The Fourth Hybrid Power Mean Involving the Character Sums and Exponential Sums
Abstract
1. Introduction
2. Main Results
3. Several Lemmas
4. Proofs of Theorems
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, H.; Zhang, W.P. The fourth power mean of two-term exponential sums and its application. Math. Rep. 2017, 19, 75–81. [Google Scholar]
- Wang, T.T.; Zhang, W.P. On the eighth power mean of the two-term exponential sums. Finite Fields Their Appl. 2023, 92, 102285. [Google Scholar] [CrossRef]
- Bag, N.; Rojas-León, A.; Zhang, W.P. On some conjectures on generalized quadratic Gauss sums and related problems. Finite Fields Their Appl. 2023, 86, 102131. [Google Scholar] [CrossRef]
- Han, D. A Hybrid mean value involving two-term exponential sums and polynomial character sums. Czechoslov. Math. J. 2014, 64, 53–62. [Google Scholar]
- Lv, X.X.; Zhang, W.P. On the character sum of polynomials and the two-term exponential sums. Acta Math. Sin. Engl. Ser. 2020, 36, 196–206. [Google Scholar] [CrossRef]
- Yu, J.M.; Yuan, R.J.; Wang, T.T. The fourth power mean value of one kind two-term exponential sums. AIMS Math. 2022, 7, 17045–17060. [Google Scholar] [CrossRef]
- Han, X.; Wang, T.T. The hybrid power mean of the generalized Gauss sums and the generalized two-term exponential sums. AIMS Math. 2024, 9, 3722–3739. [Google Scholar] [CrossRef]
- Zhang, W.P.; Meng, Y.Y. On the sixth power mean of the two-term exponential sums. Acta Math. Sin. Engl. Ser. 2022, 38, 510–518. [Google Scholar] [CrossRef]
- Wang, J.Z.; Ma, Y.K. The hybrid power mean of the k-th Gauss sums and Kloosterman sums. J. Shaanxi Norm. Univ. (Nat. Sci. Ed.) 2017, 45, 5–7. [Google Scholar]
- Lv, X.X.; Zhang, W.P. A new hybrid power mean involving the generalized quadratic Gauss sums and sums analogous to Kloosterman sums. Lith. Math. J. 2017, 57, 359–366. [Google Scholar] [CrossRef]
- Chern, S. On the power mean of a sum analogous to the Kloosterman sum. Bull. Math. Soc. Sci. Math. Roum. 2019, 62, 77–92. [Google Scholar]
- Zhang, W.P.; Han, D. On the sixth power mean of the two-term exponential sums. J. Number Theory 2014, 136, 403–413. [Google Scholar] [CrossRef]
- Apostol, T.M. Introduction to Analytic Number Theory; Springer: New York, NY, USA, 1976. [Google Scholar]
- Ireland, K.; Rosen, M. A Classical Introduction to Modern Number Theory; Springer: New York, NY, USA, 1982. [Google Scholar]
- Davenport, H.; Hasse, H. Die Nullstellen der Kongruenz zeta funktionen in gewissen zyklischen Fällen. J. Reine Angew. Math. 1934, 172, 151–182. [Google Scholar]
- Berndt, B.C.; Evans, R.J. The determination of Gauss sums. Bull. Am. Math. Soc. 1981, 5, 107–128. [Google Scholar] [CrossRef]
- Zhang, W.P.; Hu, J.Y. The number of solutions of the diagonal cubic congruence equation mod p. Math. Rep. 2018, 20, 70–76. [Google Scholar]
- Zhang, J.; Zhang, W.P. A certain two-term exponential sum and its fourth power means. AIMS Math. 2020, 5, 7500–7509. [Google Scholar]
- Kenneth, I.; Michael, R. Gauss and Jacobi Sums. Class. Introd. Mod. Number Theory 1990, 84, 88–107. [Google Scholar] [CrossRef]
- Berndt, B.; Evans, R.; Williams, K. Gauss and Jacobi Sums; Wiley-Interscience: New York, NY, USA, 1998. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Du, T. The Fourth Hybrid Power Mean Involving the Character Sums and Exponential Sums. Mathematics 2025, 13, 1680. https://doi.org/10.3390/math13101680
Chen G, Du T. The Fourth Hybrid Power Mean Involving the Character Sums and Exponential Sums. Mathematics. 2025; 13(10):1680. https://doi.org/10.3390/math13101680
Chicago/Turabian StyleChen, Guohui, and Tingting Du. 2025. "The Fourth Hybrid Power Mean Involving the Character Sums and Exponential Sums" Mathematics 13, no. 10: 1680. https://doi.org/10.3390/math13101680
APA StyleChen, G., & Du, T. (2025). The Fourth Hybrid Power Mean Involving the Character Sums and Exponential Sums. Mathematics, 13(10), 1680. https://doi.org/10.3390/math13101680