Second-Order Gradient Estimates for the Porous Medium Equation on Riemannian Manifolds
Abstract
:1. Introduction
- Regularity theory: they provide crucial information about solution smoothness;
- Geometric interpretation: second-order estimates directly relate to curvature through the second derivatives of the metric;
2. A Lemma
- Step 1. Calculate using the Bochner formula and the curvature conditions.
- Firstly, calculate . Simple computation yields the following:
- Using (2) and Cauchy’s inequality, we obtain
3. Proof of the Main Theorem
- Step 1. A quadratic inequality is derived by using the well-known cut-off function and the maximum principle.
- 1.
- in .
- 2.
- is decreasing as a radial function in the spatial variables.
- 3.
- when .
- 4.
- .
- From the inequality , we have , where a is a positive number and b and c are two non-negative numbers. Noting that and that for any , we have
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Daskalopoulos, P.; Hamilton, R. Regularity of the free boundary for the porous medium equation. J. Amer. Math. Soc. 1998, 11, 899–965. [Google Scholar] [CrossRef]
- Vázquez, J.L. The Porous Medium Equation; Oxford Mathematical Monographs; Mathematical Theory; The Clarendon Press, Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Berryman, J.G.; Holland, C.J. Asymptotic behavior of the nonlinear diffusion equation nt = (n−1nx)x. J. Math. Phys. 1982, 23, 983–987. [Google Scholar] [CrossRef]
- Conner, H.E. Some general properties of a class of semilinear hyperbolic systems analogous to the differential-integral equations of gas dynamics. J. Differ. Equ. 1971, 10, 188–203. [Google Scholar] [CrossRef]
- de Gennes, P.G. Wetting: Statics and dynamics. Rev. Mod. Phys. 1985, 57, 827–863. [Google Scholar] [CrossRef]
- Li, P.; Yau, S.-T. On the parabolic kernel of the Schrödinger operator. Acta Math. 1986, 156, 153–201. [Google Scholar] [CrossRef]
- Chen, L.; Chen, W. Gradient estimates for a nonlinear parabolic equation on complete non-compact Riemannian manifolds. Ann. Glob. Anal. Geom. 2009, 35, 397–404. [Google Scholar] [CrossRef]
- Chen, Q.; Qiu, H. Gradient estimates and Harnack inequalities of a nonlinear parabolic equation for the V-Laplacian. Ann. Glob. Anal. Geom. 2016, 50, 47–64. [Google Scholar] [CrossRef]
- Huang, G.; Huang, Z.; Li, H. Gradient estimates and differential Harnack inequalities for a nonlinear parabolic equation on Riemannian manifolds. Ann. Glob. Anal. Geom. 2013, 43, 209–232. [Google Scholar] [CrossRef]
- Li, J.; Xu, X. Differential Harnack inequalities on Riemannian manifolds I: Linear heat equation. Adv. Math. 2011, 226, 4456–4491. [Google Scholar] [CrossRef]
- Li, Y. Li-Yau-Hamilton estimates and Bakry-Emery-Ricci curvature. Nonlinear Anal. 2015, 113, 1–32. [Google Scholar] [CrossRef]
- Liu, S. Gradient estimates for solutions of the heat equation under Ricci flow. Pac. J. Math. 2009, 243, 165–180. [Google Scholar] [CrossRef]
- Ma, L. Gradient estimates for a simple elliptic equation on complete non-compact Riemannian manifolds. J. Funct. Anal. 2006, 241, 374–382. [Google Scholar]
- Qian, Z.; Zhang, H.-C.; Zhu, X.-P. Sharp spectral gap and Li-Yau’s estimate on Alexandrov spaces. Math. Z. 2013, 273, 1175–1195. [Google Scholar] [CrossRef]
- Souplet, P.; Zhang, Q.S. Sharp gradient estimate and Yau’s Liouville theorem for the heat equation on noncompact manifolds. Bull. Lond. Math. Soc. 2006, 38, 1045–1053. [Google Scholar] [CrossRef]
- Sun, J. Gradient estimates for positive solutions of the heat equation under geometric flow. Pac. J. Math. 2011, 253, 489–510. [Google Scholar] [CrossRef]
