Large-Time Behavior of Solutions to Darcy–Boussinesq Equations with Non-Vanishing Scalar Acceleration Coefficient
Abstract
:1. Introduction
1.1. Steady-State Solution
1.2. Main Results
1.3. Organization of the Paper
2. Linear Stability and Instability
3. Regularity Estimates
3.1. Estimates of
3.2. Estimates of
3.3. Estimates of
3.4. Estimates of and
4. Large-Time Behavior
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability; Dover Publications: Mineola, NY, USA, 1981. [Google Scholar]
- Drazin, P.G. Introduction to Hydrodynamic Stability; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Wu, J.; Zhao, K. On 2D incompressible Boussinesq systems: Global stabilization under dynamic boundary conditions. J. Differ. Equ. 2023, 367, 246–289. [Google Scholar] [CrossRef]
- Feng, W.; Hafeez, F.; Wu, J. Stabilizing Effect of the Magnetic Field and Large-Time Behavior of 2D Incompressible MHD System with Vertical Dissipation. J. Math. Fluid Mech. 2023, 25, 33. [Google Scholar] [CrossRef]
- Ji, R.; Tian, L.; Wu, J. 3D anisotropic Navier-Stokes equations in 𝕋2 × ℝ: Stability and large-time behaviour. Nonlinearity 2023, 36, 3219–3237. [Google Scholar] [CrossRef]
- Friedlander, S.; Pavlović, N.; Shvydkoy, R. Nonlinear instability for the Navier-Stokes equations. Commun. Math. Phys. 2006, 264, 335–347. [Google Scholar] [CrossRef]
- Friedlander, S.; Pavlović, N.; Vicol, V. Nonlinear instability for the critically dissipative quasi-geostrophic equation. Commun. Math. Phys. 2009, 292, 797–810. [Google Scholar] [CrossRef]
- Bouya, I. Instability of the forced magnetohydrodynamics system at small Reynolds number. SIAM J. Math. Anal. 2013, 45, 307–323. [Google Scholar] [CrossRef]
- Galdi, G.P.; Neustupa, J. Nonlinear spectral instability of steady-state flow of a viscous liquid past a rotating obstacle. Math. Ann. 2022, 382, 357–382. [Google Scholar] [CrossRef]
- Krechetnikov, R.; Marsden, J.E. Dissipation-induced instability phenomena in infinite-dimensional systems. Arch. Ration. Mech. Anal. 2009, 194, 611–668. [Google Scholar] [CrossRef]
- Guo, Y.; Han, Y. Critical Rayleigh number in Rayleigh-Bénard convection. Q. Appl. Math. 2010, 68, 149–160. [Google Scholar] [CrossRef]
- Barletta, A. Routes to Absolute Instability in Porous Media; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Constantin, P.; Córdoba, D.; Gancedo, F.; Strain, R.M. On the global existence for the Muskat problem. J. Eur. Math. Soc. (JEMS) 2013, 15, 201–227. [Google Scholar] [CrossRef]
- Hewitt, D.R.; Peng, G.G.; Lister, J.R. Buoyancy-driven plumes in a layered porous medium. J. Fluid Mech. 2020, 883, A37. [Google Scholar] [CrossRef]
- Ly, H.V.; Titi, E.S. Global Gevrey regularity for the Bénard convection in a porous medium with zero Darcy-Prandtl number. J. Nonlinear Sci. 1999, 9, 333–362. [Google Scholar] [CrossRef]
- Nield, D.A.; Bejan, A. Convection in Porous Media, 5th ed.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Brasco, L.; Volzone, B. Long-time behavior for the porous medium equation with small initial energy. Adv. Math. 2022, 394, 108029. [Google Scholar] [CrossRef]
- Cao, Y.; Niu, W.; Wang, X. Well-posedness and regularity of the Darcy-Boussinesq system in layered porous media. arXiv 2024, arXiv:2310.15088. [Google Scholar]
