:21:19 | 35.28 MJ |
Run 8 | currenttobest1bin | 77.168% | 0.0005959635265044236 | 0.02064 | 4 d 15:42:16 | 1 d 03:55:34 | 38.33 MJ |
Run 9 | currenttobest1bin | 81.336% | 0.00031425557171528703 | 0.01848 | 3 d 18:30:40 | 22:37:40 | 30.91 MJ |
Run 10 | currenttobest1bin | 75.976% | 0.000503502803921123 | 0.02048 | 4 d 13:53:36 | 1 d 03:28:24 | 37.46 MJ |
Run 1 | rand2bin | 73.424% | 0.0007901080473489402 | 0.02016 | 3 d 23:45:56 | 23:56:29 | 33.48 MJ |
Run 2 | rand2bin | 78.408% | 0.0008030331165076808 | 0.02064 | 4 d 01:54:08 | 1 d 00:28:32 | 33.22 MJ |
Run 3 | rand2bin | 83.08% | 0.0005345789371013722 | 0.01808 | 4 d 07:17:32 | 1 d 01:49:23 | 35.99 MJ |
Run 4 | rand2bin | 78.44% | 0.00048418893037675234 | 0.02048 | 4 d 09:39:20 | 1 d 02:24:50 | 36.11 MJ |
Run 5 | rand2bin | 86.144% | 0.0005655821182281734 | 0.02048 | 4 d 07:49:48 | 1 d 01:57:27 | 34.62 MJ |
Run 6 | rand2bin | 77.312% | 0.0008116289204223694 | 0.0204 | 4 d 00:45:56 | 1 d 00:11:29 | 32.78 MJ |
Run 7 | rand2bin | 78.096% | 0.0004778887850150283 | 0.01856 | 4 d 19:37:04 | 1 d 04:54:16 | 38.72 MJ |
Run 8 | rand2bin | 76.072% | 0.0007519131968394462 | 0.01832 | 2 d 22:25:20 | 17:36:20 | 23.72 MJ |
Run 9 | rand2bin | 80.48% | 0.0004894533183428303 | 0.02048 | 3 d 18:42:20 | 22:40:35 | 32.70 MJ |
Run 10 | rand2bin | 80.96% | 0.0007645743780018519 | 0.02064 | 4 d 18:18:56 | 1 d 04:34:44 | 39.98 MJ |
Run 1 | best2bin | 77.208% | 0.0004894533183428303 | 0.01784 | 3 d 02:05:12 | 18:31:18 | 26.87 MJ |
Run 2 | best2bin | 78.64% | 0.0008315636058555897 | 0.02024 | 3 d 15:54:24 | 21:58:36 | 31.75 MJ |
Run 3 | best2bin | 80.008% | 0.0005427390544160421 | 0.02016 | 3 d 20:26:32 | 23:06:38 | 31.05 MJ |
Run 4 | best2bin | 75.048% | 0.0008678928687917702 | 0.01872 | 3 d 19:25:44 | 22:51:26 | 31.88 MJ |
Run 5 | best2bin | 80.344% | 0.0007581394482273197 | 0.0208 | 4 d 11:40:16 | 1 d 02:55:04 | 36.48 MJ |
Run 6 | best2bin | 82.904% | 0.0008437911646318687 | 0.02056 | 4 d 06:43:52 | 1 d 01:40:58 | 35.18 MJ |
Run 7 | best2bin | 73.2% | 0.0007579677831387739 | 0.0184 | 3 d 12:22:56 | 21:05:44 | 29.16 MJ |
Run 8 | best2bin | 80.864% | 0.0007761478617407693 | 0.01832 | 3 d 05:22:56 | 19:20:44 | 27.09 MJ |
Run 9 | best2bin | 74.16% | 0.0006462340878852519 | 0.01824 | 3 d 02:33:20 | 18:38:20 | 26.26 MJ |
Run 10 | best2bin | 74.952% | 0.00045501261509388324 | 0.01896 | 4 d 16:01:08 | 1 d 04:00:17 | 38.56 MJ |
Run 1 | rand1exp | 74.304% | 0.00052474483955106 | 0.01816 | 3 d 09:37:44 | 20:24:26 | 28.64 MJ |
Run 2 | rand1exp | 79.888% | 0.0007242696328327767 | 0.01832 | 3 d 08:40:56 | 20:10:14 | 27.85 MJ |
Run 3 | rand1exp | 77.248% | 0.0007631536352134615 | 0.01832 | 4 d 04:16:12 | 1 d 01:04:03 | 33.67 MJ |
Run 4 | rand1exp | 78.12% | 0.00043477145698976377 | 0.01784 | 3 d 16:44:12 | 22:11:03 | 30.92 MJ |
Run 5 | rand1exp | 79.208% | 0.0002907698069310832 | 0.01848 | 4 d 03:13:56 | 1 d 00:48:29 | 33.39 MJ |
Run 6 | rand1exp | 80.296% | 0.0004994166766487448 | 0.02032 | 2 d 21:39:12 | 17:24:48 | 24.08 MJ |
Run 7 | rand1exp | 74.568% | 0.00047467542214666 | 0.02064 | 4 d 09:19:48 | 1 d 02:19:57 | 36.24 MJ |
Run 8 | rand1exp | 78.84% | 0.0007901080473489402 | 0.02048 | 4 d 15:27:24 | 1 d 03:51:51 | 38.04 MJ |
Run 9 | rand1exp | 80.848% | 0.0004280783087662982 | 0.02056 | 4 d 04:37:52 | 1 d 01:09:28 | 34.79 MJ |
Run 10 | rand1exp | 80.992% | 0.0002610188130293907 | 0.0184 | 3 d 18:43:04 | 22:40:46 | 32.89 MJ |
Run 1 | rand2exp | 80.432% | 0.0006410507329638893 | 0.02056 | 3 d 21:45:24 | 23:26:21 | 32.88 MJ |
Run 2 | rand2exp | 77.736% | 0.0008678928687917702 | 0.0204 | 3 d 15:47:52 | 21:56:58 | 29.60 MJ |
Run 3 | rand2exp | 80.592% | 0.000568841061839567 | 0.01848 | 2 d 04:15:16 | 13:03:49 | 17.99 MJ |
Run 4 | rand2exp | 82.136% | 0.0005546137158676577 | 0.02048 | 4 d 04:48:24 | 1 d 01:12:06 | 34.47 MJ |
Run 5 | rand2exp | 80.24% | 0.0007622868258816035 | 0.02064 | 5 d 00:22:08 | 1 d 06:05:32 | 41.39 MJ |
Run 6 | rand2exp | 81.224% | 0.0006795795662093253 | 0.02056 | 4 d 04:52:24 | 1 d 01:13:06 | 34.98 MJ |
Run 7 | rand2exp | 76.784% | 0.0008774537774736814 | 0.02072 | 4 d 14:45:20 | 1 d 03:41:20 | 38.24 MJ |
Run 8 | rand2exp | 76.92% | 0.0006445884529124566 | 0.02032 | 3 d 22:29:40 | 23:37:25 | 32.78 MJ |
Run 9 | rand2exp | 77.456% | 0.0007938674387322841 | 0.02056 | 4 d 00:46:08 | 1 d 00:11:32 | 33.52 MJ |
Run 10 | rand2exp | 78.968% | 0.0004011233408739289 | 0.01888 | 4 d 21:11:28 | 1 d 05:17:52 | 39.54 MJ |
Run 1 | best1exp | 80.536% | 0.0005432668918096289 | 0.02032 | 3 d 21:49:12 | 23:27:18 | 32.91 MJ |
Run 2 | best1exp | 85.944% | 0.0005566507896839094 | 0.02032 | 3 d 19:58:28 | 22:59:37 | 32.15 MJ |
Run 3 | best1exp | 78.376% | 0.0007394698323265238 | 0.02056 | 3 d 19:14:48 | 22:48:42 | 31.12 MJ |
Run 4 | best1exp | 83.952% | 0.0007203754240154368 | 0.0204 | 3 d 20:47:08 | 23:11:47 | 32.29 MJ |
Run 5 | best1exp | 82.152% | 0.0004935776147080955 | 0.02024 | 2 d 16:46:40 | 16:11:40 | 22.34 MJ |
Run 6 | best1exp | 77.032% | 0.0004946461854106993 | 0.01864 | 4 d 20:30:04 | 1 d 05:07:31 | 39.24 MJ |
Run 7 | best1exp | 78.256% | 0.0008678928687917702 | 0.01864 | 3 d 18:09:08 | 22:32:17 | 31.15 MJ |
Run 8 | best1exp | 76.568% | 0.0005038676427045084 | 0.02064 | 3 d 21:53:40 | 23:28:25 | 31.41 MJ |
Run 9 | best1exp | 81.928% | 0.0007620443874603759 | 0.0188 | 4 d 21:55:48 | 1 d 05:28:57 | 40.68 MJ |
Run 10 | best1exp | 78.616% | 0.0008417298503340027 | 0.02048 | 4 d 10:01:00 | 1 d 02:30:15 | 36.33 MJ |
Run 1 | best2exp | 78.04% | 0.0005730828877445376 | 0.01856 | 3 d 19:48:52 | 22:57:13 | 32.05 MJ |
Run 2 | best2exp | 75.856% | 0.0007566147283715602 | 0.01864 | 3 d 09:51:12 | 20:27:48 | 27.85 MJ |
Run 3 | best2exp | 82.192% | 0.0007262587775800464 | 0.02056 | 4 d 09:36:44 | 1 d 02:24:11 | 36.30 MJ |
Run 4 | best2exp | 81.816% | 0.0006654030079491737 | 0.02064 | 3 d 17:06:36 | 22:16:39 | 31.09 MJ |
Run 5 | best2exp | 78.92% | 0.0005806109984995696 | 0.02072 | 4 d 07:19:44 | 1 d 01:49:56 | 36.15 MJ |
Run 6 | best2exp | 77.376% | 0.0007130271055142935 | 0.0208 | 4 d 22:08:16 | 1 d 05:32:04 | 40.67 MJ |
Run 7 | best2exp | 78.928% | 0.0007729998130371389 | 0.0188 | 4 d 06:41:32 | 1 d 01:40:23 | 34.85 MJ |
Run 8 | best2exp | 80.176% | 0.00040053540213785767 | 0.01856 | 3 d 19:25:32 | 22:51:23 | 30.82 MJ |
