Wavelet Estimation of Partial Derivatives in Multivariate Regression Under Discrete-Time Stationary Ergodic Processes
Abstract
1. Introduction
Notation
2. Mathematical Backgrounds
2.1. Besov Spaces
- (B.1)
- (B.2)
2.2. Linear Wavelets Estimator
3. Assumptions and Main Results
- (C.1)
- For every , the sequence
- (C.2)
- Moreover, for every ,again in both the almost sure and senses.
- (C.3)
- (i)
- Assume that the multiresolution analysis is r-regular.
- (ii)
- The density for some .
- (C.4)
- (i)
- The density for some .
- (ii)
- The conditional density for some .
- (N.0)
- for some .
- (N.1)
- For anyWe may refer to [37] for further details.
- (N.2)
- (i)
- The conditional mean of given the field depends only on , i.e., for any ,
- (ii)
- for all ,
- (N.3)
- (i)
- We shall suppose that there exist two known constants such that
- (ii)
- The function regression satisfies a Hölder condition, that is, there exist constants and such that, for any
- (iii)
- The function regression satisfy a Hölder condition that is, there exist constants and such that, for any
3.1. Asymptotic Normality Results
3.2. Confidence Interval
4. Application to the Regression Derivatives
5. Mode Regression
- Long-memory discrete-time processes: Let be white noise with variance ; denote the identity and back-shift operators by I and B, respectively. According to [66] (Theorem 1, p. 55), the k-factor Gegenbauer process satisfies
- Stationary solution of a linear Markov process: Consider
- A stationary process with an representation: Let be an independent and identically distributed sequence uniformly distributed on , and define
6. Concluding Remarks
7. Proofs
- (a)
- Lyapunov condition:
- (b)
- Lindberg condition:
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Besov Spaces
References
- Wand, M.P.; Jones, M.C. Kernel smoothing. In Monographs on Statistics and Applied Probability; Chapman and Hall, Ltd.: London, UK, 1995; Volume 60, pp. xii+212. [Google Scholar] [CrossRef]
- Eggermont, P.P.B.; LaRiccia, V.N. Maximum Penalized Likelihood Estimation. Volume II. Regression; Springer Series in Statistics; Springer: Dordrecht, The Netherlands, 2009; pp. xx+571. [Google Scholar] [CrossRef]
- Genovese, C.R.; Perone-Pacifico, M.; Verdinelli, I.; Wasserman, L. Non-parametric inference for density modes. J. R. Stat. Soc. Ser. B Stat. Methodol. 2016, 78, 99–126. [Google Scholar] [CrossRef]
- Noh, Y.K.; Sugiyama, M.; Liu, S.; du Plessis, M.C.; Park, F.C.; Lee, D.D. Bias reduction and metric learning for nearest-neighbor estimation of Kullback-Leibler divergence. Neural Comput. 2018, 30, 1930–1960. [Google Scholar] [CrossRef]
- Dobrovidov, A.V.; Ruds’ko, I.M. Bandwidth selection in nonparametric estimator of density derivative by smoothed cross-validation method. Autom. Remote Control 2010, 71, 209–224. [Google Scholar] [CrossRef]
- Genovese, C.R.; Perone-Pacifico, M.; Verdinelli, I.; Wasserman, L. On the path density of a gradient field. Ann. Stat. 2009, 37, 3236–3271. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.S. Applications of estimators of a density and its derivatives to certain statistical problems. J. R. Stat. Soc. Ser. B 1977, 39, 357–363. [Google Scholar] [CrossRef]
- Meyer, T.G. Bounds for estimation of density functions and their derivatives. Ann. Stat. 1977, 5, 136–142. [Google Scholar] [CrossRef]
- Silverman, B.W. Weak and strong uniform consistency of the kernel estimate of a density and its derivatives. Ann. Stat. 1978, 6, 177–184. [Google Scholar] [CrossRef]
