On the Solution of the Navier Problem for the 3-Harmonic Equation in the Unit Ball
Abstract
:1. Introduction
2. Preliminary Results
2.1. Notation and Terminology
2.2. Auxiliary Results
2.3. Elementary Solutions and
2.4. Expansions of Functions and
2.5. Expansion of the Elementary Solution
3. Green’s Function
3.1. Expansion of
3.2. Green’s Function
4. Biharmonic Navier Problem
4.1. Green’s Function
4.2. Another Representation of the Solution
5. Triharmonic Navier Problem
6. Conclusions
Funding
Conflicts of Interest
References
- Begehr, H. Biharmonic Green functions. Matematiche 2006, LXI, 395–405. [Google Scholar]
- Wang, Y.; Ye, L. Biharmonic Green function and biharmonic Neumann function in a sector. Complex Var. Elliptic Equ. 2013, 58, 7–22. [Google Scholar] [CrossRef]
- Wang, Y. Tri-harmonic boundary value problems in a sector. Complex Var. Elliptic Equ. 2014, 59, 732–749. [Google Scholar] [CrossRef]
- Karachik, V.V. Green’s function of Dirichlet problem for biharmonic equation in the ball. Complex Var. Elliptic Equ. 2019, 64, 1500–1521. [Google Scholar] [CrossRef]
- Karachik, V.V. The Green function of the Dirichlet problem for the triharmonic equation in the ball. Math. Notes 2020, 107, 105–120. [Google Scholar] [CrossRef]
- Boggio, T. Sulle funzioni di Green d’ordine m. Palermo Rend. 1905, 20, 97–135. [Google Scholar] [CrossRef]
- Kalmenov, T.S.; Koshanov, B.D.; Nemchenko, M.Y. Green function representation for the Dirichlet problem of the polyharmonic equation in a sphere. Complex Var. Elliptic Equ. 2008, 53, 177–183. [Google Scholar] [CrossRef]
- Karachik, V.V. The Green function of the Navier problem for the polyharmonic equation in a ball. J. Math. Sci. 2023, 269, 189–204. [Google Scholar] [CrossRef]
- Sweers, G. A survey on boundary conditions for the biharmonic. Complex Var. Elliptic Equ. 2009, 54, 79–93. [Google Scholar] [CrossRef]
- Gazzola, F.; Grunau, H.C.; Sweers, G. Polyharmonic Boundary Value Problems; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Nicolescu, M. Les Fonctions Polyharmoniques; Hermann Ed.: Paris, France, 1936. [Google Scholar]
- Karachik, V.V.; Torebek, B.T. On the Dirichlet-Riquier Problem for Biharmonic Equations. Math. Notes 2017, 102, 31–42. [Google Scholar] [CrossRef]
- Karachik, V.V. On the arithmetic triangle arising from the solvability conditions for the Neumann problem. Math. Notes 2014, 96, 217–227. [Google Scholar] [CrossRef]
- Gökgöz, P.A. Dirichlet problem for nonlinear higher-order equations in upper half plane. Complex Anal. Oper. Theory 2024, 18, 121. [Google Scholar] [CrossRef]
- Gökgöz, P.A. Dirichlet boundary value problem for linear polyanalytic equation in upper half plane. Complex Var. Elliptic Equ. 2024, 70, 549–554. [Google Scholar] [CrossRef]
- Karaca, B. Dirichlet problem for complex model partial differential equations. Complex Var. Elliptic Equ. 2020, 65, 1748–1762. [Google Scholar] [CrossRef]
- Linares, Y.R.; Vanegas, C.J. A Robin boundary value problem in the upper half plane for the Bitsadze equation. J. Math. Anal. Appl. 2014, 419, 200–217. [Google Scholar] [CrossRef]
- Matevossian, O.A. On solutions of the Neumann problem for the biharmonic equation in unbounded domains. Math. Notes 2015, 98, 990–994. [Google Scholar] [CrossRef]
- Begehr, H.; Burgumbayeva, S.; Shupeyeva, B. Green and Neumann Functions for a Plane Degenerate Circular Domain. Trends Math. 2019, 141–149. [Google Scholar]
- Begehr, H.; Burgumbayeva, S.; Shupeyeva, B. Remark on Robin problem for Poisson equation. Complex Var. Elliptic Equ. 2017, 62, 1589–1599. [Google Scholar] [CrossRef]
- Akel, M.; Begehr, H. Neumann function for a hyperbolic strip and a class of related plane domains. Math. Nachrichten 2017, 290, 490–506. [Google Scholar] [CrossRef]