Run 9 | best2exp | 74.688% | 0.0005503782814261585 | 0.02032 | 4 d 07:27:08 | 1 d 01:51:47 | 37.24 MJ |
Run 10 | best2exp | 76.312% | 0.0005355373902815665 | 0.02048 | 4 d 07:18:36 | 1 d 01:49:39 | 37.86 MJ |
Run 1 | currenttobest1exp | 80.632% | 0.0002672795926582179 | 0.01848 | 2 d 19:45:28 | 16:56:22 | 24.09 MJ |
Run 2 | currenttobest1exp | 81.752% | 0.0005504565700063033 | 0.02024 | 3 d 13:43:36 | 21:25:54 | 29.50 MJ |
Run 3 | currenttobest1exp | 79.408% | 0.0008964423615283914 | 0.02048 | 3 d 21:17:40 | 23:19:25 | 32.76 MJ |
Run 4 | currenttobest1exp | 81.68% | 0.0004931955339084103 | 0.02056 | 3 d 13:29:24 | 21:22:21 | 30.02 MJ |
Run 5 | currenttobest1exp | 78.368% | 0.0004997356816806906 | 0.01832 | 3 d 23:39:08 | 23:54:47 | 33.75 MJ |
Run 6 | currenttobest1exp | 78.448% | 0.0006150346912197598 | 0.0188 | 4 d 02:30:56 | 1 d 00:37:44 | 33.19 MJ |
Run 7 | currenttobest1exp | 77.392% | 0.00039163235149273454 | 0.01872 | 4 d 03:53:24 | 1 d 00:58:21 | 33.63 MJ |
Run 8 | currenttobest1exp | 75.92% | 0.0004894533183428303 | 0.02024 | 3 d 08:05:00 | 20:01:15 | 28.98 MJ |
Run 9 | currenttobest1exp | 76.944% | 0.0007513891251893841 | 0.02024 | 4 d 02:20:20 | 1 d 00:35:05 | 33.09 MJ |
Run 10 | currenttobest1exp | 77.424% | 0.0005445221831417415 | 0.02032 | 4 d 01:16:28 | 1 d 00:19:07 | 33.69 MJ |
References
- Silva, C.; Vilaça, R.; Pereira, A.; Bessa, R. A review on the decarbonization of high-performance computing centers. Renew. Sustain. Energy Rev. 2024, 189, 114019. [Google Scholar] [CrossRef]
- Chu, X.; Hofstätter, D.; Ilager, S.; Talluri, S.; Kampert, D.; Podareanu, D.; Duplyakin, D.; Brandic, I.; Iosup, A. Generic and ML Workloads in an HPC Datacenter: Node Energy, Job Failures, and Node-Job Analysis. arXiv 2024, arXiv:2409.08949. [Google Scholar] [CrossRef]
- Baratchi, M.; Wang, C.; Limmer, S.; van Rijn, J.N.; Hoos, H.; Bäck, T.; Olhofer, M. Automated machine learning: Past, present and future. Artif. Intell. Rev. 2024, 57, 122. [Google Scholar] [CrossRef]
- Bolón-Canedo, V.; Morán-Fernández, L.; Cancela, B.; Alonso-Betanzos, A. A review of green artificial intelligence: Towards a more sustainable future. Neurocomputing 2024, 599, 128096. [Google Scholar] [CrossRef]
- TOP500 Methodology. 2025. Available online: https://www.top500.org/static/media/uploads/methodology-2.0rc1.pdf (accessed on 19 January 2025).
- Miller, J.; Trümper, L.; Terboven, C.; Müller, M.S. A Theoretical Model for Global Optimization of Parallel Algorithms. Mathematics 2021, 9, 1685. [Google Scholar] [CrossRef]
- Damme, P.; Birkenbach, M.; Bitsakos, C.; Boehm, M.; Bonnet, P.; Ciorba, F.; Dokter, M.; Dowgiallo, P.; Eleliemy, A.; Faerber, C.; et al. DAPHNE: An Open and Extensible System Infrastructure for Integrated Data Analysis Pipelines. In Proceedings of the Conference on Innovative Data Systems Research, Chaminade, CA, USA, 9–12 January 2022. [Google Scholar]
- Alangari, N.; El Bachir Menai, M.; Mathkour, H.; Almosallam, I. Exploring Evaluation Methods for Interpretable Machine Learning: A Survey. Information 2023, 14, 469. [Google Scholar] [CrossRef]
- Jakobsche, T.; Lachiche, N.; Ciorba, F.M. Investigating HPC Job Resource Requests and Job Efficiency Reporting. In Proceedings of the 2023 22nd International Symposium on Parallel and Distributed Computing (ISPDC), Bucharest, Romania, 10–12 July 2023; pp. 61–68. [Google Scholar] [CrossRef]
- Yarally, T.; Cruz, L.; Feitosa, D.; Sallou, J.; van Deursen, A. Uncovering Energy-Efficient Practices in Deep Learning Training: Preliminary Steps Towards Green AI. In Proceedings of the 2023 IEEE/ACM 2nd International Conference on AI Engineering—Software Engineering for AI (CAIN), Melbourne, Australia, 15–16 May 2023; pp. 25–36. [Google Scholar] [CrossRef]
- Prica, T. Development and supporting activities on EuroHPC Vega. In Proceedings of the Austrian-Slovenian HPC Meeting 2024—ASHPC24, Grundlsee, Austria, 10–13 June 2024; p. 14. [Google Scholar]
- Oliveira, S.d.; Topsakal, O.; Toker, O. Benchmarking Automated Machine Learning (AutoML) Frameworks for Object Detection. Information 2024, 15, 63. [Google Scholar] [CrossRef]
- Yoo, A.B.; Jette, M.A.; Grondona, M. SLURM: Simple Linux Utility for Resource Management. In Proceedings of the 9th International Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP), Seattle, WA, USA, 24 June 2003. [Google Scholar] [CrossRef]
- Han, M.; Wu, H.; Chen, Z.; Li, M.; Zhang, X. A survey of multi-label classification based on supervised and semi-supervised learning. Int. J. Mach. Learn. Cybern. 2023, 14, 697–724. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Das, S.; Mullick, S.S.; Suganthan, P.N. Recent Advances in Differential Evolution—An Updated Survey. Swarm Evol. Comput. 2016, 27, 1–30. [Google Scholar] [CrossRef]
- Li, J.Y.; Zhan, Z.H.; Zhang, J. Evolutionary Computation for Expensive Optimization: A Survey. Mach. Intell. Res. 2022, 19, 3–23. [Google Scholar] [CrossRef]
- Qin, X.; Luo, Y.; Chen, S.; Chen, Y.; Han, Y. Investigation of Energy-Saving Strategy for Parallel Variable Frequency Pump System Based on Improved Differential Evolution Algorithm. Energies 2022, 15, 5360. [Google Scholar] [CrossRef]
- Dragoi, E.N.; Dafinescu, V. Parameter control and hybridization techniques in differential evolution: A survey. Artif. Intell. Rev. 2015, 45, 447–470. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential Evolution–A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Eltaeib, T.; Mahmood, A. Differential Evolution: A Survey and Analysis. Appl. Sci. 2018, 8, 1945. [Google Scholar] [CrossRef]
- Nanthapodej, R.; Liu, C.H.; Nitisiri, K.; Pattanapairoj, S. Hybrid Differential Evolution Algorithm and Adaptive Large Neighborhood Search to Solve Parallel Machine Scheduling to Minimize Energy Consumption in Consideration of Machine-Load Balance Problems. Sustainability 2021, 13, 5470. [Google Scholar] [CrossRef]
- Chhabra, A.; Sahana, S.K.; Sani, N.S.; Mohammadzadeh, A.; Omar, H.A. Energy-Aware Bag-of-Tasks Scheduling in the Cloud Computing System Using Hybrid Oppositional Differential Evolution-Enabled Whale Optimization Algorithm. Energies 2022, 15, 4571. [Google Scholar] [CrossRef]
- IAM Working Group. IPMI Specification. 2006. Available online: https://openipmi.sourceforge.io/IPMI.pdf (accessed on 25 October 2024).
