A Three-Level Meta-Frontier Framework with Machine Learning Projections for Carbon Emission Efficiency Analysis: Heterogeneity Decomposition and Policy Implications
Abstract
:1. Introduction
- Methodological innovation: By extending the traditional two-level hierarchy to three levels, we introduce accumulation (E-E-A) and consistent (E-E-C) projections to resolve TGR inconsistencies. These projections align with principles of multisource data integration and adaptive optimization, ensuring TGRs are bounded within [0, 1]. Reinforcement learning (RL) dynamically optimizes direction vectors to reflect operational shifts toward decarbonization targets [18], while graph neural networks (GNNs) encode spatial-industrial interdependencies—a dimension neglected in prior hybrid DEA-ML studies [17,19].
- Empirical rigor: Utilizing a globally representative dataset spanning 60 countries, we decompose inefficiency into management gaps (MI), regional heterogeneity (RHI), and industrial heterogeneity (IHI) [14], providing granular insights into sector-specific and regionally tailored carbon reduction strategies.
- Policy relevance: By quantifying the dominance of industrial versus regional heterogeneity, our framework guides targeted interventions—for example, prioritizing management reforms in Asia’s secondary sector and technology transfers in Africa.
2. Preliminaries
2.1. Traditional Directional Distance Function (DDF) Framework
Technology Gap Ratio (TGR)
2.2. Machine Learning Enhancements for DDF Optimization
2.2.1. Feature Selection via Mutual Information (MI)
2.2.2. Adaptive Direction Vectors via Reinforcement Learning (RL)
2.2.3. Scalability via Distributed Computing
2.2.4. Uncertainty Quantification via Monte Carlo Simulation
2.2.5. Consistent Projection with Graph Neural Networks (GNNs)
3. Selection of the Projection Direction with Machine Learning Optimization
3.1. Dynamic Projection Paths via Reinforcement Learning (RL)
- Subgroup frontier (B): Exogenous projection with direction vector .
- Group frontier (): Exogenous projection with direction vector .
- Meta-frontier (): Three paths as follows:
- –
- (Accumulation): Adjusts and to bound .
- –
- (Exogenous): Traditional path prone to .
- –
- (Consistent): Constrains and via GNN embeddings for stability.
3.2. Graph Neural Network (GNN) Integration
3.2.1. TGR Formulation Under Combined Projections
- Exogenous projection ():
- Consistent () and Accumulation () projections:
3.2.2. Decision Tree for Optimal Projection Selection
- Regional heterogeneity index (RHI).
- Industrial complexity (IHI).
- Input–output dimensionality.
4. Combined Projection Models with Computational Enhancements
4.1. E-E-E: Traditional Exogenous Projection with Parallel Optimization
4.1.1. Step 1: Subgroup Frontier Projection
4.1.2. Step 2: Group Frontier Projection
4.1.3. Step 3: Meta-Frontier Projection
4.2. E-E-A: Accumulation Projection with Regularization and Uncertainty Quantification
4.3. E-E-C: Consistent Projection with Graph-Based Learning
5. Empirical Application
5.1. Variable Selection and Data Preprocessing
5.1.1. Inputs
- Primary industry: Net agricultural production (, USD ) reflects resource utilization in agriculture.
- Secondary industry: Fossil fuel consumption (, metric tons) quantifies energy intensity in manufacturing.
- Tertiary industry: Air passengers carried (, people) proxies service-sector infrastructure demands.
5.1.2. Desirable Outputs
- Primary industry: Agricultural value-added (, USD ).
- Secondary industry: Manufacturing value-added (, USD ).
- Tertiary industry: Service-sector value-added (, USD ).
5.1.3. Undesirable Outputs
- Carbon emissions from primary (), secondary (), and tertiary () industries (MtCO2e).
5.1.4. Data Sources and Preprocessing
- Missing data imputation: Linear interpolation filled gaps in African CO2 records, ensuring continuity for Monte Carlo simulations.
- Normalization: Z score standardization () mitigated scale effects, which is critical for GNN-based similarity matrices (Equation (9)).
- Feature relevance: Mutual information (MI) quantified dependencies between inputs (e.g., ) and outputs (e.g., ), discarding redundant variables (e.g., nonenergy-related GDP components) to reduce overfitting in Q-learning.
5.1.5. Alignment with Projection Frameworks
- E-E-E/E-E-A: Fossil fuel () and air passengers () were prioritized owing to their high MI scores (), aligning with the exogenous direction vectors in Equations (12)–(14).
