T-Eigenvalues of Third-Order Quaternion Tensors
Abstract
:1. Introduction
2. Preliminaries
3. The Right T-Eigenvalues of Third-Order Quaternion Tensors
- 1.
- ;
- 2.
- .
- 1.
- , where .
- 2.
- .
- 3.
- .
Algorithm 1: Calculation for the right T-eigenvalues of a third-order quaternion tensor |
|
|
|
|
|
|
|
4. Inequalities for Right T-Eigenvalues of Hermitian Quaternion Tensors
- 1.
- ;
- 2.
- .
- Let be a unit vector. Then, we haveThen,
- ; according to Lemma 5, we have
5. The Estimation of Right T-Eigenvalues of Quaternion Tensors
- Case 1: If m is odd, let be a permutation matrix by swapping i-th and -th columns of an identity matrix for . Then, , where , when ; when . Let and , . Then, for each right T-eigenvalue of , there exists a quaternion such that (which is also a right T-eigenvalue) lies in the union of closed balls . Specifically, if is a real T-eigenvalue of , it is contained in a ball.
- Case 2: If m is even, let be a permutation matrix by swapping i-th and -th columns of an identity matrix for . Then, , where , when and ; when and . Let , and , and . Then, for each right T-eigenvalue belonging to , there exists a quaternion such that (which is also a right T-eigenvalue) lies in the union of closed balls . Specifically, if is a real T-eigenvalue of , it is contained in a ball.
6. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamilton, W.R. Theory of quaternions. Proc. R. Ir. Acad. 1844, 3, 1–16. [Google Scholar]
- Pletinckx, D. Quaternion calculus as a basic tool in computer graphics. Vis. Comput. 1989, 5, 2–13. [Google Scholar] [CrossRef]
- Diao, Q.K.; Xu, D.P.; Sun, S.N.; Mandic, D.P. Optimizing beamforming in quaternion signal processing using projected gradient descent algorithm. Signal Process. 2025, 227, 109738. [Google Scholar] [CrossRef]
- Jablonski, B. Quaternion Dynamic Time Warping. IEEE Trans. Signal Process. 2012, 60, 1174–1183. [Google Scholar] [CrossRef]
- Zou, C.M.; Kou, K.I.; Dong, L.; Zheng, X.W.; Tang, Y.Y. From Grayscale to Color: Quaternion Linear Regression for Color Face Recognition. IEEE Access 2019, 7, 154131–154140. [Google Scholar] [CrossRef]
- He, Z.H.; Qin, W.L.; Tian, J.; Wang, X.X.; Zhang, Y. A new Sylvester-type quaternion matrix equation model for color image data transmission. Comput. Appl. Math. 2024, 43, 227. [Google Scholar] [CrossRef]
- Zou, C.M.; Kou, K.I.; Wang, Y.L. Quaternion Collaborative and Sparse Representation with Application to Color Face Recognition. IEEE Trans. Image Process. 2016, 25, 3287–3302. [Google Scholar] [CrossRef]
- Vo, T.; Tran, D.; Ma, W.L. Tensor decomposition and application in image classification with histogram of oriented gradients. Neurocomputing 2015, 165, 38–45. [Google Scholar] [CrossRef]
- Shashua, A.; Hazan, T. Non-negative tensor factorization with applications to statistics and computer vision. In Proceedings of the 22nd International Conference on Machine Learning, Bonn, Germany, 7–11 August 2005; pp. 792–799. [Google Scholar]
- Zhou, H.; Li, L.X.; Zhu, H.T. Tensor Regression with Applications in Neuroimaging Data Analysis. J. Am. Stat. Assoc. 2013, 108, 540–552. [Google Scholar] [CrossRef]
- De Lathauwer, L.; De Moor, B.; Vandewalle, J. A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 2000, 21, 1253–1278. [Google Scholar] [CrossRef]
- Kolda, T.G.; Bader, B.W. Tensor decompositions and applications. SIAM Rev. 2009, 51, 455–500. [Google Scholar] [CrossRef]
- Zeng, C.; Ng, M.K. Decompositions of third-order tensors: HOSVD, T-SVD, and Beyond. Numer. Linear Algebra Appl. 2020, 27, e2290. [Google Scholar] [CrossRef]
- Song, G.; Ng, M.K.; Zhang, X. Robust tensor completion using transformed tensor singular value decomposition. Numer. Linear Algebra Appl. 2020, 27, e2299. [Google Scholar] [CrossRef]
- Jin, H.; Bai, M.; Benítez, J.; Liu, X. The generalized inverses of tensors and an application to linear models. Comput. Math. Appl. 2017, 74, 385–397. [Google Scholar] [CrossRef]
- He, Z.H.; Ng, M.K.; Zeng, C. Generalized singular value decompositions for tensors and their applications. Numer. Math. Theory Methods Appl. 2021, 14, 692–713. [Google Scholar]
- Gaidhane, V.H.; Hote, Y.V.; Singh, V. An efficient approach for face recognition based on common eigenvalues. Pattern Recognit. 2014, 47, 1869–1879. [Google Scholar] [CrossRef]
