Optimal Inequalities Characterizing Totally Real Submanifolds in Quaternionic Space Form
Abstract
1. Introduction
2. Preliminaries
3. Main Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simons, J. Minimal varieties in Riemannian manifolds. Ann. Math. 1968, 88, 62–105. [Google Scholar] [CrossRef]
- Lawson, H.B. Local rigidity theorems for minimal hypersurfaces. Ann. Math. 1969, 89, 187–197. [Google Scholar] [CrossRef]
- Chern, S.-S.; do Carmo, M.; Kobayashi, S. Minimal submanifolds of a sphere with the second fundamental form of constant length. In Functional Analysis and Related Fields; Browder, F.E., Ed.; Springer: Berlin/Heidelberg, Germany, 1970; pp. 59–75. [Google Scholar]
- Li, A.-M.; Li, J. An intrinsic rigidity theorem for minimal submanifolds in a sphere. Arch. Math. 1992, 58, 582–594. [Google Scholar]
- Chen, Q.; Xu, S. Rigidity of compact minimal submanifolds in a unit sphere. Geom. Dedicata 1993, 45, 83–88. [Google Scholar] [CrossRef]
- Leung, P.-F. Minimal submanifolds in a sphere. Math. Z. 1983, 183, 75–86. [Google Scholar] [CrossRef]
- Song, W.; Shao, W. Totally real submanifolds with constant scalar curvature in a complex space form. J. Math. (PRC) 2013, 33, 20–26. [Google Scholar]
- Xu, H.-W. A rigidity theorem for a submanifold with parallel mean curvature in a sphere. Arch. Math. 1993, 61, 489–496. [Google Scholar] [CrossRef]
- Xu, H.-W.; Gu, J.-R. A general gap theorem for submanifolds with parallel mean curvature in Rn+p. Commun. Anal. Geom. 2007, 15, 175–293. [Google Scholar]
- Liu, M.; Song, W. Complete totally real pseudo-umbilical submanifolds in a complex projective space. J. Math. Res. Expo. 2011, 31, 946–950. [Google Scholar]
- Gu, J.R.; Xu, H.W. On Yao rigidity theorem for minimal submanifolds in spheres. Math. Res. Anal. 2012, 19, 511–523. [Google Scholar]
- Zhao, G.-S. An intrinsic rigidity theorem for totally real minimal submanifolds in a complex projective space. J. Sichuan Univ. 1992, 29, 174–178. [Google Scholar]
- Bektaş, M. Totally real submanifolds in a quaternion space form. Czechoslov. Math. J. 2004, 54, 341–346. [Google Scholar] [CrossRef]
- Carriazo, A.; Kim, Y.H.; Yoon, D.W. Some inequalities on totally real submanifolds in quaternionic space forms. J. Korean Math. Soc. 2004, 41, 795–808. [Google Scholar]
- Mutlu, P.; Sentürk, Z. On quaternionic space forms. Filomat 2015, 29, 593–597. [Google Scholar] [CrossRef]
- Lee, J.; Vîlcu, G.-E. Inequalities for generalized normalized δ-Casorati curvatures of slant submanifolds in quaternionic space forms. Taiwan. J. Math. 2015, 19, 691–702. [Google Scholar] [CrossRef]
- Alghamdi, F. Characterizations of pointwise hemi-slant warped product submanifolds in LCK manifolds. Symmetry 2024, 16, 281. [Google Scholar] [CrossRef]
- Alhouiti, N. Pointwise hemislant submanifolds in a complex space form. J. Math. 2023, 8940238. [Google Scholar] [CrossRef]
- Alghamdi, F. On warped product pointwise pseudo-slant submanifolds of LCK-manifolds and their applications. Axioms 2024, 13, 807. [Google Scholar] [CrossRef]
- Chen, B.-Y.; Ogiue, K. On totally real submanifolds. Trans. Am. Math. Soc. 1974, 193, 257–266. [Google Scholar] [CrossRef]
- Ali, A.; Alkhaldi, A.H.; Laurian-Ioan, P.; Ali, R. Eigenvalue inequalities for the p-Laplacian operator on C-totally real submanifolds in Sasakian space forms. Appl. Anal. 2022, 101, 702–713. [Google Scholar] [CrossRef]
- Ali, A.; Lee, J.W.; Alkhaldi, A.H. The first eigenvalue for the p-Laplacian on Lagrangian submanifolds in complex space forms. Int. J. Math. 2022, 33, 2250016. [Google Scholar] [CrossRef]
- Li, Y.L.; Mofarreh, F.; Agrawal, R.P.; Ali, A. Reilly-type inequality for the Φ-Laplace operator on semi-slant submanifolds of Sasakian space forms. J. Inequal. Appl. 2022, 2022, 102. [Google Scholar] [CrossRef]
- Alluhaibi, N.; Ali, A. The eigenvalue estimates of p-Laplacian of totally real submanifolds in generalized complex space forms. Ric. Mat. 2024, 73, 1307–1321. [Google Scholar] [CrossRef]
- Ahmad, L.M. Basic inequalities for submanifolds of quaternionic space forms with a quarter-symmetric connection. J. Geom. Phys. 2021, 159, 103927. [Google Scholar]
- Siddiqi, M.D.; Siddiqui, A.N.; Ahmad, K. A generalized Wintgen inequality in quaternion Kähler geometry. Int. J. Geom. Methods Mod. Phys. 2024, 21, 2450185. [Google Scholar] [CrossRef]
- Ge, J.Q.; Tang, Z.Z. A proof of the DDVV conjecture and its equality case. Pac. J. Math. 2008, 237, 87–95. [Google Scholar] [CrossRef]
- Lu, Z. Normal scalar curvature conjecture and its applications. J. Funct. Anal. 2011, 261, 1284–1308. [Google Scholar] [CrossRef]
- Zhou, J.-D.; Xu, C.-Y.; Song, W.-D. The rigidity of total real submanifolds in a complex projective space. J. Math. (PRC) 2015, 35, 1139–1147. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghamdi, F.; Ali, A. Optimal Inequalities Characterizing Totally Real Submanifolds in Quaternionic Space Form. Mathematics 2025, 13, 1643. https://doi.org/10.3390/math13101643
Alghamdi F, Ali A. Optimal Inequalities Characterizing Totally Real Submanifolds in Quaternionic Space Form. Mathematics. 2025; 13(10):1643. https://doi.org/10.3390/math13101643
Chicago/Turabian StyleAlghamdi, Fatimah, and Akram Ali. 2025. "Optimal Inequalities Characterizing Totally Real Submanifolds in Quaternionic Space Form" Mathematics 13, no. 10: 1643. https://doi.org/10.3390/math13101643
APA StyleAlghamdi, F., & Ali, A. (2025). Optimal Inequalities Characterizing Totally Real Submanifolds in Quaternionic Space Form. Mathematics, 13(10), 1643. https://doi.org/10.3390/math13101643