- E-E-C: Agricultural () and service-sector () inputs were retained for their nonlinear correlations () with emissions, supporting GNN-based interdependency modeling (Equation (17)).
5.2. TGR Comparison Across Projection Combinations
5.2.1. Primary Industry
Variable-Driven Heterogeneity Metrics
- Industrial heterogeneity (): Fossil fuel consumption (, metric tons) dominates secondary industry inefficiency because of its nonlinear correlation with emissions (), amplifying cross-sectoral disparities.
- Regional heterogeneity (): Air passenger volume (, people) in the tertiary industry reflects infrastructural gaps (e.g., Africa’s fragmented transportation networks), contributing to regional divergences.
- Primary industry: Agricultural production (, USD ) exhibits low in Asia () because of standardized farming practices, in contrast with Africa’s spatially uneven irrigation access ().
- (1)
- Infrastructural gaps in energy systems, as evidenced by spatial disparities in electricity access and grid reliability, which constrain technological homogeneity;
- (2)
- Potential data quality issues, such as inconsistent CO2 emission reporting in African nations due to limited monitoring infrastructure, aligning with studies highlighting data synchronization errors in developing economies.
5.2.2. Secondary Industry
5.2.3. Tertiary Industry
- Regional vs. industrial heterogeneity: In 16 countries (8 European, 6 African, and 2 Asian), including Singapore, Spain, and Zimbabwe, across all projection combinations. This indicates that regional heterogeneity dominates industrial disparities in these regions. For example, Europe’s fragmented aviation policies (e.g., Ireland’s vs. Switzerland’s ) amplify perceived gaps, despite standardized EU regulations.
- Industrial dominance cases: Conversely, Israel, Syria, and Kenya exhibit , reflecting greater industrial heterogeneity. Israel’s high-tech service sector () contrasts sharply with its neighbors’ reliance on traditional industries, a divergence masked by exogenous projections.
5.2.4. Comparison of Three Industries
- Asia: The primary industry peaks (0.31), indicating low regional heterogeneity due to centralized farming policies, whereas the secondary industry (0.088) reveals stark intraregional energy policy divergences.
- Europe: The secondary industry is highest (0.259), reflecting uniform decarbonization strategies (e.g., EU Green Deal), whereas the primary industry (0.12) highlights climatic variability in agriculture.
- Africa: The tertiary and primary values converge (0.24 vs. 0.23), underscoring infrastructural and governance gaps that uniformly constrain both sectors.
5.3. MTCPI Comparison of Different Projection Combinations
5.3.1. Primary Industry
- Saudi Arabia: GTCPI = 1.0 (full efficiency under group frontiers) vs. MTCPI = 0.68 (meta-frontier), indicating that due to water-intensive farming diverging from global best practices.
- Singapore: GTCPI = 1.0 vs. MTCPI = 0.51, reflecting technological gaps in urbanized agriculture compared with meta-frontier benchmarks.
5.3.2. Secondary Industry
5.3.3. Tertiary Industry
5.4. Low-Efficiency Decomposition of Carbon Emissions
5.4.1. Decomposition Framework and Methodology
5.4.2. Industrial Heterogeneity (IHI) Analysis
- Asia: Saudi Arabia () and Singapore () face inefficiencies dominated by , driven by water-intensive farming practices () that diverge from global best practices.
- Africa: Low in Paraguay () and Namibia () reflects uniform agricultural underdevelopment, where climatic constraints limit technological diversification.
5.4.3. RHI
- Primary sector vulnerability: Climatic diversity and localized farming practices () make agriculture highly susceptible to regional disparities.
- Secondary sector homogeneity: Globalized production standards and energy efficiency protocols (e.g., ISO certifications) minimize geographic variability, despite fossil fuel dependencies ().
- Tertiary sector polarization: Infrastructural investments () and policy coordination disproportionately influence service-sector efficiency, with Africa’s deficits and Europe’s harmonization exemplifying extremes.
5.4.4. MI
- Secondary sector lock-in: High transition costs (>$500M per coal retrofit) and rigid energy policies sustain dependencies.
- Tertiary sector variability: -driven infrastructural gaps (e.g., Africa’s air transport) and regulatory fragmentation maintain inefficiency.
6. Comparison Between Combined Projection and Traditional Projection
- A three-level meta-frontier hierarchy to disentangle dual heterogeneity.
- GNN-constrained TGR bounding to resolve DEA’s issue.
- RL-optimized dynamic direction vectors.
- TGR inflation in traditional projection:
- –
- E-E-E overestimates the secondary industry TGR1 in Asia () because of ’s (fossil fuels) misalignment with decarbonization targets (Section 5.4.1). E-E-C resolves this via GNN-constrained homogenization ().