- Elgindi, T.M. Asymptotic Stability for some Stratified Stationary Solutions of the Inviscid Incompressible Porous Medium Equation. Arch. Ration. Mech. Anal. 2017, 225, 573–599. [Google Scholar] [CrossRef]
- Elgindi, T.M.; Widmayer, K. Sharp Decay Estimates for an Anisotropic Linear Semigroup and Applications to the Surface Quasi-Geostrophic and Inviscid Boussinesq Systems. SIAM J. Math. Anal. 2015, 47, 4672–4684. [Google Scholar] [CrossRef]
- Elgindi, T.M.; Jeong, I.J. Symmetries and critical phenomena in fluids. Commun. Pure Appl. Math. 2020, 73, 257–316. [Google Scholar] [CrossRef]
- Friedlander, S.; Gancedo, F.; Sun, W.; Vicol, V. On a singular incompressible porous media equation. J. Math. Phys. 2012, 53, 115602. [Google Scholar] [CrossRef]
- Hassainia, Z.; Hmidi, T. On the inviscid Boussinesq system with rough initial data. J. Math. Anal. Appl. 2015, 430, 777–809. [Google Scholar] [CrossRef]
- Baranovskii, E.S. The Navier-Stokes-Voigt equations with position-dependent slip boundary conditions. Z. Angew. Math. Phys. 2023, 74, 6. [Google Scholar] [CrossRef]
- Egashira, T.; Takada, R. Large Time Behavior of Solutions to the 3D Rotating Navier–Stokes Equations. J. Math. Fluid Mech. 2023, 25, 23. [Google Scholar] [CrossRef]
- Han, D.; He, X.; Wang, Q.; Wu, Y. Existence and weak-strong uniqueness of solutions to the Cahn-Hilliard-Navier-Stokes-Darcy system in superposed free flow and porous media. Nonlinear Anal. 2021, 211, 112411. [Google Scholar] [CrossRef]
- Han, D.; Wang, X.; Wu, H. Existence and uniqueness of global weak solutions to a Cahn-Hilliard-Stokes-Darcy system for two phase incompressible flows in karstic geometry. J. Differ. Equ. 2014, 257, 3887–3933. [Google Scholar] [CrossRef]
- Kelliher, J.P.; Temam, R.; Wang, X. Boundary layer associated with the Darcy-Brinkman-Boussinesq model for convection in porous media. Physica D 2011, 240, 619–628. [Google Scholar] [CrossRef]
- Fabrie, P.; Nicolaenko, B. Exponential attractors for non-dissipative systems modeling convection in porous media. Asymptot. Anal. 1996, 12, 295–327. [Google Scholar] [CrossRef]
- Hewitt, D.R. Evolution of convection in a layered porous medium. J. Fluid Mech. 2022, 941, A56. [Google Scholar] [CrossRef]
- Doering, C.R.; Wu, J.; Zhao, K.; Zheng, X. Long time behavior of the two-dimensional Boussinesq equations without buoyancy diffusion. Physica D 2018, 376/377, 144–159. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Hou, Z.; Wang, Q. Large-Time Behavior of Solutions to Darcy–Boussinesq Equations with Non-Vanishing Scalar Acceleration Coefficient. Mathematics 2025, 13, 1570. https://doi.org/10.3390/math13101570
Wang H, Hou Z, Wang Q. Large-Time Behavior of Solutions to Darcy–Boussinesq Equations with Non-Vanishing Scalar Acceleration Coefficient. Mathematics. 2025; 13(10):1570. https://doi.org/10.3390/math13101570
Chicago/Turabian StyleWang, Huichao, Zhibo Hou, and Quan Wang. 2025. "Large-Time Behavior of Solutions to Darcy–Boussinesq Equations with Non-Vanishing Scalar Acceleration Coefficient" Mathematics 13, no. 10: 1570. https://doi.org/10.3390/math13101570
APA StyleWang, H., Hou, Z., & Wang, Q. (2025). Large-Time Behavior of Solutions to Darcy–Boussinesq Equations with Non-Vanishing Scalar Acceleration Coefficient. Mathematics, 13(10), 1570. https://doi.org/10.3390/math13101570