- Yang, Y. Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds. Proc. Amer. Math. Soc. 2008, 136, 4095–4102. [Google Scholar] [CrossRef]
- Li, J. Gradient estimate for the heat kernel of a complete Riemannian manifold and its applications. J. Funct. Anal. 1991, 97, 293–310. [Google Scholar]
- Li, J.Y. The Sobolev inequality and Sobolev imbedding theorem for Riemannian manifolds with non-negative Ricci curvature. Chin. Ann. Math. Ser. A 1994, 15, 461–471. [Google Scholar]
- Cao, H.-D.; Zhu, X.-P. A complete proof of the Poincaré and geometrization conjectures—Application of the Hamilton-Perelman theory of the Ricci flow. Asian J. Math. 2006, 10, 165–492. [Google Scholar] [CrossRef]
- Hamilton, R.S. A matrix Harnack estimate for the heat equation. Comm. Anal. Geom. 1993, 1, 113–126. [Google Scholar] [CrossRef]
- Han, Q.; Zhang, Q.S. An upper bound for Hessian matrices of positive solutions of heat equations. J. Geom. Anal. 2016, 26, 715–749. [Google Scholar] [CrossRef]
- Zhang, L. Global Hessian estimates for an Allen-Cahn equation on Riemannian manifolds. J. Math. Anal. Appl. 2021, 493, 124573. [Google Scholar] [CrossRef]
- Wang, W. Upper bounds of Hessian matrix and gradient estimates of positive solutions of the nonlinear parabolic equation along Ricci flow. Nonlinear Anal. 2022, 214, 112548. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, H.; Xie, D.; Yang, L. Local Hessian estimates of solutions of nonlinear parabolic equations along Ricci flow. Commun. Pure Appl. Anal. 2023, 22, 318–342. [Google Scholar] [CrossRef]
- Zhu, X. Hamilton’s gradient estimates and Liouville theorems for porous medium equations on noncompact Riemannian manifolds. J. Math. Anal. Appl. 2013, 402, 201–206. [Google Scholar] [CrossRef]
- Cao, H.-D.; Zhu, M. Aronson-Bénilan estimates for the porous medium equation under the Ricci flow. J. Math. Pures Appl. 2015, 104, 729–748. [Google Scholar] [CrossRef]
- Lu, P.; Ni, L.; Vázquez, J.-L.; Villani, C. Local Aronson-Bénilan estimates and entropy formulae for porous medium and fast diffusion equations on manifolds. J. Math. Pures Appl. 2009, 91, 1–19. [Google Scholar] [CrossRef]
- Huang, G.; Xu, R.; Zeng, F. Hamilton’s gradient estimates and Liouville theorems for porous medium equations. J. Inequal. Appl. 2016, 7, 37. [Google Scholar] [CrossRef]
- Huang, G.; Huang, Z.; Li, H. Gradient estimates for the porous medium equations on Riemannian manifolds. J. Geom. Anal. 2013, 23, 1851–1875. [Google Scholar] [CrossRef]
- Aronson, D.G.; Bénilan, P. Régularité des solutions de l’équation des milieux poreux dans RN. C. R. Acad. Sci. Paris Ser. A 1979, 288, A103–A105. [Google Scholar]
- Qiu, H. Gradient estimates of a general porous medium equation for the V-Laplacian. Kodai Math. J. 2020, 43, 16–41. [Google Scholar] [CrossRef]
- Shi, W.-X. Deforming the metric on complete Riemannian manifolds. J. Differ. Geom. 1989, 30, 223–301. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Zhao, G. Second-Order Gradient Estimates for the Porous Medium Equation on Riemannian Manifolds. Mathematics 2025, 13, 1683. https://doi.org/10.3390/math13101683
Yang J, Zhao G. Second-Order Gradient Estimates for the Porous Medium Equation on Riemannian Manifolds. Mathematics. 2025; 13(10):1683. https://doi.org/10.3390/math13101683
Chicago/Turabian StyleYang, Jingjing, and Guangwen Zhao. 2025. "Second-Order Gradient Estimates for the Porous Medium Equation on Riemannian Manifolds" Mathematics 13, no. 10: 1683. https://doi.org/10.3390/math13101683
APA StyleYang, J., & Zhao, G. (2025). Second-Order Gradient Estimates for the Porous Medium Equation on Riemannian Manifolds. Mathematics, 13(10), 1683. https://doi.org/10.3390/math13101683