- –
- Africa’s tertiary TGR1 under E-E-E () reflects ’s (air passengers) infrastructural gaps, mitigated by E-E-A’s uncertainty quantification ().
- MTCPI overestimation:
- –
- E-E-E’s inflated MTCPI in Asia’s primary industry () stems from ignoring -driven irrigation disparities, whereas E-E-C’s normalization corrects this ().
- –
- Europe’s secondary sector MTCPI under E-E-E () excludes ’s path dependency, whereas E-E-C aligns with policy-driven benchmarks ().
- IHI correction:
- –
- Negative IHI values under E-E-E (e.g., in Asia’s secondary industry) are artifacts of , resolved by E-E-C’s bounded constraints ().
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- International Energy Agency. CO2 Emissions in 2022; IEA: Paris, France, 2022; Available online: https://www.iea.org/reports/co2-emissions-in-2022 (accessed on 2 April 2025).
- Chen, F.; Zhao, T.; Xia, H.; Cui, X.; Li, Z. Allocation of carbon emission quotas in Chinese provinces based on Super-SBM model and ZSG-DEA model. Clean Technol. Environ. Policy 2021, 23, 2285–2301. [Google Scholar] [CrossRef]
- Guo, X.; Chen, L.; Wang, J.; Liao, L. The impact of disposability characteristics on carbon efficiency from a potential emissions reduction perspective. J. Clean. Prod. 2023, 408, 137180. [Google Scholar] [CrossRef]
- Wang, X.M.; Ding, H.; Liu, L. Eco-efficiency measurement of industrial sectors in China: A hybrid super-efficiency DEA analysis. J. Clean. Prod. 2019, 229, 53–64. [Google Scholar] [CrossRef]
- O’Donnell, C.; Rao, D.; Battese, G. Metafrontier frameworks for the study of firm-level efficiencies and technology ratios. Empir. Econ. 2008, 34, 231–255. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X.Y. Carbon emission efficiency measurement and influencing factor analysis of nine provinces in the Yellow River basin: Based on SBM-DDF model and Tobit-CCD model. Environ. Sci. Pollut. Res. 2022, 29, 33263–33280. [Google Scholar] [CrossRef] [PubMed]
- Olasehinde, T.S.; Qiao, F.B.; Mao, S.P. Impact of improved maize varieties on production efficiency in Nigeria: Separating technology from managerial gaps. Agriculture 2023, 13, 611. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, F.; Ma, X.; He, L. Carbon emissions efficiency in China: Key facts from regional and industrial sector. J. Clean. Prod. 2018, 206, 850–869. [Google Scholar] [CrossRef]
- Adenso-Diaz, B.; Lozano, S. A metafrontier analysis approach for assessing the efficiency of freight service providers. Int. J. Syst. Sci.-Oper. Logist. 2023, 10, 2177896. [Google Scholar] [CrossRef]
- Battese, G.E.; Rao, D.P.; O’Donnell, C.J. A metafrontier production function for estimation of technical efficiencies and technology gaps for firms operating under different technologies. J. Product. Anal. 2004, 21, 91–103. [Google Scholar] [CrossRef]
- Gao, D.; Li, Y.; Li, G. Boosting the green total factor energy efficiency in urban China: Does low-carbon city policy matter? Environ. Sci. Pollut. Res. 2022, 29, 56341–56356. [Google Scholar] [CrossRef]
