Optimal Inequalities Characterizing Totally Real Submanifolds in Quaternionic Space Form
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simons, J. Minimal varieties in Riemannian manifolds. Ann. Math. 1968, 88, 62–105. [Google Scholar] [CrossRef]
- Lawson, H.B. Local rigidity theorems for minimal hypersurfaces. Ann. Math. 1969, 89, 187–197. [Google Scholar] [CrossRef]
- Chern, S.-S.; do Carmo, M.; Kobayashi, S. Minimal submanifolds of a sphere with the second fundamental form of constant length. In Functional Analysis and Related Fields; Browder, F.E., Ed.; Springer: Berlin/Heidelberg, Germany, 1970; pp. 59–75. [Google Scholar]
- Li, A.-M.; Li, J. An intrinsic rigidity theorem for minimal submanifolds in a sphere. Arch. Math. 1992, 58, 582–594. [Google Scholar]
- Chen, Q.; Xu, S. Rigidity of compact minimal submanifolds in a unit sphere. Geom. Dedicata 1993, 45, 83–88. [Google Scholar] [CrossRef]
- Leung, P.-F. Minimal submanifolds in a sphere. Math. Z. 1983, 183, 75–86. [Google Scholar] [CrossRef]
- Song, W.; Shao, W. Totally real submanifolds with constant scalar curvature in a complex space form. J. Math. (PRC) 2013, 33, 20–26. [Google Scholar]
- Xu, H.-W. A rigidity theorem for a submanifold with parallel mean curvature in a sphere. Arch. Math. 1993, 61, 489–496. [Google Scholar] [CrossRef]
- Xu, H.-W.; Gu, J.-R. A general gap theorem for submanifolds with parallel mean curvature in Rn+p. Commun. Anal. Geom. 2007, 15, 175–293. [Google Scholar]
- Liu, M.; Song, W. Complete totally real pseudo-umbilical submanifolds in a complex projective space. J. Math. Res. Expo. 2011, 31, 946–950. [Google Scholar]
- Gu, J.R.; Xu, H.W. On Yao rigidity theorem for minimal submanifolds in spheres. Math. Res. Anal. 2012, 19, 511–523. [Google Scholar]
- Zhao, G.-S. An intrinsic rigidity theorem for totally real minimal submanifolds in a complex projective space. J. Sichuan Univ. 1992, 29, 174–178. [Google Scholar]
- Bektaş, M. Totally real submanifolds in a quaternion space form. Czechoslov. Math. J. 2004, 54, 341–346. [Google Scholar] [CrossRef]
- Carriazo, A.; Kim, Y.H.; Yoon, D.W. Some inequalities on totally real submanifolds in quaternionic space forms. J. Korean Math. Soc. 2004, 41, 795–808. [Google Scholar]
- Mutlu, P.; Sentürk, Z. On quaternionic space forms. Filomat 2015, 29, 593–597. [Google Scholar] [CrossRef]
- Lee, J.; Vîlcu, G.-E. Inequalities for generalized normalized δ-Casorati curvatures of slant submanifolds in quaternionic space forms. Taiwan. J. Math. 2015, 19, 691–702. [Google Scholar] [CrossRef]
- Alghamdi, F. Characterizations of pointwise hemi-slant warped product submanifolds in LCK manifolds. Symmetry 2024, 16, 281. [Google Scholar] [CrossRef]
- Alhouiti, N. Pointwise hemislant submanifolds in a complex space form. J. Math. 2023, 8940238. [Google Scholar] [CrossRef]
- Alghamdi, F. On warped product pointwise pseudo-slant submanifolds of LCK-manifolds and their applications. Axioms 2024, 13, 807. [Google Scholar] [CrossRef]
- Chen, B.-Y.; Ogiue, K. On totally real submanifolds. Trans. Am. Math. Soc. 1974, 193, 257–266. [Google Scholar] [CrossRef]
- Ali, A.; Alkhaldi, A.H.; Laurian-Ioan, P.; Ali, R. Eigenvalue inequalities for the p-Laplacian operator on C-totally real submanifolds in Sasakian space forms. Appl. Anal. 2022, 101, 702–713. [Google Scholar] [CrossRef]
- Ali, A.; Lee, J.W.; Alkhaldi, A.H. The first eigenvalue for the p-Laplacian on Lagrangian submanifolds in complex space forms. Int. J. Math. 2022, 33, 2250016. [Google Scholar] [CrossRef]
- Li, Y.L.; Mofarreh, F.; Agrawal, R.P.; Ali, A. Reilly-type inequality for the Φ-Laplace operator on semi-slant submanifolds of Sasakian space forms. J. Inequal. Appl. 2022, 2022, 102. [Google Scholar] [CrossRef]
- Alluhaibi, N.; Ali, A. The eigenvalue estimates of p-Laplacian of totally real submanifolds in generalized complex space forms. Ric. Mat. 2024, 73, 1307–1321. [Google Scholar] [CrossRef]
- Ahmad, L.M. Basic inequalities for submanifolds of quaternionic space forms with a quarter-symmetric connection. J. Geom. Phys. 2021, 159, 103927. [Google Scholar]
- Siddiqi, M.D.; Siddiqui, A.N.; Ahmad, K. A generalized Wintgen inequality in quaternion Kähler geometry. Int. J. Geom. Methods Mod. Phys. 2024, 21, 2450185. [Google Scholar] [CrossRef]
- Ge, J.Q.; Tang, Z.Z. A proof of the DDVV conjecture and its equality case. Pac. J. Math. 2008, 237, 87–95. [Google Scholar] [CrossRef]
- Lu, Z. Normal scalar curvature conjecture and its applications. J. Funct. Anal. 2011, 261, 1284–1308. [Google Scholar] [CrossRef]
- Zhou, J.-D.; Xu, C.-Y.; Song, W.-D. The rigidity of total real submanifolds in a complex projective space. J. Math. (PRC) 2015, 35, 1139–1147. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghamdi, F.; Ali, A. Optimal Inequalities Characterizing Totally Real Submanifolds in Quaternionic Space Form. Mathematics 2025, 13, 1643. https://doi.org/10.3390/math13101643
Alghamdi F, Ali A. Optimal Inequalities Characterizing Totally Real Submanifolds in Quaternionic Space Form. Mathematics. 2025; 13(10):1643. https://doi.org/10.3390/math13101643
Chicago/Turabian StyleAlghamdi, Fatimah, and Akram Ali. 2025. "Optimal Inequalities Characterizing Totally Real Submanifolds in Quaternionic Space Form" Mathematics 13, no. 10: 1643. https://doi.org/10.3390/math13101643
APA StyleAlghamdi, F., & Ali, A. (2025). Optimal Inequalities Characterizing Totally Real Submanifolds in Quaternionic Space Form. Mathematics, 13(10), 1643. https://doi.org/10.3390/math13101643