- Bischl, B.; Binder, M.; Lang, M.; Pielok, T.; Richter, J.; Coors, S.; Thomas, J.; Ullmann, T.; Becker, M.; Boulesteix, A.L.; et al. Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges. WIREs Data Min. Knowl. Discov. 2023, 13, e1484. [Google Scholar] [CrossRef]
- Morales-Hernández, A.; Van Nieuwenhuyse, I.; Rojas Gonzalez, S. A survey on multi-objective hyperparameter optimization algorithms for machine learning. Artif. Intell. Rev. 2022, 56, 8043–8093. [Google Scholar] [CrossRef]
- Dataset CIFAR10 and CIFAR100. Available online: https://www.cs.toronto.edu/~kriz/cifar.html (accessed on 19 November 2024).
- Boito, F.; Brandt, J.; Cardellini, V.; Carns, P.; Ciorba, F.M.; Egan, H. Autonomy Loops for Monitoring, Operational Data Analytics, Feedback, and Response in HPC Operations. In Proceedings of the 2023 IEEE International Conference on Cluster Computing Workshops (CLUSTER Workshops), Santa Fe, NM, USA, 31 October 2023; pp. 37–43. [Google Scholar] [CrossRef]
- El Naqa, I.; Murphy, M.J. What Is Machine Learning? In Machine Learning in Radiation Oncology: Theory and Applications; Springer International Publishing: Cham, Switzerland, 2015; pp. 3–11. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, F.; Chen, T.; Pan, L.; Beliakov, G.; Wu, J. A Brief Survey of Machine Learning and Deep Learning Techniques for E-Commerce Research. J. Theor. Appl. Electron. Commer. Res. 2023, 18, 2188–2216. [Google Scholar] [CrossRef]
- Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for hyper-parameter optimization. In Proceedings of the 25th International Conference on Neural Information Processing Systems, NIPS’11, Granada, Spain, 12–15 December 2011; Curran Associates Inc.: Red Hook, NY, USA, 2011; pp. 2546–2554. Available online: https://dl.acm.org/doi/10.5555/2986459.2986743 (accessed on 7 April 2025).
- Zamuda, A.; Daniel Hernández Sosa, J.; Adler, L. Improving constrained glider trajectories for ocean eddy border sampling within extended mission planning time. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 1727–1734. [Google Scholar] [CrossRef]
- Zhu, K.; Wu, J. Residual attention: A simple but effective method for multi-label recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 184–193. [Google Scholar] [CrossRef]
- Zhou, Z.H. Machine Learning; Springer Nature: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Hu, X.; Chu, L.; Pei, J.; Liu, W.; Bian, J. Model Complexity of Deep Learning: A Survey. arXiv 2021, arXiv:2103.05127. [Google Scholar] [CrossRef]
- Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving Language Understanding by Generative Pre-Training; OpenAI: San Francisco, CA, USA, 2018. [Google Scholar]
- Menik, S.; Ramaswamy, L. Towards Modular Machine Learning Solution Development: Benefits and Trade-offs. arXiv 2023, arXiv:2301.09753. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, Z.; Cao, T.; Tan, S.; Chen, Z.; Gan, C. ModuleFormer: Modularity Emerges from Mixture-of-Experts. arXiv 2023, arXiv:2306.04640. [Google Scholar] [CrossRef]
- Barandas, M.; Famiglini, L.; Campagner, A.; Folgado, D.; Simão, R.; Cabitza, F.; Gamboa, H. Evaluation of uncertainty quantification methods in multi-label classification: A case study with automatic diagnosis of electrocardiogram. Inf. Fusion 2024, 101, 101978. [Google Scholar] [CrossRef]
- Maloney, S.; Suarez, E.; Eicker, N.; Guimarães, F.; Frings, W. Analyzing HPC Monitoring Data With a View Towards Efficient Resource Utilization. In Proceedings of the 2024 IEEE 36th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD), Hilo, HI, USA, 13–15 November 2024; pp. 170–181. [Google Scholar]
- Vontzalidis, A.; Psomadakis, S.; Bitsakos, C.; Dokter, M.; Innerebner, K.; Damme, P.; Boehm, M.; Ciorba, F.; Eleliemy, A.; Karakostas, V.; et al. DAPHNE Runtime: Harnessing Parallelism for‚ Integrated Data Analysis Pipelines. In Proceedings of the Euro-Par 2023: Parallel Processing Workshops, Limassol, Cyprus, 28 August–1 September 2023; pp. 242–246. [Google Scholar]
- Jakobsche, T.; Lachiche, N.; Ciorba, F.M. Challenges and Opportunities of Machine Learning for Monitoring and Operational Data Analytics in Quantitative Codesign of Supercomputers. arXiv 2022, arXiv:2209.07164. [Google Scholar] [CrossRef]
- Prica, T.; Zamuda, A. Monitoring Energy Consumption of Workloads on HPC Vega. In Proceedings of the 6th ISC HPC International Workshop on “Monitoring & Operational Data Analytics”, Hamburg, Germany, 9 March–13 June 2025. [Google Scholar]
- Chakraborty, U.K. Advances in Differential Evolution; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; Volume 143. [Google Scholar]
- Ahmad, M.F.; Isa, N.A.M.; Lim, W.H.; Ang, K.M. Differential evolution: A recent review based on state-of-the-art works. Alex. Eng. J. 2022, 61, 3831–3872. [Google Scholar] [CrossRef]
- Glotić, A.; Zamuda, A. Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution. Appl. Energy 2015, 141, 42–56. [Google Scholar] [CrossRef]
- Zamuda, A.; Sosa, J.D.H.; Adler, L. Constrained differential evolution optimization for underwater glider path planning in sub-mesoscale eddy sampling. Appl. Soft Comput. 2016, 42, 93–118. [Google Scholar] [CrossRef]
- Lucas, C.; Hernández-Sosa, D.; Greiner, D.; Zamuda, A.; Caldeira, R. An approach to multi-objective path planning optimization for underwater gliders. Sensors 2019, 19, 5506. [Google Scholar] [CrossRef]
- Brest, J.; Greiner, S.; Boskovic, B.; Mernik, M.; Zumer, V. Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems. IEEE Trans. Evol. Comput. 2006, 10, 646–657. [Google Scholar] [CrossRef]
- Fan, Q.; Yan, X.; Zhang, Y. Auto-selection mechanism of differential evolution algorithm variants and its application. Eur. J. Oper. Res. 2018, 270, 636–653. [Google Scholar] [CrossRef]
- Vincent, A.M.; Jidesh, P. An improved hyperparameter optimization framework for AutoML systems using evolutionary algorithms. Sci. Rep. 2023, 13, 4737. [Google Scholar] [CrossRef]
- Sen, A.; Gupta, V.; Tang, C. Differential Evolution Algorithm Based Hyperparameter Selection of Gated Recurrent Unit for Electrical Load Forecasting. arXiv 2023, arXiv:2309.13019. [Google Scholar] [CrossRef]
- Gomes, E.; Pereira, L.; Esteves, A.; Morais, H. Metaheuristic Optimization Methods in Energy Community Scheduling: A Benchmark Study. Energies 2024, 17, 2968. [Google Scholar] [CrossRef]
- Main Stages of the DE Algorithm. Available online: https://www.researchgate.net/figure/Main-stages-of-the-DE-algorithm_fig1_336225430 (accessed on 19 November 2024).