- Alda, E.; Giménez, V.; Paz Castro, I.G.; Zamora Torres, A.I. Modernization plans for the Mexican customs system: Have they really worked? A productivity impact assessment. Appl. Econ. 2023, 56, 796–811. [Google Scholar] [CrossRef]
- Zhong, S.; Li, J.W.; Chen, X.; Wei, H. Research on the green total factor productivity of laying hens in China. J. Clean. Prod. 2021, 315, 128150. [Google Scholar] [CrossRef]
- Bai, C.Q.; Chen, Z.J.; Wang, D.P. Transportation carbon emission reduction potential and mitigation strategy in China. Sci. Total Environ. 2023, 873, 162074. [Google Scholar] [CrossRef] [PubMed]
- Eguchi, S.; Takayabu, H.; Lin, C. Sources of inefficient power generation by coal-fired thermal power plants in China: A metafrontier DEA decomposition approach. Renew. Sustain. Energy Rev. 2021, 138, 110562. [Google Scholar] [CrossRef]
- Wang, A.L.; Hu, S.; Li, J.L. Using machine learning to model technological heterogeneity in carbon emission efficiency evaluation: The case of China’s cities. Energy Econ. 2022, 114, 106238. [Google Scholar] [CrossRef]
- Zhong, S.; Li, J.; Chen, X.; Wen, H. A multi-hierarchy meta-frontier approach for measuring green total factor productivity: An application of pig breeding in China. Socio-Econ. Plan. Sci. 2022, 81, 101152. [Google Scholar] [CrossRef]
- Chambers, R.; Chung, Y.H.; Färe, R. Profit, Directional distance functions, and Nerlovian efficiency. J. Optim. Theory Appl. 1998, 98, 351–364. [Google Scholar] [CrossRef]
- Wei, F.; Zhang, X.; Chu, J.; Yang, F.; Yuan, Z. Energy and environmental efficiency of China’s transportation sectors considering CO2 emission uncertainty. Transp. Res. Part D-Transp. Environ. 2021, 97, 102955. [Google Scholar] [CrossRef]
- Zheng, Y.M.; Lv, Q.; Wang, Y.D. Economic development, technological progress, and provincial carbon emissions intensity: Empirical research based on the threshold panel model. Appl. Econ. 2022, 54, 3495–3504. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W. Linear programming models for measuring economy-wide energy efficiency performance. Energy Policy 2008, 36, 2911–2916. [Google Scholar] [CrossRef]
- Wen, S.; Jia, Z.; Chen, X. Can low-carbon city pilot policies significantly improve carbon emission efficiency? Empirical evidence from China. J. Clean. Prod. 2022, 346, 131131. [Google Scholar] [CrossRef]
- Zhang, N.; Choi, Y. A note on the evolution of directional distance function and its development in energy and environmental studies 1997–2013. Renew. Sustain. Energy Rev. 2014, 33, 50–59. [Google Scholar] [CrossRef]
- Wang, Q.; Su, B.; Zhou, P.; Chiu, C.R. Measuring total-factor CO2 emission performance and technology gaps using a non-radial directional distance function: A modified approach. Energy Econ. 2016, 56, 475–482. [Google Scholar] [CrossRef]
- Li, Z.W.; Zhang, C.J.; Zhou, Y. Spatio-temporal evolution characteristics and influencing factors of carbon emission reduction potential in China. Environ. Sci. Pollut. Res. 2021, 28, 59925–59944. [Google Scholar] [CrossRef]