- Allaoui, S.; Bouzebda, S.; Chesneau, C.; Liu, J. Uniform almost sure convergence and asymptotic distribution of the wavelet-based estimators of partial derivatives of multivariate density function under weak dependence. J. Nonparametr. Stat. 2021, 33, 170–196. [Google Scholar] [CrossRef]
- Ramsay, J.O.; Silverman, B.W. Applied Functional Data Analysis; Springer Series in Statistics; Springer: New York, NY, USA, 2002; pp. x+190, Methods and case studies. [Google Scholar] [CrossRef]
- Ramsay, J.O.; Silverman, B.W. Functional Data Analysis, 2nd ed.; Springer Series in Statistics; Springer: New York, NY, USA, 2005; pp. xx+426. [Google Scholar]
- Liu, S.; Kong, X. A generalized correlated Cp criterion for derivative estimation with dependent errors. Comput. Statist. Data Anal. 2022, 171, 107473. [Google Scholar] [CrossRef]
- Eubank, R.L.; Speckman, P.L. Confidence bands in nonparametric regression. J. Amer. Statist. Assoc. 1993, 88, 1287–1301. [Google Scholar] [CrossRef]
- Ruppert, D.; Sheather, S.J.; Wand, M.P. An effective bandwidth selector for local least squares regression. J. Amer. Statist. Assoc. 1995, 90, 1257–1270. [Google Scholar] [CrossRef]
- Park, C.; Kang, K.H. SiZer analysis for the comparison of regression curves. Comput. Statist. Data Anal. 2008, 52, 3954–3970. [Google Scholar] [CrossRef]
- Härdle, W.; Gasser, T. On robust kernel estimation of derivatives of regression functions. Scand. J. Statist. 1985, 12, 233–240. [Google Scholar]
- Ziegler, K. On the asymptotic normality of kernel regression estimators of the mode in the nonparametric random design model. J. Statist. Plann. Inference 2003, 115, 123–144. [Google Scholar] [CrossRef]
- Georgiev, A.A. Speed of convergence in nonparametric kernel estimation of a regression function and its derivatives. Ann. Inst. Statist. Math. 1984, 36, 455–462. [Google Scholar] [CrossRef]
- Deheuvels, P.; Mason, D.M. General asymptotic confidence bands based on kernel-type function estimators. Stat. Inference Stoch. Process. 2004, 7, 225–277. [Google Scholar] [CrossRef]
- Härdle, W.; Kerkyacharian, G.; Picard, D.; Tsybakov, A. Wavelets, approximation, and statistical applications. In Lecture Notes in Statistics; Springer: New York, NY, USA, 1998; Volume 129, pp. xviii+265. [Google Scholar] [CrossRef]
- Prakasa Rao, B.L.S. Nonparametric estimation of the derivatives of a density by the method of wavelets. Bull. Inf. Cybern. 1996, 28, 91–100. [Google Scholar]
- Chaubey, Y.P.; Doosti, H.; Prakasa Rao, B.L.S. Wavelet based estimation of the derivatives of a density with associated variables. Int. J. Pure Appl. Math. 2006, 27, 97–106. [Google Scholar]
- Rao, B.L.S.P. Nonparametric Estimation of Partial Derivatives of a Multivariate Probability Density by the Method of Wavelets. In Asymptotics in Statistics and Probability. Papers in Honor of George Gregory Roussas; Puri, M.L., Ed.; De Gruyter: Berlin, Germany; Boston, MA, USA, 2000; pp. 321–330. [Google Scholar] [CrossRef]
- Hosseinioun, N.; Doosti, H.; Niroumand, H.A. Nonparametric estimation of a multivariate probability density for mixing sequences by the method of wavelets. Ital. J. Pure Appl. Math. 2011, 28, 31–40. [Google Scholar]
- Koshkin, G.; Vasil’iev, V. An estimation of a multivariate density and its derivatives by weakly dependent observations. In Statistics and Control of Stochastic Processes. The Liptser Festschrift. Papers from the Steklov Seminar Held in Moscow, Russia, 1995–1996; World Scientific: Singapore, 1997; pp. 229–241. [Google Scholar]
- Prakasa Rao, B.L.S. Wavelet estimation for derivative of a density in the presence of additive noise. Braz. J. Probab. Stat. 2018, 32, 834–850. [Google Scholar] [CrossRef]