- Opara, K.; Arabas, J. Comparison of mutation strategies in Differential Evolution—A probabilistic perspective. Swarm Evol. Comput. 2018, 39, 53–69. [Google Scholar] [CrossRef]
- Wu, T.; Li, X.; Zhou, D.; Li, N.; Shi, J. Differential Evolution Based Layer-Wise Weight Pruning for Compressing Deep Neural Networks. Sensors 2021, 21, 880. [Google Scholar] [CrossRef]
- Zamuda, A. Foundational Concepts and Real-World Applications of Self-Adaptive Differential Evolution and Success History. In Swarm Intelligence—Foundational Concepts and Real-World Applications; Chibante, R., Miranda, P., Palade, V., Eds.; Artificial Intelligence; IntechOpen: London, UK, 2025; Chapter 1; pp. 1–20. Available online: https://www.intechopen.com/online-first/1222844 (accessed on 7 April 2025).
- Qiao, K.; Wen, X.; Ban, X.; Chen, P.; Price, K.; Suganthan, P.; Liang, J.; Wu, G.; Yue, C. Evaluation Criteria for CEC 2024 Competition and Special Session on Numerical Optimization Considering Accuarcy and Speed; Technical Report; Zhengzhou University: Zhengzhou, China; Central South University: Changsha, China; Henan Institute of Technology: Xinxiang, China; Qatar University: Doha, Qatar, 2023. [Google Scholar]
- Tanabe, R.; Fukunaga, A.S. Improving the search performance of SHADE using linear population size reduction. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation, Beijing, China, 6–11 July 2014; pp. 1658–1665. [Google Scholar]
- Viktorin, A.; Senkerik, R.; Pluhacek, M.; Kadavy, T.; Zamuda, A. Distance based parameter adaptation for Success-History based Differential Evolution. Swarm Evol. Comput. 2019, 50, 100462. [Google Scholar] [CrossRef]
- Tanabe, R.; Fukunaga, A. Reviewing and Benchmarking Parameter Control Methods in Differential Evolution. IEEE Trans. Cybern. 2020, 50, 1170–1184. [Google Scholar] [CrossRef]
- Mininno, E.; Neri, F.; Cupertino, F.; Naso, D. Compact Differential Evolution. IEEE Trans. Evol. Comput. 2011, 15, 32–54. [Google Scholar] [CrossRef]
- Zamuda, A.; Dokter, M. Deploying DAPHNE Computational Intelligence on EuroHPC Vega for Benchmarking Randomised Optimisation Algorithms. In Proceedings of the International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom), Graz, Austria, 9–11 July 2024; pp. 1–8. [Google Scholar]
- Jiang, Y.; Qi, X.; Liu, C. Energy-Aware Automatic Tuning on Many-Core Platform via Differential Evolution. In Proceedings of the 2016 45th International Conference on Parallel Processing Workshops (ICPPW), Philadelphia, PA, USA, 16–19 August 2016; pp. 258–265. [Google Scholar] [CrossRef]
- Baioletti, M.; Di Bari, G.; Milani, A.; Poggioni, V. Differential Evolution for Neural Networks Optimization. Mathematics 2020, 8, 69. [Google Scholar] [CrossRef]
- Agarwal, M.; Gupta, S.K.; Biswas, K.K. DECACNN: Differential evolution-based approach to compress and accelerate the convolution neural network model. Neural Comput. Appl. 2023, 36, 2665–2681. [Google Scholar] [CrossRef]
- Wu, X.; Che, A. A memetic differential evolution algorithm for energy-efficient parallel machine scheduling. Omega 2019, 82, 155–165. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R.; Alrashdi, I.; Sallam, K.M.; Hameed, I.A. Evolution-based energy-efficient data collection system for UAV-supported IoT: Differential evolution with population size optimization mechanism. Expert Syst. Appl. 2024, 245, 123082. [Google Scholar] [CrossRef]
- Zamuda, A.; Hernández Sosa, J.D. Differential evolution and underwater glider path planning applied to the short-term opportunistic sampling of dynamic mesoscale ocean structures. Appl. Soft Comput. 2014, 24, 95–108. [Google Scholar] [CrossRef]
- Zamuda, A.; Sosa, J.D.H. Success history applied to expert system for underwater glider path planning using differential evolution. Expert Syst. Appl. 2019, 119, 155–170. [Google Scholar] [CrossRef]
- Janssen, D.; Pullan, W.; Liew, A.W.C. GPU Based Differential Evolution: New Insights and Comparative Study. arXiv 2024, arXiv:2405.16551. [Google Scholar] [CrossRef]
- Van Stein, B.; Vermetten, D.; Caraffini, F.; Kononova, A.V. Deep BIAS: Detecting Structural Bias using Explainable AI. In Proceedings of the GECCO ’23 Companion: Proceedings of the Companion Conference on Genetic and Evolutionary Computation, Lisbon, Portugal, 15–19 July 2023; pp. 455–458. [Google Scholar]
- van Stein, N.; Kononova, A.V. (Eds.) Explainable AI for Evolutionary Computation; Springer Nature: Singapore, 2025. [Google Scholar] [CrossRef]
- Raponi, E.; Rodriguez, I.O.; van Stein, N. Global Sensitivity Analysis Is Not Always Beneficial for Evolutionary Computation: A Study in Engineering Design. In Explainable AI for Evolutionary Computation; Springer Nature: Singapore, 2025; pp. 13–40. [Google Scholar] [CrossRef]
- Barbudo, R.; Ventura, S.; Romero, J.R. Eight years of AutoML: Categorisation, review and trends. Knowl. Inf. Syst. 2023, 65, 5097–5149. [Google Scholar] [CrossRef]
- Salehin, I.; Islam, M.S.; Saha, P.; Noman, S.; Tuni, A.; Hasan, M.M.; Baten, M.A. AutoML: A systematic review on automated machine learning with neural architecture search. J. Inf. Intell. 2024, 2, 52–81. [Google Scholar] [CrossRef]
- Chatzilygeroudis, K.; Hatzilygeroudis, I.; Perikos, I. Machine Learning Basics. In Intelligent Computing for Interactive System Design: Statistics, Digital Signal Processing, and Machine Learning in Practice, 1st ed.; Association for Computing Machinery: New York, NY, USA, 2021; pp. 143–193. [Google Scholar] [CrossRef]
- Geissler, D.; Zhou, B.; Suh, S.; Lukowicz, P. Spend More to Save More (SM2): An Energy-Aware Implementation of Successive Halving for Sustainable Hyperparameter Optimization. arXiv 2024, arXiv:2412.08526. [Google Scholar] [CrossRef]
- Ferro, M.; Silva, G.D.; de Paula, F.B.; Vieira, V.; Schulze, B. Towards a sustainable artificial intelligence: A case study of energy efficiency in decision tree algorithms. Concurr. Comput. Pract. Exp. 2021, 35, e6815. [Google Scholar] [CrossRef]
- Castellanos-Nieves, D.; García-Forte, L. Improving Automated Machine-Learning Systems Through Green AI. Appl. Sci. 2023, 13, 11583. [Google Scholar] [CrossRef]
- Castellanos-Nieves, D.; García-Forte, L. Strategies of Automated Machine Learning for Energy Sustainability in Green Artificial Intelligence. Appl. Sci. 2024, 14, 6196. [Google Scholar] [CrossRef]
- Zamuda, A.; Brest, J. Self-adaptive control parameters’ randomization frequency and propagations in differential evolution. Swarm Evol. Comput. 2015, 25, 72–99. [Google Scholar] [CrossRef]
- Vakhnin, A.; Ryzhikov, I.; Niska, H.; Kolehmainen, M. A Novel Multi-Objective Hybrid Evolutionary-Based Approach for Tuning Machine Learning Models in Short-Term Power Consumption Forecasting. AI 2024, 5, 2461–2496. [Google Scholar] [CrossRef]
- Pătrăușanu, A.; Florea, A.; Neghină, M.; Dicoiu, A.; Chiș, R. A Systematic Review of Multi-Objective Evolutionary Algorithms Optimization Frameworks. Processes 2024, 12, 869. [Google Scholar] [CrossRef]
- Liuliakov, A.; Hermes, L.; Hammer, B. AutoML technologies for the identification of sparse classification and outlier detection models. Appl. Soft Comput. 2023, 133, 109942. [Google Scholar] [CrossRef]
- Jin, H.; Chollet, F.; Song, Q.; Hu, X. AutoKeras: An AutoML Library for Deep Learning. J. Mach. Learn. Res. 2023, 24, 1–6. [Google Scholar]
- Shi, M.; Shen, W. Automatic Modeling for Concrete Compressive Strength Prediction Using Auto-Sklearn. Buildings 2022, 12, 1406. [Google Scholar] [CrossRef]
- Omar, I.; Khan, M.; Starr, A.; Abou Rok Ba, K. Automated Prediction of Crack Propagation Using H2O AutoML. Sensors 2023, 23, 8419. [Google Scholar] [CrossRef]
- Olson, R.S.; Moore, J.H. TPOT: A Tree-based Pipeline Optimization Tool for Automating Machine Learning. In PMLR, Proceedings of the Workshop on Automatic Machine Learning, New York, NY, USA, 24 June 2016; Hutter, F., Kotthoff, L., Vanschoren, J., Eds.; Springer: Cham, Switzerland, 2016; Volume 64, pp. 66–74. [Google Scholar]
- TensorFlow. Available online: https://www.tensorflow.org/ (accessed on 28 November 2024).