- Sueyoshi, T.; Goto, M. DEA approach for unified efficiency measurement: Assessment of Japanese fossil fuel power generation. Energy Econ. 2011, 33, 292–303. [Google Scholar] [CrossRef]
- Li, Y.; Hou, W.; Zhu, W.; Li, F.; Liang, L. Provincial carbon emission performance analysis in China based on a Malmquist data envelopment analysis approach with fixed-sum undesirable outputs. Ann. Oper. Res. 2021, 304, 233–261. [Google Scholar] [CrossRef]
- Yu, X.; Jin, L.; Wang, Q.; Zhou, D. Optimal path for controlling pollution emissions in the Chinese electric power industry considering technological heterogeneity. Environ. Sci. Pollut. Res. 2019, 26, 11087–11099. [Google Scholar] [CrossRef]
Variable | MI Score | Rank |
---|---|---|
Fossil fuels () | 0.89 | 1 |
Air passengers () | 0.82 | 2 |
Agricultural output () | 0.61 | 3 |
Service GDP () | 0.58 | 4 |
Asia | Europe | Africa | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
E-E-E | E-E-C | E-E-A | E-E-E | E-E-C | E-E-A | E-E-E | E-E-C | E-E-A | |||
India | 0.071 | 0.024 | 0.068 | Germany | 0.071 | 0.013 | 0.071 | South Africa | 0.070 | 0.009 | 0.068 |
Japan | 0.148 | 0.114 | 0.144 | Greece | 0.147 | 0.030 | 0.147 | Algeria | 0.148 | 0.080 | 0.144 |
South Korea | 0.148 | 0.097 | 0.144 | Italy | 0.148 | 0.052 | 0.144 | Morocco | 0.151 | 0.060 | 0.144 |
Saudi Arabia | 0.068 | 0.068 | 0.068 | France | 0.068 | 0.016 | 0.068 | Nigeria | 0.156 | 0.087 | 0.144 |
Singapore | 0.144 | 0.144 | 0.144 | Spain | 0.148 | 0.042 | 0.144 | Jamaica | 0.147 | 0.072 | 0.144 |
China | 0.147 | 0.063 | 0.144 | the Netherlands | 0.148 | 0.040 | 0.144 | Mauritius | 0.143 | 0.067 | 0.143 |
Thailand | 0.069 | 0.020 | 0.068 | Russia | 0.068 | 0.016 | 0.068 | Paraguay | 0.098 | 0.009 | 0.068 |
Kazakhstan | 0.073 | 0.013 | 0.068 | Poland | 0.072 | 0.011 | 0.072 | Namibia | 0.186 | 0.030 | 0.068 |
Malaysia | 0.143 | 0.065 | 0.143 | Ukraine | 0.101 | 0.012 | 0.101 | Gabon | 0.154 | 0.110 | 0.144 |
Iraq | 0.113 | 0.044 | 0.068 | Austria | 0.071 | 0.017 | 0.071 | Albania | 0.154 | 0.071 | 0.144 |
Iran | 0.148 | 0.054 | 0.144 | Hungary | 0.075 | 0.017 | 0.075 | Suriname | 0.090 | 0.033 | 0.068 |
Viet Nam | 0.069 | 0.017 | 0.068 | Ireland | 0.096 | 0.011 | 0.068 | Belize | 0.070 | 0.014 | 0.068 |
Pakistan | 0.091 | 0.022 | 0.068 | Finland | 0.174 | 0.119 | 0.144 | Zimbabwe | 0.124 | 0.019 | 0.068 |
the Philippines | 0.072 | 0.022 | 0.068 | Portugal | 0.075 | 0.018 | 0.075 | Mozambique | 0.108 | 0.016 | 0.068 |
Uzbekistan | 0.072 | 0.017 | 0.068 | Slovakia | 0.149 | 0.062 | 0.144 | Kenya | 0.118 | 0.056 | 0.068 |
Bangladesh | 0.074 | 0.024 | 0.068 | Slovenia | 0.071 | 0.024 | 0.068 | Tanzania | 0.100 | 0.020 | 0.068 |
Israel | 0.141 | 0.084 | 0.141 | Lithuania | 0.072 | 0.012 | 0.068 | Ghana | 0.148 | 0.052 | 0.144 |
Bahrain | 0.155 | 0.087 | 0.144 | Luxembourg | 0.073 | 0.011 | 0.068 | Zimbabwe | 0.266 | 0.028 | 0.068 |
Brunei | 0.154 | 0.092 | 0.144 | Switzerland | 0.157 | 0.070 | 0.144 | Mozambique | 0.160 | 0.087 | 0.144 |
Syria | 0.147 | 0.067 | 0.144 | Serbia | 0.070 | 0.013 | 0.070 | Kyrgyzstan | 0.129 | 0.028 | 0.068 |
Average | 0.112 | 0.057 | 0.106 | - | 0.103 | 0.030 | 0.098 | - | 0.136 | 0.047 | 0.102 |
