CL-Transformation on 3-Dimensional Quasi Sasakian Manifolds and Their Ricci Soliton
Abstract
:1. Introduction
2. Preliminaries
3. Infinitesimal CL-Transformation on 3-D Quasi Sasakian Manifold
4. CL-Transformation on a 3-D Quasi Sasakian Manifold
5. CL-Flat and CL-Symmetric on a 3-D Quasi Sasakian Manifold
6. CL- Symmetric and CL- Recurrent on a 3-D Quasi Sasakian Manifold
7. Ricci Soliton on the CL Transformation of a 3-D Quasi Sasakian Manifold
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tashiro, Y.; Tachibana, S. On Fubinian and C-Fubinian manifold. Kodai Math. Semin. Rep. 1963, 15, 176–183. [Google Scholar] [CrossRef]
- Weyl, H. Reine infinitesimal geometrie. Math. Z. 1918, 2, 384–411. [Google Scholar] [CrossRef]
- Koto, S.; Nagao, M. On an invariant tensor under a CL-transformation. Kodai Math. Semin. Rep. 1966, 18, 87–95. [Google Scholar] [CrossRef]
- Takamatsu, K.; Mizusawa, H. On infinitesimal CL-transformation of compact normal contact metric spaces. Sci. Rep. Niigata Univ. Ser. A 1966, 3, 31–40. [Google Scholar]
- Matsumoto, K.; Mihai, I. On a certain transformation in a Lorentzian para-Sasakian manifold. Tensor (N.S.) 1988, 47, 189–197. [Google Scholar]
- Shaikh, A.A.; Ahmad, H. Some transformation on (LCS)n-manifold. Tsukuba J. Math. 2024, 38, 1–24. [Google Scholar]
- Hamilton, R.S. The Ricci flow on surfaces, Mathematics and general relativity. Contemp. Math. 1988, 71, 237–262. [Google Scholar]
- Perelman, G. The Entropy Formula for the Ricci Flow and Its Geometric Application. arXiv 2002, arXiv:math/0211159. [Google Scholar] [CrossRef]
- Perelman, G. Ricci Flow with Surgery on Three Manifolds. arXiv 2003, arXiv:math/0303109. [Google Scholar] [CrossRef]
- Kumar, R.; Shenawy, S.; Colney, L.; Turki, N.B. Certain results on tangent bundle endowed with generalized Tanaka Webster connection (GTWC) on Kenmotsu manifolds. AIMS Math. 2024, 9, 30364–30383. [Google Scholar] [CrossRef]
- Singh, A.; Pankaj; Prasad, R.; Patel, S. Ricci soliton on Sasakian manifold with quarter-symmetric non-metric connection. GANITA 2023, 73, 59–74. [Google Scholar]
- Prasad, R.; Haseeb, A.; Gautam, U.K. On φ-semisymmetric LP-Kenmotsu manifolds with a QSNM-connection admitting Ricci solitons. Kragujev. J. Math. 2021, 45, 815–827. [Google Scholar] [CrossRef]
- Sharma, R. Certain results on K-contact and (K, μ)-contact manifolds. J. Geom. 2008, 89, 138–147. [Google Scholar] [CrossRef]
- Ghosh, A.; Sharma, R.; Cho, J.T. Contact metric manifolds with η-parallel torsion tensor. Ann. Glob. Anal. Geom. 2008, 34, 287–299. [Google Scholar] [CrossRef]
- Sasaki, S. On differentiable manifolds with certain structure which are closed related to an almost contact structure. Tohoku Math. J. 1960, 12, 459–476. [Google Scholar] [CrossRef]
- He, C.; Zhu, M. Ricci solitons on Sasakian manifolds. arXiv 2011, arXiv:1109.4407. [Google Scholar]
- Krishnendu, D. α-almost Ricci Solitons on Kenmotsu manifolds. SUT J. Math. 2020, 56, 159–169. [Google Scholar]
- Pandey, S.; Singh, A.; Prasad, R. η ∗-Ricci solitons on Sasakian manifolds. Differ. Geom.-Dyn. Syst. 2022, 24, 164–176. [Google Scholar]
- Roy, S.; Dey, S.; Bhattacharyya, A.; Hui, S.K. ∗-Conformal η-Ricci Soliton on Sasakian manifold. Asian-Eur. J. Math. 2022, 15, 2250045. [Google Scholar] [CrossRef]
- İ Yoldaş, H.; Haseeb, A.; Mofarreh, F. Certain Curvature Conditions on Kenmotsu Manifolds and ∗-η-Ricci Solitons. Axioms 2023, 12, 140. [Google Scholar] [CrossRef]
- Sarkar, A.; Sil, A.; Paul, A.K. Ricci Almost Solitons on Three-Dimensional quasi Sasakian Manifolds. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2019, 89, 705–710. [Google Scholar] [CrossRef]
- De, K.; Khan, M.N.I.; De, U.C. Almost co-Kähler manifolds and quasi-Einstein solitons. Chaos Solitons Fractals 2023, 167, 113050. [Google Scholar] [CrossRef]
- De, U.C.; Mondal, A.K. 3-dimensional quasi Sasakian manifolds and Ricci solitons. SUT J. Math. 2012, 48, 71–81. [Google Scholar] [CrossRef]
- Prakasha, D.G.; Veeresha, P.; Venkatesha, V.; Kumara, H.A. On 3-dimensional quasi Sasakian manifolds and Ricci solitons. Trans. Razmadze Math. Inst. 2022, 176, 245–254. [Google Scholar]