- PyTorch. Available online: https://pytorch.org/ (accessed on 19 November 2024).
- Hansen, N.; Auger, A.; Ros, R.; Mersmann, O.; Tušar, T.; Brockhoff, D. COCO: A platform for comparing continuous optimizers in a black-box setting. Optim. Methods Softw. 2020, 36, 114–144. [Google Scholar] [CrossRef]
- Varelas, K.; El Hara, O.A.; Brockhoff, D.; Hansen, N.; Nguyen, D.M.; Tušar, T.; Auger, A. Benchmarking large-scale continuous optimizers: The bbob-largescale testbed, a COCO software guide and beyond. Appl. Soft Comput. 2020, 97, 106737. [Google Scholar] [CrossRef]
- Doerr, C.; Wang, H.; Ye, F.; van Rijn, S.; Bäck, T. IOHprofiler: A Benchmarking and Profiling Tool for Iterative Optimization Heuristics. arXiv 2018, arXiv:1810.05281. [Google Scholar] [CrossRef]
- Doerr, C.; Ye, F.; Horesh, N.; Wang, H.; Shir, O.M.; Bäck, T. Benchmarking discrete optimization heuristics with IOHprofiler. Appl. Soft Comput. 2020, 88, 106027. [Google Scholar] [CrossRef]
- Durillo, J.J.; Nebro, A.J. jMetal: A Java framework for multi-objective optimization. Adv. Eng. Softw. 2011, 42, 760–771. [Google Scholar] [CrossRef]
- López-Ibáñez, M.; Dubois-Lacoste, J.; Pérez Cáceres, L.; Birattari, M.; Stützle, T. The irace package: Iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 2016, 3, 43–58. [Google Scholar] [CrossRef]
- Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-generation Hyperparameter Optimization Framework. In Proceedings of the KDD ’19: 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 2623–2631. [Google Scholar] [CrossRef]
- Liaw, R.; Liang, E.; Nishihara, R.; Moritz, P.; Gonzalez, J.E.; Stoica, I. Tune: A Research Platform for Distributed Model Selection and Training. arXiv 2018, arXiv:1807.05118. [Google Scholar] [CrossRef]
- Spirals Research Group. PyJoules: A Python Library to Capture the Energy Consumption of Code Snippets; University of Lille and Inria: Lille, France, 2021. [Google Scholar]
- Anthony, L.F.W.; Kanding, B.; Selvan, R. Carbontracker: Tracking and Predicting the Carbon Footprint of Training Deep Learning Models. arXiv 2020, arXiv:2007.03051. [Google Scholar] [CrossRef]
- Ramduny, J.; Garcia, M.; Kelly, C. Establishing a reproducible and sustainable analysis workflow. In Methods for Analyzing Large Neuroimaging Datasets; Springer: New York, NY, USA, 2024; pp. 39–60. [Google Scholar]
- Deng, L. The mnist database of handwritten digit images for machine learning research. IEEE Signal Process. Mag. 2012, 29, 141–142. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Egwutuoha, I.P.; Levy, D.; Selic, B.; Chen, S. A survey of fault tolerance mechanisms and checkpoint/restart implementations for high performance computing systems. J. Supercomput. 2013, 65, 1302–1326. [Google Scholar] [CrossRef]
- Moran, M.; Balladini, J.; Rexachs, D.; Luque, E. Checkpoint and Restart: An Energy Consumption Characterization in Clusters. arXiv 2024, arXiv:2409.02214. [Google Scholar] [CrossRef]
- Kumar, M.; Gupta, S.; Patel, T.; Wilder, M.; Shi, W.; Fu, S.; Engelmann, C.; Tiwari, D. Study of interconnect errors, network congestion, and applications characteristics for throttle prediction on a large scale HPC system. J. Parallel Distrib. Comput. 2021, 153, 29–43. [Google Scholar] [CrossRef]
- Jiao, Y.; Lin, H.; Balaji, P.; Feng, W. Power and Performance Characterization of Computational Kernels on the GPU. In Proceedings of the 2010 IEEE/ACM Int’l Conference on Green Computing and Communications & Int’l Conference on Cyber, Physical and Social Computing, Hangzhou, China, 18–20 December 2010; pp. 221–228. [Google Scholar]
- Timalsina, M.; Gerhardt, L.; Tyler, N.; Blaschke, J.P.; Arndt, W. Optimizing Checkpoint-Restart Mechanisms for HPC with DMTCP in Containers at NERSC. arXiv 2024, arXiv:2407.19117. [Google Scholar] [CrossRef]
- Assogba, K.; Nicolae, B.; Van Dam, H.; Rafique, M.M. Asynchronous Multi-Level Checkpointing: An Enabler of Reproducibility using Checkpoint History Analytics. In Proceedings of the SC-W ’23: SC ’23 Workshops of the International Conference on High Performance Computing, Network, Storage, and Analysis, Denver, CO, USA, 12–17 November 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 1748–1756. [Google Scholar] [CrossRef]
- Rojas, E.; Kahira, A.N.; Meneses, E.; Gomez, L.B.; Badia, R.M. A Study of Checkpointing in Large Scale Training of Deep Neural Networks. arXiv 2021, arXiv:2012.00825. [Google Scholar] [CrossRef]
- Gu, R.; Chen, Y.; Liu, S.; Dai, H.; Chen, G.; Zhang, K.; Che, Y.; Huang, Y. Liquid: Intelligent Resource Estimation and Network-Efficient Scheduling for Deep Learning Jobs on Distributed GPU Clusters. IEEE Trans. Parallel Distrib. Syst. 2022, 33, 2808–2820. [Google Scholar] [CrossRef]
- Daradkeh, T.; Roper, G.; Alarcon Meza, C.; Mokhov, S.A. HPC Jobs Classification and Resource Prediction to Minimize Job Failures. In Proceedings of the CompSysTech ’24: International Conference on Computer Systems and Technologies 2024, Ruse, Bulgaria, 14–15 June 2024; ACM: New York, NY, USA, 2024; pp. 95–101. [Google Scholar] [CrossRef]
- Tanash, M.; Yang, H.; Andresen, D.; Hsu, W. Ensemble Prediction of Job Resources to Improve System Performance for Slurm-Based HPC Systems. In Proceedings of the PEARC ’21: Practice and Experience in Advanced Research Computing, Boston, MA, USA, 18–22 July 2021; ACM: New York, NY, USA, 2021; pp. 1–8. [Google Scholar] [CrossRef]
- Friedman, M. The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance. J. Am. Stat. Assoc. 1937, 32, 675–701. [Google Scholar] [CrossRef]
- Soft Computing and Intelligent Information Systems. 2025. Available online: https://sci2s.ugr.es/sicidm (accessed on 14 January 2025).