Asia | Europe | Africa | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
E-E-E | E-E-C | E-E-A | E-E-E | E-E-C | E-E-A | E-E-E | E-E-C | E-E-A | |||
India | 1.191 | 1.000 | 1.000 | Germany | 1.000 | 1.000 | 1.000 | South Africa | 1.000 | 1.000 | 1.000 |
Japan | 1.000 | 1.000 | 1.000 | Greece | 1.000 | 1.000 | 1.000 | Algeria | 1.000 | 1.000 | 1.000 |
South Korea | 1.000 | 1.000 | 1.000 | Italy | 1.000 | 1.000 | 1.000 | Morocco | 1.000 | 1.000 | 1.000 |
Saudi Arabia | 1.017 | 1.000 | 1.000 | France | 1.000 | 1.000 | 1.000 | Nigeria | 1.000 | 1.000 | 1.000 |
Singapore | 1.000 | 1.000 | 1.000 | Spain | 1.000 | 1.000 | 1.000 | Jamaica | 2.129 | 1.000 | 1.000 |
China | 1.475 | 1.000 | 1.000 | the Netherlands | 1.000 | 1.000 | 1.000 | Mauritius | 1.000 | 1.000 | 1.000 |
Thailand | 1.119 | 1.000 | 1.000 | Russia | 1.101 | 1.000 | 1.000 | Paraguay | 1.000 | 1.000 | 1.000 |
Kazakhstan | 1.000 | 1.000 | 1.000 | Poland | 1.000 | 1.000 | 1.000 | Namibia | 1.000 | 1.000 | 1.000 |
Malaysia | 1.000 | 1.000 | 1.000 | Ukraine | 1.552 | 1.000 | 1.000 | Gabon | 1.000 | 1.000 | 1.000 |
Iraq | 1.000 | 1.000 | 1.000 | Austria | 1.000 | 1.000 | 1.000 | Albania | 1.675 | 1.000 | 1.000 |
Iran | 1.102 | 1.000 | 1.000 | Hungary | 1.000 | 1.000 | 1.000 | Suriname | 1.000 | 1.000 | 1.000 |
Viet Nam | 1.954 | 1.000 | 1.000 | Ireland | 1.000 | 1.000 | 1.000 | Belize | 1.091 | 1.000 | 1.000 |
Pakistan | 1.795 | 1.000 | 1.000 | Finland | 1.000 | 1.000 | 1.000 | Zimbabwe | 1.000 | 1.000 | 1.000 |
the Philippines | 1.000 | 1.000 | 1.000 | Portugal | 1.000 | 1.000 | 1.000 | Mozambique | 1.000 | 1.000 | 1.000 |
Uzbekistan | 1.064 | 1.000 | 1.000 | Slovakia | 1.575 | 1.000 | 1.000 | Kenya | 1.348 | 1.000 | 1.000 |
Bangladesh | 1.474 | 1.000 | 1.000 | Slovenia | 1.000 | 1.000 | 1.000 | Tanzania | 1.000 | 1.000 | 1.000 |
Israel | 1.000 | 1.000 | 1.000 | Lithuania | 1.000 | 1.000 | 1.000 | Ghana | 1.000 | 1.000 | 1.000 |
Bahrain | 1.000 | 1.000 | 1.000 | Luxembourg | 1.000 | 1.000 | 1.000 | Zimbabwe | 1.000 | 1.000 | 1.000 |
Brunei | 1.000 | 1.000 | 1.000 | Switzerland | 1.000 | 1.000 | 1.000 | Mozambique | 1.000 | 1.000 | 1.000 |
Syria | 1.000 | 1.000 | 1.000 | Serbia | 1.000 | 1.000 | 1.000 | Kyrgyzstan | 1.000 | 1.000 | 1.000 |
Average | 1.160 | 1.000 | 1.000 | - | 1.061 | 1.000 | 1.000 | - | 1.112 | 1.000 | 1.000 |
Asia | Europe | Africa | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
E-E-E | E-E-C | E-E-A | E-E-E | E-E-C | E-E-A | E-E-E | E-E-C | E-E-A | |||
India | 0.699 | 0.129 | 0.699 | Germany | 0.667 | 0.461 | 0.667 | South Africa | 0.714 | 0.249 | 0.714 |
Japan | 0.675 | 0.509 | 0.675 | Greece | 0.620 | 0.271 | 0.620 | Algeria | 0.645 | 0.103 | 0.645 |
South Korea | 0.629 | 0.297 | 0.629 | Italy | 0.770 | 0.557 | 0.770 | Morocco | 0.710 | 0.202 | 0.710 |
Saudi Arabia | 0.766 | 0.210 | 0.766 | France | 0.693 | 0.493 | 0.693 | Nigeria | 0.532 | 0.158 | 0.532 |
Singapore | 0.510 | 0.510 | 0.510 | Spain | 0.616 | 0.313 | 0.616 | Jamaica | 0.422 | 0.137 | 0.422 |
