Contextual Peano Scan and Fast Image Segmentation Using Hidden and Evidential Markov Chains †
Abstract
1. Introduction
2. Contextual Peano Scan and Hidden Markov Chains
2.1. Contextual Peano Scan
2.2. Bayesian MPM Segmentation with HMC-CPS
- (i)
- is Markovian if and only if there exist functions , …, from to such that
- (ii)
- if (10) is verified, and transitions are given by the functions , …, with
- Once and are given, each is computed with forward recursion:
- Let be Markovian: . Then (10) is satisfied by , , …, .
- Conversely, let satisfy (10). Thus, with the constant, which implies that for each , …, , we have
2.3. Parameter Estimation
- Initialize the parameters with some simple method;
- Compute from the current and ;
- -
- Sample according to the Markov distribution ;
- -
- Let be the set of couples , with and horizontal neighbors in the set of pixels, and let be the set of couples , with and vertical neighbors in the set of pixels. Let be the set of points such that . Set
3. Contextual Peano Scan and Hidden Evidential Markov Chains
3.1. MPM Restoration with Hidden Triplet Markov Chains
3.2. Models Combining Contextual Peano Scan with Triplet Markov Chains
3.3. Hidden Evidential Markov Chain for Contextual Peano Scan
4. Experiments
4.1. Segmentation of Synthetic Images
4.2. Segmentation of Real Images
5. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Donahue, J.; Hendricks, L.A.; Guadarrama, S.; Rohrbach, M.; Venugopalan, S.; Saenko, K.; Darrell, T. Long-term recurrent convolutional networks for visual recognition and description. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 677–691. [Google Scholar] [CrossRef] [PubMed]
- Majurski, M.; Manescu, P.; Padi, S.; Schaub, N.; Hotaling, N.; Simon, C., Jr.; Bajcsy, P. Cell image segmentation using generative adversarial networks, transfer learning, and augmentations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 15–20 June 2019; pp. 1114–1122. [Google Scholar]
- Rong, Y.; Jia, M.; Zhan, Y.; Zhou, L. SR-RDFAN-LOG: Arbitrary-scale logging image super-resolution reconstruction based on residual dense feature aggregation. Geoenergy Sci. Eng. 2024, 240, 213042. [Google Scholar] [CrossRef]
- Besag, J. On the statistical analysis of dirty pictures. J. R. Stat. Soc. Ser. B 1986, 48, 259–302. [Google Scholar] [CrossRef]
- Geman, S.; Geman, D. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 1984, 6, 721–741. [Google Scholar] [CrossRef]
- Marroquin, J.; Mitter, S.; Poggio, T. Probabilistic solution of ill-posed problems in computational vision. J. Am. Stat. Assoc. 1987, 82, 76–89. [Google Scholar] [CrossRef]
- Heitz, F.; Perez, P.; Bouthemy, P. Multiscale Minimization of Global Energy Functions in Some Visual Recovery Problems. CVGIP Image Underst. 1994, 59, 125–134. [Google Scholar] [CrossRef]
- Mignotte, M.; Collet, C.; Pérez, P.; Bouthemy, P. Three-Class Markovian Segmentation of High-Resolution Sonar Images. Comput. Vis. Image Underst. 1999, 76, 191–204. [Google Scholar] [CrossRef]
- Mignotte, M.; Collet, C.; Pérez, P.; Bouthemy, P. Markov Random Field and Fuzzy Logic Modeling in Sonar Imagery: Application to the Classification of Underwater Floor. Comput. Vis. Image Underst. 2000, 79, 4–24. [Google Scholar] [CrossRef]
- Ruan, S.; Moretti, B.; Fadili, J.; Bloyet, D. Fuzzy Markovian Segmentation in Application of Magnetic Resonance Images. Comput. Vis. Image Underst. 2002, 85, 54–69. [Google Scholar] [CrossRef]
- Antonelli, L.; Simone, V.D.; di Serafino, D. A view of computational models for image segmentation. Ann. Dell’Universita Ferrara 2022, 68, 277–294. [Google Scholar] [CrossRef]
- Bhar, R.; Hamori, S. Hidden Markov Models: Applications to Financial Economics; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Cappé, O.; Moulines, E.; Ryden, T. Inference in Hidden Markov Models; Series in Statistics; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Knerr, S.; Augustin, E.; Baret, O.; Price, D. Hidden Markov Model Based Word Recognition and Its Application to Legal Amount Reading on French Checks. Comput. Vis. Image Underst. 1998, 70, 404–419. [Google Scholar] [CrossRef]
- Li, J.; Gray, R.M. Image Segmentation and Compression Using Hidden Markov Models; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Koski, T. Hidden Markov Models for Bioinformatics; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Benmiloud, B.; Pieczynski, W. Estimation des paramètres dans les chaînes de Markov cachées et segmentation d’images. Trait. Signal 1995, 12, 433–454. [Google Scholar]
- Salzenstein, F.; Collet, C. Fuzzy Markov random fields versus chains for multispectral image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 1753–1767. [Google Scholar] [CrossRef]
- Ameur, M.; Idrissi, N.; Daoudi, C. Triplet Markov chain in images segmentation. In Proceedings of the International Conference on Intelligent Systems and Computer Vision, ISCV, Fez, Marocco, 2–4 April 2018. [Google Scholar]