- Demšar, J. Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach. Learn. Res. 2006, 7, 1–30. [Google Scholar]
Parameter | Value | Default |
---|---|---|
Differential Evolution Optimization | ||
Population size | 10 | - |
Maximum generations | 30 | - |
Dimensions | 2 | - |
Mutation | generation-randomized in [0.5, 1] | True |
Crossover | 0.7 | True |
Repetitions per DE strategy | 10 | 0 |
DE Strategies | rand1bin, rand2bin, best1bin, best2bin, currenttobest1bin, currenttobest1exp, rand1exp, rand2exp, best1exp, best2exp | best1bin |
Learning rate | [search space] | - |
Model and Dataset Configuration | ||
ML Models (Architecture) | ResNet18, VGG11, ConvNeXt-Small, DenseNet121 | - |
Pretrained weights | ImageNet-1k | True |
Datasets | CIFAR-10, CIFAR-100 | - |
Input size | (H × W × C) | True |
Batch size | 16, 32, 64, 128, 256 | 16 |
Epochs per run | 15 | 1 |
Workers per run | 4 | 1 |
Sampler shuffling (train loader) | Shuffle enabled (distributed sampler) | True |
Sampler shuffling (test loader) | Shuffle disabled (no sampler) | False |
Loss function | BCEWithLogitsLoss | - |
Evaluation metrics | accuracy, precision, recall, F1-score | - |
Framework | PyTorch 2.1.2 | - |
Python version | 3.10.12 | - |
HPC Environment | ||
Number of nodes per run | 1 | 1 |
Number of cores per run | 128 | 1 |
Number of GPUs per run | 4 | 1 |
Memory per run | 0 (all) | 2 G |
Partition | gpu | cpu |
NVIDIA Driver, CUDA version | 565.57.01, 12.7 | True |
Batch Size | Max Accuracy % | Best LR | Best Accuracy | Consumed CPU Time | Elapsed Time | Consumed Energy |
---|---|---|---|---|---|---|
16 | 95.394% | 0.0006082014966333853 | 0.19592 | 1 d 02:55:36 | 06:43:54 | 8.26 MJ |
32 | 96.008% | 0.0007901080473489402 | 0.19534 | 1 d 01:54:56 | 06:28:44 | 7.94 MJ |
64 | 96.296% | 0.000738124409536461 | 0.1967 | 14:50:00 | 03:42:30 | 4.52 MJ |
128 | 96.042% | 0.00034871425456294697 | 0.19574 | 15:23:32 | 03:50:53 | 4.73 MJ |
256 | 97.988% | 0.0002672795926582179 | 0.19684 | 14:07:44 | 03:31:56 | 4.33 MJ |
Batch Size | Max Accuracy % | Best LR | Best Accuracy | Consumed CPU Time | Elapsed Time | Consumed Energy |
---|---|---|---|---|---|---|
16 | 97.396% | 0.00012525167316710355 | 0.19706 | 2 d 00:09:16 | 12:02:19 | 19.80 MJ |
32 | 97.182% | 0.000268894951638127 | 0.19714 | 1 d 03:35:24 | 06:53:51 | 11.03 MJ |
64 | 97.408% | 0.00024077230180039115 | 0.19774 | 19:02:36 | 04:45:39 | 7.37 MJ |
128 | 97.686% | 0.00019428618959243084 | 0.19824 | 15:15:12 | 03:48:48 | 5.46 MJ |
256 | 97.584% | 0.00034871425456294697 | 0.19758 | 18:09:48 | 04:32:27 | 6.40 MJ |
Batch Size | Max Accuracy % | Best LR | Best Accuracy | Consumed CPU Time | Elapsed Time | Consumed Energy |
---|---|---|---|---|---|---|
16 | 98.056% | 0.00012034845529446537 | 0.1972 | 4 d 21:06:56 | 1 d 05:16:44 | 37.61 MJ |
32 | 97.982% | 0.00014014894006367788 | 0.19806 | 3 d 08:00:08 | 20:00:02 | 25.60 MJ |
64 | 98.486% | 0.0008678928687917702 | 0.19836 | 1 d 05:25:36 | 07:21:24 | 9.73 MJ |
128 | 98.574% | 0.00028135858111119703 | 0.19768 | 23:18:44 | 05:49:41 | 8.01 MJ |
256 | 99.17% | 0.0005148738101840251 | 0.19916 | 20:23:24 | 05:05:51 | 7.05 MJ |
Batch Size | Max Accuracy % | Best LR | Best Accuracy | Consumed CPU Time | Elapsed Time | Consumed Energy |
---|---|---|---|---|---|---|
16 | 95.03% | 0.0007912646326431301 | 0.1935 | 8 d 00:01:08 | 2 d 00:00:17 | 57.02 MJ |
32 | 95.058% | 0.0007901080473489402 | 0.19546 | 3 d 12:20:16 | 21:05:04 | 27.31 MJ |
64 | 95.04% | 0.0004894533183428303 | 0.19512 | 1 d 23:24:56 | 11:51:14 | 15.34 MJ |
128 | 95.208% | 0.00034871425456294697 | 0.19582 | 1 d 01:45:24 | 06:26:21 | 8.89 MJ |
256 | 94.8% | 0.0007901080473489402 | 0.19542 | 19:09:12 | 04:47:18 | 6.43 MJ |
Batch Size | Max Accuracy % | Best LR | Best Accuracy | Consumed CPU Time | Elapsed Time | Consumed Energy |
---|---|---|---|---|---|---|
16 | 79.978% | 0.00044856335954386015 | 0.1838 | 1 d 21:46:52 | 11:26:43 | 14.57 MJ |
32 | 86.23% | 0.0008717460916603777 | 0.1844 | 22:44:28 | 05:41:07 | 7.08 MJ |
64 | 87.168% | 0.0005391893838907642 | 0.187 | 19:26:24 | 04:51:36 | 5.93 MJ |
128 | 85.288% | 0.0006082014966333853 | 0.1896 | 15:32:36 | 03:53:09 | 4.77 MJ |
256 | 83.758% | 0.0002422874901653207 | 0.1896 | 14:34:28 | 03:38:37 | 4.43 MJ |
Batch Size | Max Accuracy % | Best LR | Best Accuracy | Consumed CPU Time | Elapsed Time | Consumed Energy |
---|---|---|---|---|---|---|
16 | 83.336% | 0.00012525167316710355 | 0.1828 | 1 d 21:07:48 | 11:16:57 | 18.52 MJ |
32 | 82.176% | 0.0002092511621805628 | 0.1874 | 1 d 00:45:48 | 06:11:27 | 10.45 MJ |
64 | 81.9% | 0.00012525167316710355 | 0.1882 | 15:41:00 | 03:55:15 | 5.98 MJ |
128 | 76.106% | 0.00013244795866876926 | 0.1822 | 21:25:28 | 05:21:22 | 7.60 MJ |
256 | 62.56% | 0.00028135858111119703 | 0.1724 | 15:04:16 | 03:46:04 | 5.22 MJ |
Batch Size | Max Accuracy % | Best LR | Best Accuracy | Consumed CPU Time | Elapsed Time | Consumed Energy |
---|---|---|---|---|---|---|
16 | 97.086% | 0.0003784156928188382 | 0.1988 | 5 d 23:48:48 | 1 d 11:57:12 | 45.13 MJ |
32 | 97.494% | 0.00012525167316710355 | 0.1984 | 1 d 03:46:48 | 06:56:42 | 8.86 MJ |
64 | 97.954% | 0.00023894652307312613 | 0.198 | 1 d 23:54:16 | 11:58:34 | 15.65 MJ |
128 | 98.342% | 0.00016177690430439908 | 0.1992 | 1 d 07:00:08 | 07:45:02 | 10.65 MJ |
256 | 98.784% | 0.00028135858111119703 | 0.199 | 15:59:36 | 03:59:54 | 5.97 MJ |
Batch Size | Max Accuracy % | Best LR | Best Accuracy | Consumed CPU Time | Elapsed Time | Consumed Energy |
---|---|---|---|---|---|---|
16 | 78.902% | 0.0007912646326431301 | 0.187 | 7 d 23:11:16 | 1 d 23:47:49 | 59.36 MJ |
32 | 83.004% | 0.0005677173263227356 | 0.1854 | 3 d 17:02:56 | 22:15:44 | 26.45 MJ |
64 | 82.758% | 0.0004164429342733091 | 0.1864 | 2 d 03:18:28 | 12:49:37 | 15.97 MJ |