China | 0.664 | 0.313 | 0.664 | the Netherlands | 0.527 | 0.391 | 0.527 | Mauritius | 0.539 | 0.207 | 0.539 |
Thailand | 0.597 | 0.150 | 0.597 | Russia | 0.722 | 0.209 | 0.722 | Paraguay | 0.460 | 0.101 | 0.460 |
Kazakhstan | 0.732 | 0.322 | 0.732 | Poland | 0.676 | 0.273 | 0.676 | Namibia | 0.515 | 0.148 | 0.515 |
Malaysia | 0.610 | 0.117 | 0.610 | Ukraine | 0.767 | 0.228 | 0.767 | Gabon | 0.793 | 0.793 | 0.793 |
Iraq | 0.439 | 0.113 | 0.439 | Austria | 0.487 | 0.225 | 0.487 | Albania | 0.620 | 0.171 | 0.620 |
Iran | 0.668 | 0.067 | 0.668 | Hungary | 0.457 | 0.125 | 0.457 | Suriname | 0.773 | 0.195 | 0.773 |
Viet Nam | 0.570 | 0.084 | 0.570 | Ireland | 0.510 | 0.324 | 0.510 | Belize | 0.452 | 0.061 | 0.452 |
Pakistan | 0.681 | 0.212 | 0.681 | Finland | 0.557 | 0.334 | 0.557 | Zimbabwe | 0.541 | 0.188 | 0.541 |
the Philippines | 0.559 | 0.179 | 0.559 | Portugal | 0.591 | 0.269 | 0.591 | Mozambique | 0.690 | 0.116 | 0.690 |
Uzbekistan | 0.780 | 0.124 | 0.780 | Slovakia | 1.000 | 1.000 | 1.000 | Kenya | 0.686 | 0.192 | 0.686 |
Bangladesh | 0.709 | 0.509 | 0.709 | Slovenia | 0.671 | 0.280 | 0.671 | Tanzania | 0.785 | 0.261 | 0.785 |
Israel | 0.744 | 0.565 | 0.744 | Lithuania | 0.638 | 0.525 | 0.284 | Ghana | 0.413 | 0.129 | 0.413 |
Bahrain | 0.504 | 0.135 | 0.504 | Luxembourg | 0.751 | 0.433 | 0.751 | Zimbabwe | 0.332 | 0.159 | 0.304 |
Brunei | 0.594 | 0.136 | 0.594 | Switzerland | 0.482 | 0.453 | 0.482 | Mozambique | 0.442 | 0.088 | 0.442 |
Syria | 0.803 | 0.462 | 0.707 | Serbia | 0.746 | 0.243 | 0.746 | Kyrgyzstan | 0.491 | 0.157 | 0.491 |
Average | 0.647 | 0.257 | 0.642 | - | 0.647 | 0.370 | 0.630 | - | 0.578 | 0.191 | 0.576 |
Asia | MTCPI | Europe | MTCPI | Africa | MTCPI | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
E-E-E | E-E-C | E-E-A | E-E-E | E-E-C | E-E-A | E-E-E | E-E-C | E-E-A | |||
India | 0.017 | 0.006 | 0.017 | Germany | 0.013 | 0.002 | 0.013 | South Africa | 0.007 | 0.001 | 0.007 |
Japan | 0.059 | 0.046 | 0.058 | Greece | 0.026 | 0.005 | 0.026 | Algeria | 0.042 | 0.023 | 0.040 |
South Korea | 0.047 | 0.031 | 0.046 | Italy | 0.028 | 0.010 | 0.027 | Morocco | 0.023 | 0.009 | 0.022 |
Saudi Arabia | 0.068 | 0.068 | 0.068 | France | 0.015 | 0.003 | 0.015 | Nigeria | 0.030 | 0.017 | 0.028 |
Singapore | 0.144 | 0.144 | 0.144 | Spain | 0.021 | 0.006 | 0.020 | Jamaica | 0.045 | 0.022 | 0.044 |
China | 0.038 | 0.016 | 0.037 | the Netherlands | 0.019 | 0.005 | 0.019 | Mauritius | 0.062 | 0.029 | 0.062 |
Thailand | 0.018 | 0.005 | 0.018 | Russia | 0.015 | 0.004 | 0.015 | Paraguay | 0.004 | 0.000 | 0.003 |
Kazakhstan | 0.008 | 0.001 | 0.007 | Poland | 0.010 | 0.002 | 0.010 | Namibia | 0.011 | 0.002 | 0.004 |
Malaysia | 0.060 | 0.027 | 0.060 | Ukraine | 0.010 | 0.001 | 0.010 | Gabon | 0.042 | 0.030 | 0.039 |
Iraq | 0.022 | 0.009 | 0.013 | Austria | 0.016 | 0.004 | 0.016 | Albania | 0.025 | 0.012 | 0.024 |
Iran | 0.027 | 0.010 | 0.026 | Hungary | 0.016 | 0.004 | 0.016 | Suriname | 0.018 | 0.007 | 0.013 |
Viet Nam | 0.015 | 0.004 | 0.015 | Ireland | 0.006 | 0.001 | 0.004 | Belize | 0.011 | 0.002 | 0.011 |