- Hafiane, A.; Chaudhuri, S. A modified FCM with optimal Peano Scan for image segmentation. In Proceedings of the IEEE International Conference on Image Processing, Genova, Italy, 14 September 2005; Volume 3, p. 840. [Google Scholar]
- Mari, J.-F.; Le Ber, F. Temporal and spatial data mining with second-order hidden Markov models. Soft Comput. 2006, 10, 406–414. [Google Scholar] [CrossRef]
- Paroli, R.; Spezia, L. Reversible jump Markov chain Monte Carlo method and segmentation algorithms in hidden Markov models. Aust. N. Z. J. Stat. 2010, 52, 151–166. [Google Scholar] [CrossRef]
- Provost, J.-N.; Collet, C.; Pérez, P.; Bouthemy, P. Unsupervised multispectral segmentation of SPOT images applied to nautical cartograpy. In Proceedings of the IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, Antalya, Turkey, 20–23 June 1999. [Google Scholar]
- Carrincotte, C.; Derrode, S.; Bourennane, S. Unsupervised change detection on SAR images using fuzzy hidden Markov chains. IEEE Trans. Geosci. Remote Sens. 2006, 44, 432–441. [Google Scholar] [CrossRef]
- Le Cam, S.; Salzenstein, F.; Collet, C. Fuzzy pairwise Markov chain to segment correlated noisy data. Signal Process. 2008, 88, 2526–2541. [Google Scholar] [CrossRef]
- Fernandes, C.; Monti, T.; Monfrini, E.; Pieczynski, W. Fast image segmentation with contextual scan and Markov chains. In Proceedings of the 29th European Signal Processing Conference (EUSIPCO), Dublin, Ireland, 23–27 August 2021. [Google Scholar]
- Boudaren, M.Y.; Pieczynski, W. Dempster-Shafer fusion of evidential pairwise Markov chains. IEEE Trans. Fuzzy Syst. 2016, 24, 1598–1610. [Google Scholar] [CrossRef]
- Denoeux, T. 40 years of Dempster-Shafer theory. Int. J. Approx. Reason. 2016, 79, 1–6. [Google Scholar] [CrossRef]
- Shafer, G. A Mathematical Theory of Evidence; Princeton University Press: Princeton, NJ, USA, 1976. [Google Scholar]
- Ramasso, E.; Deneoux, T. Making use of partial knowledge about hidden states in HMMs: An approach based on belief functions. IEEE Trans. Fuzzy Syst. 2017, 22, 1102–1114. [Google Scholar] [CrossRef]
- Ramasso, E. Inference and learning in evidential discrete latent Markov models. IEEE Trans. Fuzzy Syst. 2014, 25, 395–405. [Google Scholar] [CrossRef]
- Soubaras, H. On Evidential Markov Chains, Studies in Fuzziness and Soft Computing; Springer Nature: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Soubaras, H.; Labreuche, C.; Saveant, P. Evidential Markov decision processes. Lect. Notes Comput. Sci. 2011, 6717, 338–349. [Google Scholar]
- Abbes, A.B.; Farah, M.; Farah, I.; Barra, V. A non-stationary NDVI time series modelling using triplet Markov chain. Int. J. Inf. Decis. Sci. 2019, 19, 163–179. [Google Scholar] [CrossRef]
- Chen, S.; Jiang, X. Modeling repayment behavior of consumer loan in portfolio across business cycle: A Triplet Markov Model approach. Complexity 2020, 2020, 5458941. [Google Scholar] [CrossRef]
- Baum, L.E.; Petrie, T.; Soules, G.; Weiss, N. A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains. Ann. Math. Stat. 1970, 41, 164–171. [Google Scholar] [CrossRef]
- McLachlan, G.J.; Krishnan, T. EM Algorithm and Extensions; Series in Probability and Statistics; Wiley: Hoboken, NJ, USA, 1997. [Google Scholar]
- Chalmond, B. An iterative Gibbsian technique for reconstruction of m-ary images. Pattern Recognit. 1989, 22, 747–761. [Google Scholar] [CrossRef]
- An, L.; Li, M.; Boudaren, M.E.Y.; Pieczynski, W. Unsupervised segmentation of hidden evidential Markov fields corrupted by correlated non-Gaussian noise. Int. J. Approx. Reason. 2018, 102, 41–59. [Google Scholar] [CrossRef]
- Bricq, S.; Collet, C.; Armspach, J.P. Unifying framework for multimodal brain MRI segmentation based on Hidden Markov Chains. Med. Image Anal. 2008, 12, 639–652. [Google Scholar] [CrossRef]
- Mokbel, M.; Aref, W.G. Irregularity in multi-dimensional space-filling curves with applications in multimedia databases. In Proceedings of the CIKM—ACM International Conference on Information and Knowledge Management, Atlanta, GA, USA, 5–10 November 2001. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, C.; Pieczynski, W. Contextual Peano Scan and Fast Image Segmentation Using Hidden and Evidential Markov Chains. Mathematics 2025, 13, 1589. https://doi.org/10.3390/math13101589
Fernandes C, Pieczynski W. Contextual Peano Scan and Fast Image Segmentation Using Hidden and Evidential Markov Chains. Mathematics. 2025; 13(10):1589. https://doi.org/10.3390/math13101589
Chicago/Turabian StyleFernandes, Clément, and Wojciech Pieczynski. 2025. "Contextual Peano Scan and Fast Image Segmentation Using Hidden and Evidential Markov Chains" Mathematics 13, no. 10: 1589. https://doi.org/10.3390/math13101589
APA StyleFernandes, C., & Pieczynski, W. (2025). Contextual Peano Scan and Fast Image Segmentation Using Hidden and Evidential Markov Chains. Mathematics, 13(10), 1589. https://doi.org/10.3390/math13101589