128 | 83.272% | 0.0006600828705211815 | 0.1814 | 1 d 09:56:52 | 08:29:13 | 11.57 MJ |
256 | 79.366% | 0.0004894533183428303 | 0.181 | 20:16:40 | 05:04:10 | 7.05 MJ |
i | DE Strategy | p | Holm/Hochberg/Hommel | Holland | Rom | Finner | Li | |
---|---|---|---|---|---|---|---|---|
9 | best1bin | 5.32 | 1.05 × 10−7 | 0.00556 † | 0.00568 † | 0.00584 † | 0.00568 † | 2.92 × 10−17 † |
8 | best1exp | 5.32 | 1.05 × 10−7 | 0.00625 † | 0.00639 † | 0.00657 † | 0.0113 † | 2.92 × 10−17 † |
7 | currenttobest1bin | 3.91 | 9.07 × 10−5 | 0.00714 † | 0.0073 † | 0.00751 † | 0.017 † | 2.92 × 10−17 † |
6 | currenttobest1exp | 2.92 | 0.00353 | 0.00833 † | 0.00851 † | 0.00876 † | 0.0225 † | 2.92 × 10−17 † |
5 | best2exp | 2.62 | 0.00875 | 0.01 † | 0.0102 † | 0.0105 † | 0.0281 † | 2.92 × 10−17 † |
4 | best2bin | 2.51 | 0.012 | 0.0125 † | 0.0127 † | 0.0131 † | 0.0336 † | 2.92 × 10−17 † |
3 | rand1bin | 2.44 | 0.0148 | 0.0167 † | 0.017 † | 0.0167 † | 0.0391 † | 2.92 × 10−17 † |
2 | rand1exp | 2.29 | 0.0221 | 0.025 † | 0.0253 † | 0.025 † | 0.0446 † | 2.92 × 10−17 † |
1 | rand2bin | 6.56 × 10−16 | 1 | 0.05 † | 0.05 † | 0.05 † | 0.05 † | 0.05 |
i | DE Strategy | p | Holm/Hochberg/Hommel | Holland | Rom | Finner | Li | |
---|---|---|---|---|---|---|---|---|
9 | rand2bin | 5.11 | 3.15 × 10−7 † | 0.00556 † | 0.00568 † | 0.00584 † | 0.00568 † | 0.0115 † |
8 | rand2exp | 4.99 | 6.19 × 10−7 † | 0.00625 † | 0.00639 † | 0.00657 † | 0.0113 † | 0.0115 † |
7 | best2bin | 2.73 | 0.00628 † | 0.00714 † | 0.0073 † | 0.00751 † | 0.017 † | 0.0115 † |
6 | rand1bin | 2.73 | 0.00628 † | 0.00833 † | 0.00851 † | 0.00876 † | 0.0225 | 0.0115 † |
5 | best2exp | 2.58 | 0.00974 † | 0.01 † | 0.0102 † | 0.0105 † | 0.0281 | 0.0115 † |
4 | rand1exp | 2.55 | 0.0108 † | 0.0125 † | 0.0127 † | 0.0131 † | 0.0336 | 0.0115 † |
3 | currenttobest1exp | 2.14 | 0.0322 | 0.0167 † | 0.017 † | 0.0167 † | 0.0391 | 0.0115 † |
2 | currenttobest1bin | 0.702 | 0.483 | 0.025 | 0.0253 | 0.025 | 0.0446 | 0.0115 † |
1 | best1exp | 0.277 | 0.782 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
i | DE Strategy | p | Holm/Hochberg/Hommel | Holland | Rom | Finner | Li | |
---|---|---|---|---|---|---|---|---|
9 | rand1exp | 1.85 | 0.0648 | 0.00556 † | 0.00568 † | 0.00584 | 0.00568 † | 0.000775 |
8 | rand2bin | 1.5 | 0.135 | 0.00625 | 0.00639 | 0.00657 | 0.0113 | 0.000775 |
7 | rand1bin | 1.44 | 0.15 | 0.00714 | 0.0073 | 0.00751 | 0.017 | 0.000775 |
6 | currenttobest1bin | 1.29 | 0.196 | 0.00833 | 0.00851 | 0.00876 | 0.0225 | 0.000775 |
5 | rand2exp | 0.96 | 0.337 | 0.01 | 0.0102 | 0.0105 | 0.0281 | 0.000775 |
4 | best2bin | 0.535 | 0.592 | 0.0125 | 0.0127 | 0.0131 | 0.0336 | 0.000775 |
3 | currenttobest1exp | 0.48 | 0.631 | 0.0167 | 0.017 | 0.0167 | 0.0391 | 0.000775 |
2 | best1bin | 0.24 | 0.81 | 0.025 | 0.0253 | 0.025 | 0.0446 | 0.000775 |
1 | best2exp | 0.0185 | 0.985 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
i | DE Strategy | p | Holm/Hochberg/Hommel | Holland | Rom | Finner | Li | |
---|---|---|---|---|---|---|---|---|
9 | best1exp | 2.22 | 0.0267 | 0.00556 † | 0.00568 † | 0.00584 | 0.00568 † | 0.0151 † |
8 | best2bin | 2.18 | 0.0294 | 0.00625 | 0.00639 | 0.00657 | 0.0113 | 0.0151 † |
7 | best1bin | 2.1 | 0.0353 | 0.00714 | 0.0073 | 0.00751 | 0.017 | 0.0151 † |
6 | currenttobest1bin | 1.55 | 0.121 | 0.00833 | 0.00851 | 0.00876 | 0.0225 | 0.0151 † |
5 | currenttobest1exp | 1.03 | 0.301 | 0.01 | 0.0102 | 0.0105 | 0.0281 | 0.0151 † |
4 | rand1bin | 0.443 | 0.658 | 0.0125 | 0.0127 | 0.0131 | 0.0336 | 0.0151 † |
3 | rand1exp | 0.406 | 0.685 | 0.0167 | 0.017 | 0.0167 | 0.0391 | 0.0151 † |
2 | best2exp | 0.406 | 0.685 | 0.025 | 0.0253 | 0.025 | 0.0446 | 0.0151 † |
1 | rand2exp | 0.369 | 0.712 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
i | DE Strategy | p | Holm/Hochberg/Hommel | Holland | Rom | Finner | Li | |
---|---|---|---|---|---|---|---|---|
9 | rand2bin | 2.07 | 0.0386 | 0.00556 † | 0.00568 † | 0.00584 | 0.00568 † | 0.0144 † |
8 | rand1bin | 1.98 | 0.0482 | 0.00625 | 0.00639 | 0.00657 | 0.0113 | 0.0144 † |
7 | rand2exp | 1.79 | 0.0733 | 0.00714 | 0.0073 | 0.00751 | 0.017 | 0.0144 † |
6 | best2exp | 1.44 | 0.15 | 0.00833 | 0.00851 | 0.00876 | 0.0225 | 0.0144 † |
5 | currenttobest1exp | 0.979 | 0.328 | 0.01 | 0.0102 | 0.0105 | 0.0281 | 0.0144 † |
4 | rand1exp | 0.812 | 0.417 | 0.0125 | 0.0127 | 0.0131 | 0.0336 | 0.0144 † |
3 | currenttobest1bin | 0.683 | 0.495 | 0.0167 | 0.017 | 0.0167 | 0.0391 | 0.0144 † |
2 | best2bin | 0.425 | 0.671 | 0.025 | 0.0253 | 0.025 | 0.0446 | 0.0144 † |
1 | best1exp | 0.351 | 0.726 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
i | DE Strategy | p | Holm/Hochberg/Hommel | Holland | Rom | Finner | Li | |
---|---|---|---|---|---|---|---|---|
9 | rand1bin | 2.81 | 0.00501 † | 0.00556 † | 0.00568 † | 0.00584 † | 0.00568 † | 0.0318 † |
8 | rand2exp | 2.23 | 0.0255 | 0.00625 † | 0.00639 † | 0.00657 | 0.0113 | 0.0318 † |
7 | currenttobest1exp | 2.2 | 0.028 | 0.00714 | 0.0073 | 0.00751 | 0.017 | 0.0318 † |
6 | currenttobest1bin | 1.96 | 0.0503 | 0.00833 | 0.00851 | 0.00876 | 0.0225 | 0.0318 † |
5 | rand2bin | 1.46 | 0.145 | 0.01 | 0.0102 | 0.0105 | 0.0281 | 0.0318 † |
4 | best1bin | 1.29 | 0.196 | 0.0125 | 0.0127 | 0.0131 | 0.0336 | 0.0318 † |
3 | best2exp | 1.27 | 0.203 | 0.0167 | 0.017 | 0.0167 | 0.0391 | 0.0318 † |
2 | best1exp | 1.26 | 0.209 | 0.025 | 0.0253 | 0.025 | 0.0446 | 0.0318 † |
1 | best2bin | 0.849 | 0.396 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
i | DE Strategy | p | Holm/Hochberg/Hommel | Holland | Rom | Finner | Li | |
---|---|---|---|---|---|---|---|---|
9 | best1exp | 5.33 | 1 × 10−7 | 0.00556 † | 0.00568 † | 0.00584 † | 0.00568 † | 0.0108 † |
8 | best1bin | 5.25 | 1.53 × 10−7 | 0.00625 † | 0.00639 † | 0.00657 † | 0.0113 † | 0.0108 † |