- Meyer, Y. Wavelets and operators. In Cambridge Studies in Advanced Mathematics; Cambridge University Press: Cambridge, UK, 1992; Volume 37, pp. xvi+224. [Google Scholar]
- Donoho, D.L.; Johnstone, I.M.; Kerkyacharian, G.; Picard, D. Density estimation by wavelet thresholding. Ann. Statist. 1996, 24, 508–539. [Google Scholar] [CrossRef]
- Schneider, C. Beyond Sobolev and Besov—Regularity of solutions of PDEs and their traces in function spaces. In Lecture Notes in Mathematics; Springer: Cham, Switzerland, 2021; Volume 2291, pp. xviii+327. [Google Scholar] [CrossRef]
- Sawano, Y. Theory of Besov spaces. In Developments in Mathematics; Springer: Singapore, 2018; Volume 56, pp. xxiii+945. [Google Scholar] [CrossRef]
- Peetre, J. New Thoughts on Besov Spaces; Duke University Mathematics Series, No. 1; Duke University, Mathematics Department: Durham, NC, USA, 1976; pp. vi+305. [Google Scholar]
- Rosenblatt, M. Uniform ergodicity and strong mixing. Z. Wahrscheinlichkeitstheorie Verw. Geb. 1972, 24, 79–84. [Google Scholar] [CrossRef]
- Bradley, R.C. Introduction to Strong Mixing Conditions; Kendrick Press: Heber City, UT, USA, 2007; Volume 3, pp. xii+597. [Google Scholar]
- Didi, S.; Bouzebda, S. Wavelet Density and Regression Estimators for Continuous Time Functional Stationary and Ergodic Processes. Mathematics 2022, 10, 4356. [Google Scholar] [CrossRef]
- Daubechies, I. Ten lectures on wavelets. In CBMS-NSF Regional Conference Series in Applied Mathematics; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 1992; Volume 61, pp. xx+357. [Google Scholar] [CrossRef]
- Peškir, G. The uniform mean-square ergodic theorem for wide sense stationary processes. Stoch. Anal. Appl. 1998, 16, 697–720. [Google Scholar] [CrossRef]
- Hall, P.; Penev, S. Cross-validation for choosing resolution level for nonlinear wavelet curve estimators. Bernoulli 2001, 7, 317–341. [Google Scholar] [CrossRef]
- Bellman, R. Adaptive Control Processes: A Guided Tour; Princeton University Press: Princeton, NJ, USA, 1961; pp. xvi+255. [Google Scholar]
- Scott, D.W.; Wand, M.P. Feasibility of multivariate density estimates. Biometrika 1991, 78, 197–205. [Google Scholar] [CrossRef]
- Bouzebda, S. Weak convergence of the conditional single index U-statistics for locally stationary functional time series. AIMS Math. 2024, 9, 14807–14898. [Google Scholar] [CrossRef]
- Bouzebda, S. Limit Theorems in the Nonparametric Conditional Single-Index U-Processes for Locally Stationary Functional Random Fields under Stochastic Sampling Design. Mathematics 2024, 12, 1996. [Google Scholar] [CrossRef]
- Shen, A.; Li, X.; Zhang, Y.; Qiu, Y.; Wang, X. Consistency and asymptotic normality of wavelet estimator in a nonparametric regression model. Stochastics 2021, 93, 868–885. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, X. Asymptotic normality for wavelet deconvolution density estimators. Appl. Comput. Harmon. Anal. 2020, 48, 321–342. [Google Scholar] [CrossRef]
- Tang, X.; Xi, M.; Wu, Y.; Wang, X. Asymptotic normality of a wavelet estimator for asymptotically negatively associated errors. Statist. Probab. Lett. 2018, 140, 191–201. [Google Scholar] [CrossRef]
- Niu, S.l. Asymptotic normality of wavelet density estimator under censored dependent observations. Acta Math. Appl. Sin. Engl. Ser. 2012, 28, 781–794. [Google Scholar] [CrossRef]
- Li, Y.; Guo, j. Asymptotic normality of wavelet estimator for strong mixing errors. J. Korean Statist. Soc. 2009, 38, 383–390. [Google Scholar] [CrossRef]