- Lin, H. Harmonic Green and Neumann functions for domains bounded by two intersecting circular arcs. Complex Var. Elliptic Equ. 2022, 67, 79–95. [Google Scholar] [CrossRef]
- Begehr, H.; Burgumbayeva, S.; Dauletkulova, A.; Lin, H. Harmonic Green functions for the Almaty apple. Complex Var. Elliptic Equ. 2020, 65, 1814–1825. [Google Scholar] [CrossRef]
- Sadybekov, M.A.; Turmetov, B.K.; Torebek, B.T. On an explicit form of the Green function of the Robin problem for the Laplace operator in a circle. Adv. Pure Appl. Math. 2015, 6, 163–172. [Google Scholar] [CrossRef]
- Dong, H.; Li, H. Optimal Estimates for the Conductivity Problem by Green’s Function Method. Arch. Ration. Mech. Anal. 2019, 231, 1427–1453. [Google Scholar] [CrossRef]
- Grebenkov, D.S.; Traytak, S.D. Semi-analytical computation of Laplacian Green functions in three-dimensional domains with disconnected spherical boundaries. J. Comput. Phys. 2019, 379, 91–117. [Google Scholar] [CrossRef]
- Hsu, C.-W.; Hwu, C. Green’s functions for unsymmetric composite laminates with inclusions. Proc. R. Soc. A Math. Phys. Eng. Sci. 2020, 476, 20190437. [Google Scholar] [CrossRef] [PubMed]
- Van Dokkum, J.S.; Nicola, L. Green’s function molecular dynamics including viscoelasticity. Model. Simul. Mater. Sci. Eng. 2019, 27, 075006. [Google Scholar] [CrossRef]
- Karachik, V.V. Dirichlet and Neumann boundary value problems for the polyharmonic equation in the unit ball. Mathematics 2021, 9, 1907. [Google Scholar] [CrossRef]
- An, Q.; Huang, X.; Zhang, C. A decoupled finite element method for the triharmonic equation. Appl. Math. Lett. 2024, 147, 108843. [Google Scholar] [CrossRef]
- Dang, Q.A. Iterative method for solving a boundary value problem for triharmonic equation. Vietnam. J. Math. 2002, 30, 71–78. [Google Scholar]
- Bateman, H. Higher Transcendental Functions. V. 2; Mc-Graw-Hill: New York, NY, USA, 1953. [Google Scholar]
- Karachik, V.V. On some special polynomials. Proc. Am. Math. Soc. 2004, 132, 1049–1058. [Google Scholar] [CrossRef]
- Bitsadze, A.V. Uravneniya Matematicheskoi Fiziki (Equations of Mathematical Physics); Nauka: Moscow, Russia, 1982. [Google Scholar]
- Sobolev, S.L. Cubature Formulas and Modern Analysis: An Introduction; Nauka: Moscow, Russia, 1974. [Google Scholar]
- Karachik, V.V. Green’s Functions of the Navier and Riquier-Neumann problems for the biharmonic equation in the ball. Differ. Equ. 2021, 57, 654–668. [Google Scholar] [CrossRef]
- Nicolescu, M. Sur le problème de Riquier. Comptes Rendus Acad. Sci. Paris 1932, 194, 682–683. [Google Scholar]
- Itô, M. Sur les fonctions polyharmoniques et le problème de Riquier. Nagoya Math. J. 1970, 37, 81–90. [Google Scholar] [CrossRef]
- Karachik, V.V. Green’s functions of some boundary value problems for the biharmonic equation. Complex Var. Elliptic Equ. 2022, 67, 1712–1736. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karachik, V. On the Solution of the Navier Problem for the 3-Harmonic Equation in the Unit Ball. Mathematics 2025, 13, 1630. https://doi.org/10.3390/math13101630
Karachik V. On the Solution of the Navier Problem for the 3-Harmonic Equation in the Unit Ball. Mathematics. 2025; 13(10):1630. https://doi.org/10.3390/math13101630
Chicago/Turabian StyleKarachik, Valery. 2025. "On the Solution of the Navier Problem for the 3-Harmonic Equation in the Unit Ball" Mathematics 13, no. 10: 1630. https://doi.org/10.3390/math13101630
APA StyleKarachik, V. (2025). On the Solution of the Navier Problem for the 3-Harmonic Equation in the Unit Ball. Mathematics, 13(10), 1630. https://doi.org/10.3390/math13101630