The Fourth Hybrid Power Mean Involving the Character Sums and Exponential Sums
Abstract
:1. Introduction
2. Main Results
3. Several Lemmas
4. Proofs of Theorems
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, H.; Zhang, W.P. The fourth power mean of two-term exponential sums and its application. Math. Rep. 2017, 19, 75–81. [Google Scholar]
- Wang, T.T.; Zhang, W.P. On the eighth power mean of the two-term exponential sums. Finite Fields Their Appl. 2023, 92, 102285. [Google Scholar] [CrossRef]
- Bag, N.; Rojas-León, A.; Zhang, W.P. On some conjectures on generalized quadratic Gauss sums and related problems. Finite Fields Their Appl. 2023, 86, 102131. [Google Scholar] [CrossRef]
- Han, D. A Hybrid mean value involving two-term exponential sums and polynomial character sums. Czechoslov. Math. J. 2014, 64, 53–62. [Google Scholar]
- Lv, X.X.; Zhang, W.P. On the character sum of polynomials and the two-term exponential sums. Acta Math. Sin. Engl. Ser. 2020, 36, 196–206. [Google Scholar] [CrossRef]
- Yu, J.M.; Yuan, R.J.; Wang, T.T. The fourth power mean value of one kind two-term exponential sums. AIMS Math. 2022, 7, 17045–17060. [Google Scholar] [CrossRef]
- Han, X.; Wang, T.T. The hybrid power mean of the generalized Gauss sums and the generalized two-term exponential sums. AIMS Math. 2024, 9, 3722–3739. [Google Scholar] [CrossRef]
- Zhang, W.P.; Meng, Y.Y. On the sixth power mean of the two-term exponential sums. Acta Math. Sin. Engl. Ser. 2022, 38, 510–518. [Google Scholar] [CrossRef]
- Wang, J.Z.; Ma, Y.K. The hybrid power mean of the k-th Gauss sums and Kloosterman sums. J. Shaanxi Norm. Univ. (Nat. Sci. Ed.) 2017, 45, 5–7. [Google Scholar]
- Lv, X.X.; Zhang, W.P. A new hybrid power mean involving the generalized quadratic Gauss sums and sums analogous to Kloosterman sums. Lith. Math. J. 2017, 57, 359–366. [Google Scholar] [CrossRef]
- Chern, S. On the power mean of a sum analogous to the Kloosterman sum. Bull. Math. Soc. Sci. Math. Roum. 2019, 62, 77–92. [Google Scholar]
- Zhang, W.P.; Han, D. On the sixth power mean of the two-term exponential sums. J. Number Theory 2014, 136, 403–413. [Google Scholar] [CrossRef]
- Apostol, T.M. Introduction to Analytic Number Theory; Springer: New York, NY, USA, 1976. [Google Scholar]
- Ireland, K.; Rosen, M. A Classical Introduction to Modern Number Theory; Springer: New York, NY, USA, 1982. [Google Scholar]
- Davenport, H.; Hasse, H. Die Nullstellen der Kongruenz zeta funktionen in gewissen zyklischen Fällen. J. Reine Angew. Math. 1934, 172, 151–182. [Google Scholar]
- Berndt, B.C.; Evans, R.J. The determination of Gauss sums. Bull. Am. Math. Soc. 1981, 5, 107–128. [Google Scholar] [CrossRef]
- Zhang, W.P.; Hu, J.Y. The number of solutions of the diagonal cubic congruence equation mod p. Math. Rep. 2018, 20, 70–76. [Google Scholar]
- Zhang, J.; Zhang, W.P. A certain two-term exponential sum and its fourth power means. AIMS Math. 2020, 5, 7500–7509. [Google Scholar]
- Kenneth, I.; Michael, R. Gauss and Jacobi Sums. Class. Introd. Mod. Number Theory 1990, 84, 88–107. [Google Scholar] [CrossRef]
- Berndt, B.; Evans, R.; Williams, K. Gauss and Jacobi Sums; Wiley-Interscience: New York, NY, USA, 1998. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Du, T. The Fourth Hybrid Power Mean Involving the Character Sums and Exponential Sums. Mathematics 2025, 13, 1680. https://doi.org/10.3390/math13101680
Chen G, Du T. The Fourth Hybrid Power Mean Involving the Character Sums and Exponential Sums. Mathematics. 2025; 13(10):1680. https://doi.org/10.3390/math13101680
Chicago/Turabian StyleChen, Guohui, and Tingting Du. 2025. "The Fourth Hybrid Power Mean Involving the Character Sums and Exponential Sums" Mathematics 13, no. 10: 1680. https://doi.org/10.3390/math13101680
APA StyleChen, G., & Du, T. (2025). The Fourth Hybrid Power Mean Involving the Character Sums and Exponential Sums. Mathematics, 13(10), 1680. https://doi.org/10.3390/math13101680