- Roueff, F.; Taqqu, M.S. Asymptotic normality of wavelet estimators of the memory parameter for linear processes. J. Time Ser. Anal. 2009, 30, 534–558. [Google Scholar] [CrossRef]
- Li, Y.; Yang, S.; Zhou, Y. Consistency and uniformly asymptotic normality of wavelet estimator in regression model with associated samples. Statist. Probab. Lett. 2008, 78, 2947–2956. [Google Scholar] [CrossRef]
- Debbarh, M. Normalité asymptotique de l’estimateur par ondelettes des composantes d’un modèle additif de régression. C. R. Math. Acad. Sci. Paris 2006, 343, 601–606. [Google Scholar] [CrossRef]
- Allaoui, S.; Bouzebda, S.; Liu, J. Asymptotic distribution of the wavelet-based estimators of multivariate regression functions under weak dependence. J. Math. Inequal. 2023, 17, 481–515. [Google Scholar] [CrossRef]
- Bouzebda, S.; Didi, S. Multivariate wavelet density and regression estimators for stationary and ergodic discrete time processes: Asymptotic results. Comm. Statist. Theory Methods 2017, 46, 1367–1406. [Google Scholar] [CrossRef]
- Bouzebda, S.; Didi, S. Some asymptotic properties of kernel regression estimators of the mode for stationary and ergodic continuous time processes. Rev. Mat. Complut. 2021, 34, 811–852. [Google Scholar] [CrossRef]
- Eddy, W.F. Optimum kernel estimators of the mode. Ann. Statist. 1980, 8, 870–882. [Google Scholar] [CrossRef]
- Eddy, W.F. The asymptotic distributions of kernel estimators of the mode. Z. Wahrsch. Verw. Geb. 1982, 59, 279–290. [Google Scholar] [CrossRef]
- Billingsley, P. Convergence of Probability Measures; John Wiley & Sons, Inc.: New York, NY, USA; London, UK; Sydney, Australia, 1968; pp. xii+253. [Google Scholar]
- Bouzebda, S.; Chaouch, M. Uniform limit theorems for a class of conditional Z-estimators when covariates are functions. J. Multivar. Anal. 2022, 189, 104872. [Google Scholar] [CrossRef]
- Hall, P.; Marron, J.S. Estimation of integrated squared density derivatives. Statist. Probab. Lett. 1987, 6, 109–115. [Google Scholar] [CrossRef]
- Jurečková, J. Asymptotic linearity of a rank statistic in regression parameter. Ann. Math. Statist. 1969, 40, 1889–1900. [Google Scholar] [CrossRef]
- Giné, E.; Mason, D.M. Uniform in bandwidth estimation of integral functionals of the density function. Scand. J. Statist. 2008, 35, 739–761. [Google Scholar] [CrossRef]
- Levit, B.Y. Asymptotically efficient estimation of nonlinear functionals. Probl. Peredachi Informatsii 1978, 14, 65–72. [Google Scholar]
- Masry, E. Multivariate probability density estimation by wavelet methods: Strong consistency and rates for stationary time series. Stoch. Process. Appl. 1997, 67, 177–193. [Google Scholar] [CrossRef]
- Allaoui, S.; Bouzebda, S.; Liu, J. Multivariate wavelet estimators for weakly dependent processes: Strong consistency rate. Comm. Statist. Theory Methods 2023, 52, 8317–8350. [Google Scholar] [CrossRef]
- Bouzebda, S. Limit theorems for wavelet conditional U-statistics for time series models. Math. Methods Statist. 2025, 35, 1–42. [Google Scholar]
- Chaouch, M.; Laïb, N. Regression estimation for continuous-time functional data processes with missing at random response. J. Nonparametr. Stat. 2024, 36, 1–32. [Google Scholar] [CrossRef]
- Giraitis, L.; Leipus, R. A generalized fractionally differencing approach in long-memory modeling. Liet. Mat. Rink. 1995, 35, 65–81. [Google Scholar] [CrossRef]
- Guégan, D.; Ladoucette, S. Non-mixing properties of long memory processes. C. R. Acad. Sci. Paris Sér. I Math. 2001, 333, 373–376. [Google Scholar] [CrossRef]