- Siddiqi, M.D.; Chaubey, S.K.; Khan, M.N.I. f (R, T)-Gravity Model with Perfect Fluid Admitting Einstein Solitons. Mathematics 2022, 10, 82. [Google Scholar] [CrossRef]
- Blair, D.E. The Theory of Quasi SASAKIAN Structures. J. Differ. Geom. 1967, 1, 331–345. [Google Scholar] [CrossRef]
- Gonzalez, J.C.; Chinea, D. quasi Sasakian homogeneous structures on the generalized Heisenberg group H(p, 1). Proc. Am. Math. Soc. 1989, 105, 173–184. [Google Scholar]
- Kanemaki, S. Quasi Sasakian manifolds. Tohoku Math. J. 1977, 29, 227–233. [Google Scholar] [CrossRef]
- Kanemaki, S. On quasi Sasakian manifolds in Differential Geometry. Banach Cent. Publ. 1984, 12, 95–125. [Google Scholar] [CrossRef]
- De, U.C.; Sarkar, A. On three-dimensional quasi Sasakian manifolds. SUT J. Math. 2009, 45, 59–71. [Google Scholar] [CrossRef]
- Kumar, R.; Shenawy, S.; Turki, N.B.; Colney, L.; De, U.C. Lifts of a semi-symmetric metric connection from Sasakian Statistical manifolds to tangent bundle. Mathematics 2024, 12, 226. [Google Scholar] [CrossRef]
- Mandal, T.; De, U.C.; Khan, M.A.; Khan, M.N.I. A Study on Contact Metric Manifolds Admitting a Type of Solitons. J. Math. 2024, 2024, 8516906. [Google Scholar] [CrossRef]
- De, U.C.; Yildiz, A.; Turan, M.; Acet, B.E. 3-dimensional quasi Sasakian manifolds with semi-symmetric non-metric connection. Hacet. J. Math. Stat. 2012, 41, 127–137. [Google Scholar]
- Chaturvedi, B.B.; Kaushik, K.B.; Bhagat, P.; Khan, M.N.I. Characterization of solitons in a pseudo-quasi-conformally flat and pseudo-W8 flat Lorentzian Kähler space-time manifolds. AIMS Math. 2024, 9, 19515–19528. [Google Scholar] [CrossRef]
- Turan, M.; Yetim, C.; Chaubey, S.K. On quasi Sasakian 3-manifolds admitting η-Ricci solitons. Filomat 2019, 33, 4923–4930. [Google Scholar] [CrossRef]
- Olszak, Z. Normal almost contact metric manifolds of dimension three. Ann. Pol. Math. 1986, 47, 41–50. [Google Scholar] [CrossRef]
- Olszak, Z. On three dimensional conformally flat quasi Sasakian manifolds. Period. Math. Hung. 1996, 33, 105–113. [Google Scholar] [CrossRef]
- Akgün, M.A.; Acet, B.E. Some Curvature Conditions on 3-dimensional quasi Sasakian Manifolds Admitting Conformal Ricci Soliton. Turk. J. Math. Comput. Sci. 2023, 15, 375–381. [Google Scholar] [CrossRef]
- Blair, D.E. Contact Manifolds in Riemannian Geometry. In Lecture Notes in Math. 509; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1976. [Google Scholar]
- Blair, D.E. Riemannian Geometry of Contact and Sympletic Manifolds. In Progress Math. 203; Birkhauser: Boston, MA, USA; Basel, Switzerland; Berlin, Germany, 2002. [Google Scholar]
- Majhi, P.; De, U.C.; Kar, D. η-Ricci solitons on Sasakian 3-manifolds. An. Univ. Vest Timis. Ser. Mat.-Inform. 2017, 55, 143–156. [Google Scholar] [CrossRef]
- Barman, A.; De, U.C. On a type of quarter-symmetric non-metric ξ-connection on 3-dimensional quasi Sasakian manifolds. Differ. Geom.-Dyn. Syst. 2020, 22, 26–41. [Google Scholar]
- Yano, K. Differential Geometry on Complex and Almost Complex Spaces; Macmillan: New York, NY, USA, 1965. [Google Scholar]
- Shaikh, A.A.; Al-Solamy, F.R.; Ahmad, H. Some transformations on Kenmotsu manifolds. SUT J. Math. 2013, 49, 109–119. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, R.; Colney, L.; Alhwikem, D. CL-Transformation on 3-Dimensional Quasi Sasakian Manifolds and Their Ricci Soliton. Mathematics 2025, 13, 1543. https://doi.org/10.3390/math13101543
Kumar R, Colney L, Alhwikem D. CL-Transformation on 3-Dimensional Quasi Sasakian Manifolds and Their Ricci Soliton. Mathematics. 2025; 13(10):1543. https://doi.org/10.3390/math13101543
Chicago/Turabian StyleKumar, Rajesh, Lalnunenga Colney, and Dalal Alhwikem. 2025. "CL-Transformation on 3-Dimensional Quasi Sasakian Manifolds and Their Ricci Soliton" Mathematics 13, no. 10: 1543. https://doi.org/10.3390/math13101543
APA StyleKumar, R., Colney, L., & Alhwikem, D. (2025). CL-Transformation on 3-Dimensional Quasi Sasakian Manifolds and Their Ricci Soliton. Mathematics, 13(10), 1543. https://doi.org/10.3390/math13101543