7 | currenttobest1bin | 3.86 | 0.000111 | 0.00714 † | 0.0073 † | 0.00751 † | 0.017 | 0.0108 † |
6 | best2bin | 3.32 | 0.000913 | 0.00833 † | 0.00851 † | 0.00876 † | 0.0225 | 0.0108 † |
5 | currenttobest1exp | 2.79 | 0.00521 | 0.01 † | 0.0102 † | 0.0105 † | 0.0281 | 0.0108 † |
4 | best2exp | 2.14 | 0.0323 | 0.0125 † | 0.0127 † | 0.0131 | 0.0336 | 0.0108 † |
3 | rand1bin | 2.04 | 0.0417 | 0.0167 | 0.017 | 0.0167 | 0.0391 | 0.0108 † |
2 | rand1exp | 1.91 | 0.0566 | 0.025 | 0.0253 | 0.025 | 0.0446 | 0.0108 † |
1 | rand2exp | 0.261 | 0.794 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
i | DE Strategy | p | Holm/Hochberg/Hommel | Holland | Rom | Finner | Li | |
---|---|---|---|---|---|---|---|---|
9 | best1bin | 5.08 | 3.8 × 10−7 | 0.00556 † | 0.00568 † | 0.00584 † | 0.00568 † | 0.01189 † |
8 | best1exp | 4.63 | 3.57 × 10−6 | 0.00625 † | 0.00639 † | 0.00657 † | 0.0113 † | 0.01189 † |
7 | currenttobest1bin | 4.1 | 4.14 × 100 | 0.00714 † | 0.0073 † | 0.00751 † | 0.017 † | 0.01189 † |
6 | currenttobest1exp | 2.87 | 0.00408 | 0.00833 † | 0.00851 † | 0.00876 † | 0.0225 | 0.01189 † |
5 | best2bin | 2.85 | 0.00442 | 0.01 † | 0.0102 † | 0.0105 † | 0.0281 | 0.01189 † |
4 | rand1exp | 2.7 | 0.00688 | 0.0125 † | 0.0127 † | 0.0131 † | 0.0336 | 0.01189 † |
3 | best2exp | 2.23 | 0.0256 | 0.0167 † | 0.017 † | 0.0167 † | 0.0391 | 0.01189 † |
2 | rand1bin | 1.75 | 0.0802 | 0.025 | 0.0253 | 0.025 | 0.0446 | 0.01189 † |
1 | rand2exp | 0.287 | 0.774 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
i | DE Strategy | p | Holm/Hochberg/Hommel | Holland | Rom | Finner | Li | |
---|---|---|---|---|---|---|---|---|
9 | rand1bin | 2.12 | 0.0344 | 0.00556 † | 0.00568 † | 0.00584 | 0.00568 † | 0.00109 † |
8 | currenttobest1bin | 1.41 | 0.159 | 0.00625 | 0.00639 | 0.00657 | 0.0113 | 0.00109 † |
7 | rand2exp | 1.37 | 0.17 | 0.00714 | 0.0073 | 0.00751 | 0.017 | 0.00109 † |
6 | rand2bin | 1.2 | 0.23 | 0.00833 | 0.00851 | 0.00876 | 0.0225 | 0.00109 † |
5 | currenttobest1exp | 1.01 | 0.315 | 0.01 | 0.0102 | 0.0105 | 0.0281 | 0.00109 † |
4 | rand1exp | 0.418 | 0.676 | 0.0125 | 0.0127 | 0.0131 | 0.0336 | 0.00109 † |
3 | best1bin | 0.196 | 0.845 | 0.0167 | 0.017 | 0.0167 | 0.0391 | 0.00109 † |
2 | best2bin | 0.0914 | 0.927 | 0.025 | 0.0253 | 0.025 | 0.0446 | 0.00109 † |
1 | best2exp | 0.0261 | 0.979 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
DE Strategy | Holm/Hochberg/Hommel | Holland | Rom | Finner | Li |
---|---|---|---|---|---|
best1bin | 3 | 3 | 3 | 3 | 5 |
best2bin | 4 | 4 | 4 | 2 | 8 |
best1exp | 4 | 4 | 3 | 4 | 5 |
best2exp | 4 | 4 | 4 | 1 | 6 |
currenttobest1bin | 3 | 3 | 3 | 2 | 8 |
currenttobest1exp | 4 | 4 | 4 | 1 | 8 |
rand1bin | 4 | 4 | 4 | 3 | 8 |
rand2bin | 3 | 3 | 2 | 3 | 2 |
rand1exp | 4 | 4 | 3 | 2 | 7 |
rand2exp | 2 | 2 | 1 | 1 | 4 |
ML Model | Elapsed Time | Consumed Energy | Accuracy |
---|---|---|---|
resnet18 | 1.505000000000001 | 1.4800000000000006 | 1.394999999999994 |
convnextsmall | 1.4949999999999906 | 1.5299999999999907 | 2.6374999999999935 |
densenet121 | 3.3250000000000006 | 3.2925000000000013 | 2.6725000000000008 |
vgg11 | 3.67500000000001 | 3.6975000000000096 | 3.295000000000002 |
ML Model Pair | Metric | Rank Difference | Confidence Interval (CI) | Significant |
---|---|---|---|---|
resnet18—convnextsmall | elapsed time | 0.010000 | [−0.967, 0.987] | No |
resnet18—densenet121 | elapsed time | −1.820000 | [−2.797, −0.843] | Yes |
resnet18—vgg11 | elapsed time | −2.170000 | [−3.147, −1.193] | Yes |
convnextsmall—densenet121 | elapsed time | −1.830000 | [−2.807, −0.853] | Yes |
convnextsmall—vgg11 | elapsed time | −2.180000 | [−3.157, −1.203] | Yes |
densenet121—vgg11 | elapsed time | −0.350000 | [−1.327, 0.627] | No |
resnet18—convnextsmall | consumed energy | −0.050000 | [−1.027, 0.927] | No |
resnet18—densenet121 | consumed energy | −1.813000 | [−2.79, −0.836] | Yes |
resnet18—vgg11 | consumed energy | −2.218000 | [−3.195, −1.241] | Yes |
convnextsmall—densenet121 | consumed energy | −1.763000 | [−2.74, −0.786] | Yes |
convnextsmall—vgg11 | consumed energy | −2.168000 | [−3.145, −1.191] | Yes |
densenet121—vgg11 | consumed energy | −0.405000 | [−1.382, 0.572] | No |
resnet18—convnextsmall | accuracy | −1.242000 | [−2.219, −0.265] | Yes |
resnet18—densenet121 | accuracy | −1.278000 | [−2.255, −0.301] | Yes |
resnet18—vgg11 | accuracy | −1.900000 | [−2.877, −0.923] | Yes |
convnextsmall—densenet121 | accuracy | −0.036000 | [−1.013, 0.941] | No |
convnextsmall—vgg11 | accuracy | −0.658000 | [−1.635, 0.319] | No |
densenet121—vgg11 | accuracy | −0.622000 | [−1.599, 0.355] | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prica, T.; Zamuda, A. High-Performance Deployment Operational Data Analytics of Pre-Trained Multi-Label Classification Architectures with Differential-Evolution-Based Hyperparameter Optimization (AutoDEHypO). Mathematics 2025, 13, 1681. https://doi.org/10.3390/math13101681
Prica T, Zamuda A. High-Performance Deployment Operational Data Analytics of Pre-Trained Multi-Label Classification Architectures with Differential-Evolution-Based Hyperparameter Optimization (AutoDEHypO). Mathematics. 2025; 13(10):1681. https://doi.org/10.3390/math13101681
Chicago/Turabian StylePrica, Teo, and Aleš Zamuda. 2025. "High-Performance Deployment Operational Data Analytics of Pre-Trained Multi-Label Classification Architectures with Differential-Evolution-Based Hyperparameter Optimization (AutoDEHypO)" Mathematics 13, no. 10: 1681. https://doi.org/10.3390/math13101681
APA StylePrica, T., & Zamuda, A. (2025). High-Performance Deployment Operational Data Analytics of Pre-Trained Multi-Label Classification Architectures with Differential-Evolution-Based Hyperparameter Optimization (AutoDEHypO). Mathematics, 13(10), 1681. https://doi.org/10.3390/math13101681