- Abadpour, A.; Kasaei, S. Color PCA eigenimages and their application to compression and watermarking. Image Vis. Comput. 2008, 26, 878–890. [Google Scholar] [CrossRef]
- Xu, M.X.; Wei, C.L. Remotely Sensed Image Classification by Complex Network Eigenvalue and Connected Degree. Comput. Math. Methods Med. 2008, 2012, 143–156. [Google Scholar] [CrossRef]
- Qi, L. Eigenvalues and invariants of tensors. J. Math. Anal. Appl. 2007, 325, 1363–1377. [Google Scholar] [CrossRef]
- Li, S.G.; Chen, Z.; Li, C.Q.; Zhao, J.X. Eigenvalue bounds of third-order tensors via the minimax eigenvalue of symmetric matrices. Comput. Appl. Math. 2020, 39, 217. [Google Scholar] [CrossRef]
- Einstein, A. The foundation of the general theory of relativity. In The Collected Papers of Albert Einstein 6; Kox, A.J., Klein, M.J., Schulmann, R., Eds.; Princeton University Press: Princeton, NJ, USA, 2007; pp. 146–200. [Google Scholar]
- Kilmer, M.E.; Braman, K.; Hao, N.; Hoover, R.C. Third-order tensors as operators on matrices: A theoretical and computational framework with applications in imaging. SIAM J. Matrix Anal. Appl. 2013, 34, 148–172. [Google Scholar] [CrossRef]
- He, Z.H.; Wang, X.X.; Zhao, Y.F. Eigenvalues of Quaternion Tensors with Applications to Color Video Processing. J. Sci. Comput. 2023, 94, 1. [Google Scholar] [CrossRef]
- He, Z.H.; Liu, T.T.; Wang, X.X. Eigenvalues of Quaternion Tensors: Properties, Algorithms and Applications. Adv. Appl. Clifford Algebr. 2024, 35, 4. [Google Scholar] [CrossRef]
- Liu, W.H.; Jin, X.Q. A study on T-eigenvalues of third-order tensors. Linear Algebra Appl. 2021, 612, 357–374. [Google Scholar] [CrossRef]
- Mo, C.X.; Ding, W.Y.; Wei, Y.M. Perturbation Analysis on T-Eigenvalues of Third-Order Tensors. J. Optimiz. Theory App. 2024, 202, 668–702. [Google Scholar] [CrossRef]
- Zhang, F.Z. Geršgorin type theorems for quaternionic matrices. Linear Algebra Appl. 2007, 424, 139–153. [Google Scholar] [CrossRef]
- Golub, G.H.; VanLoan, C.F. Matrix Computations, 4th ed.; Johns Hopkins University Press: Baltimore, MD, USA, 2014; pp. 357–358. [Google Scholar]
- Davis, C.; Kahan, W.M. The Rotation of Eigenvectors by a Perturbation. III. SIAM J. Numer. Anal. 1970, 7, 1–46. [Google Scholar] [CrossRef]
- Rodman, L. Topics in Quaternion Linear Algebra; Princeton University Press: Princeton, NJ, USA, 2014. [Google Scholar]
- Kilmer, M.E.; Martin, C.D. Factorization strategies for third-order tensors. Linear Algebra Appl. 2011, 435, 641–658. [Google Scholar] [CrossRef]
- Pan, J.J.; Ng, M.K. Block-Diagonalization of Quaternion Circulant Matrices with Applications. SIAM J. Matrix Anal. Appl. 2024, 45, 1429–1454. [Google Scholar] [CrossRef]
- Lund, K. The tensor t-function: A definition for functions of third-order tensors. Numer. Linear Algebr. 2020, 27, 1–17. [Google Scholar] [CrossRef]
- Zhang, F.Z. Matrix Theory: Basic Results and Techniques, 2nd ed.; Springer: New York, NY, USA, 2011; pp. 117–119. [Google Scholar]
- Wu, F.S.; Li, C.Q.; Li, Y.T.; Tang, N.S. Complex Representation Matrix of Third-Order Quaternion Tensors with Application to Video Inpainting. J. Optim. Theory Appl. 2025, 205, 27. [Google Scholar] [CrossRef]
- Sangwine, S.; Bihan, N.L. Quaternion Toolbox for Matlab. Available online: http://qtfm.sourceforge.net (accessed on 20 April 2025).
- Jiang, T.S. An algorithm for eigenvalues and eigenvectors of quaternion matrices in quaternionic quantum mechanics. J. Math. Phys. 2004, 45, 3334–3338. [Google Scholar] [CrossRef]
- Horn, R.A. Matrix Analysis, 2nd ed.; Cambridge University Press: Cambridge, UK, 2013; pp. 239–256. [Google Scholar]
- Miao, J.F.; Kou, K.I. Quaternion tensor singular value decomposition using a flexible transform-based approach. Signal Process. 2023, 206, 108910. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Z.-H.; Deng, M.-L.; Yu, S.-W. T-Eigenvalues of Third-Order Quaternion Tensors. Mathematics 2025, 13, 1549. https://doi.org/10.3390/math13101549
He Z-H, Deng M-L, Yu S-W. T-Eigenvalues of Third-Order Quaternion Tensors. Mathematics. 2025; 13(10):1549. https://doi.org/10.3390/math13101549
Chicago/Turabian StyleHe, Zhuo-Heng, Mei-Ling Deng, and Shao-Wen Yu. 2025. "T-Eigenvalues of Third-Order Quaternion Tensors" Mathematics 13, no. 10: 1549. https://doi.org/10.3390/math13101549
APA StyleHe, Z.-H., Deng, M.-L., & Yu, S.-W. (2025). T-Eigenvalues of Third-Order Quaternion Tensors. Mathematics, 13(10), 1549. https://doi.org/10.3390/math13101549