- Andrews, D.W.K. Non-strong mixing autoregressive processes. J. Appl. Probab. 1984, 21, 930–934. [Google Scholar] [CrossRef]
- Francq, C.; Zakoïan, J.M. GARCH Models: Structure, Statistical Inference and Financial Applications; John Wiley & Sons, Ltd.: Chichester, UK, 2010; pp. xiv+489. [Google Scholar] [CrossRef]
- Bouzebda, S.; Limnios, N. On general bootstrap of empirical estimator of a semi-Markov kernel with applications. J. Multivar. Anal. 2013, 116, 52–62. [Google Scholar] [CrossRef]
- Bouzebda, S. On the weak convergence and the uniform-in-bandwidth consistency of the general conditional U-processes based on the copula representation: Multivariate setting. Hacet. J. Math. Stat. 2023, 52, 1303–1348. [Google Scholar] [CrossRef]
- Burkholder, D.L. Distribution function inequalities for martingales. Ann. Probab. 1973, 1, 19–42. [Google Scholar] [CrossRef]
- de la Peña, V.H.; Giné, E. Decoupling; Probability and Its Applications (New York); Springer: New York, NY, USA, 1999; pp. xvi+392. [Google Scholar] [CrossRef]
- Masry, E. Wavelet-based estimation of multivariate regression functions in Besov spaces. J. Nonparametr. Statist. 2000, 12, 283–308. [Google Scholar] [CrossRef]
- Hall, P.; Heyde, C.C. Martingale Limit Theory and Its Application; Probability and Mathematical Statistics; Academic Press, Inc.; Harcourt Brace Jovanovich, Publishers: New York, NY, USA; London, UK, 1980; pp. xii+308. [Google Scholar]
- Chow, Y.S.; Teicher, H. Probability Theory; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 1978; pp. xv+455. [Google Scholar]
- Efromovich, S. Lower bound for estimation of Sobolev densities of order less . J. Statist. Plann. Inference 2009, 139, 2261–2268. [Google Scholar] [CrossRef]
- Triebel, H. Theory of function spaces. In Monographs in Mathematics; Birkhäuser Verlag: Basel, Switzerland, 1983; Volume 78, p. 284. [Google Scholar] [CrossRef]
- DeVore, R.A.; Lorentz, G.G. Constructive approximation. In Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]; Springer: Berlin/Heidelberg, Germany, 1993; Volume 303, pp. x+449. [Google Scholar]
- Bourdaud, G.; Lanza de Cristoforis, M.; Sickel, W. Superposition operators and functions of bounded p-variation. Rev. Mat. Iberoam. 2006, 22, 455–487. [Google Scholar] [CrossRef]
- Dudley, R.M.; Norvaiša, R. Differentiability of six operators on nonsmooth functions and p-variation. In Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1999; Volume 1703, pp. viii+277. [Google Scholar] [CrossRef]
- Geller, D.; Pesenson, I.Z. Band-limited localized Parseval frames and Besov spaces on compact homogeneous manifolds. J. Geom. Anal. 2011, 21, 334–371. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Didi, S.; Bouzebda, S. Wavelet Estimation of Partial Derivatives in Multivariate Regression Under Discrete-Time Stationary Ergodic Processes. Mathematics 2025, 13, 1587. https://doi.org/10.3390/math13101587
Didi S, Bouzebda S. Wavelet Estimation of Partial Derivatives in Multivariate Regression Under Discrete-Time Stationary Ergodic Processes. Mathematics. 2025; 13(10):1587. https://doi.org/10.3390/math13101587
Chicago/Turabian StyleDidi, Sultana, and Salim Bouzebda. 2025. "Wavelet Estimation of Partial Derivatives in Multivariate Regression Under Discrete-Time Stationary Ergodic Processes" Mathematics 13, no. 10: 1587. https://doi.org/10.3390/math13101587
APA StyleDidi, S., & Bouzebda, S. (2025). Wavelet Estimation of Partial Derivatives in Multivariate Regression Under Discrete-Time Stationary Ergodic Processes. Mathematics, 13(10), 1587. https://doi.org/10.3390/math13101587