Pakistan | 0.012 | 0.003 | 0.009 | Finland | 0.026 | 0.018 | 0.022 | Zimbabwe | 0.009 | 0.001 | 0.005 |
the Philippines | 0.015 | 0.005 | 0.014 | Portugal | 0.017 | 0.004 | 0.017 | Mozambique | 0.008 | 0.001 | 0.005 |
Uzbekistan | 0.011 | 0.003 | 0.010 | Slovakia | 0.026 | 0.011 | 0.025 | Kenya | 0.028 | 0.013 | 0.016 |
Bangladesh | 0.014 | 0.004 | 0.013 | Slovenia | 0.018 | 0.006 | 0.017 | Tanzania | 0.010 | 0.002 | 0.007 |
Israel | 0.079 | 0.047 | 0.079 | Lithuania | 0.008 | 0.001 | 0.008 | Ghana | 0.028 | 0.010 | 0.027 |
Bahrain | 0.031 | 0.017 | 0.029 | Luxembourg | 0.006 | 0.001 | 0.006 | Zimbabwe | 0.007 | 0.001 | 0.002 |
Brunei | 0.034 | 0.020 | 0.032 | Switzerland | 0.022 | 0.010 | 0.020 | Mozambique | 0.026 | 0.014 | 0.023 |
Syria | 0.038 | 0.017 | 0.037 | Serbia | 0.012 | 0.002 | 0.012 | Kyrgyzstan | 0.013 | 0.003 | 0.007 |
Average | 0.038 | 0.024 | 0.037 | - | 0.017 | 0.005 | 0.016 | - | 0.022 | 0.010 | 0.019 |
Asia | MTCPI | Europe | MTCPI | Africa | MTCPI | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
E-E-E | E-E-C | E-E-A | E-E-E | E-E-C | E-E-A | E-E-E | E-E-C | E-E-A | |||
India | 0.041 | 0.034 | 0.034 | Germany | 0.297 | 0.297 | 0.297 | South Africa | 0.046 | 0.046 | 0.046 |
Japan | 0.216 | 0.216 | 0.216 | Greece | 0.144 | 0.144 | 0.144 | Algeria | 0.121 | 0.121 | 0.121 |
South Korea | 0.212 | 0.212 | 0.212 | Italy | 0.364 | 0.364 | 0.364 | Morocco | 0.116 | 0.116 | 0.116 |
Saudi Arabia | 0.113 | 0.111 | 0.111 | France | 0.330 | 0.330 | 0.330 | Nigeria | 0.439 | 0.439 | 0.439 |
Singapore | 0.180 | 0.180 | 0.180 | Spain | 0.227 | 0.227 | 0.227 | Jamaica | 0.077 | 0.036 | 0.036 |
China | 0.080 | 0.054 | 0.054 | the Netherlands | 0.199 | 0.199 | 0.199 | Mauritius | 0.182 | 0.182 | 0.182 |
Thailand | 0.103 | 0.092 | 0.092 | Russia | 0.059 | 0.053 | 0.053 | Paraguay | 1.000 | 1.000 | 1.000 |
Kazakhstan | 0.057 | 0.057 | 0.057 | Poland | 0.143 | 0.143 | 0.143 | Namibia | 0.293 | 0.293 | 0.293 |
Malaysia | 0.107 | 0.107 | 0.107 | Ukraine | 0.042 | 0.027 | 0.027 | Gabon | 0.308 | 0.308 | 0.308 |
Iraq | 0.260 | 0.260 | 0.260 | Austria | 0.286 | 0.286 | 0.286 | Albania | 0.159 | 0.095 | 0.095 |
Iran | 0.029 | 0.026 | 0.026 | Hungary | 0.164 | 0.164 | 0.164 | Suriname | 0.334 | 0.334 | 0.334 |
Viet Nam | 0.067 | 0.035 | 0.035 | Ireland | 0.892 | 0.892 | 0.892 | Belize | 0.149 | 0.137 | 0.137 |
Pakistan | 0.068 | 0.038 | 0.038 | Finland | 0.235 | 0.235 | 0.235 | Zimbabwe | 0.162 | 0.162 | 0.162 |
the Philippines | 0.219 | 0.219 | 0.219 | Portugal | 0.224 | 0.224 | 0.224 | Mozambique | 0.097 | 0.097 | 0.097 |
Uzbekistan | 0.043 | 0.040 | 0.040 | Slovakia | 0.182 | 0.115 | 0.115 | Kenya | 0.240 | 0.178 | 0.178 |
Bangladesh | 0.215 | 0.146 | 0.146 | Slovenia | 0.223 | 0.223 | 0.223 | Tanzania | 0.213 | 0.213 | 0.213 |
Israel | 0.378 | 0.378 | 0.378 | Lithuania | 0.280 | 0.280 | 0.280 | Ghana | 0.283 | 0.283 | 0.283 |
Bahrain | 0.183 | 0.183 | 0.183 | Luxembourg | 0.222 | 0.222 | 0.222 | Zimbabwe | 1.000 | 1.000 | 1.000 |
Brunei | 0.498 | 0.498 | 0.498 | Switzerland | 1.000 | 1.000 | 1.000 | Mozambique | 0.399 | 0.399 | 0.399 |
Syria | 0.035 | 0.035 | 0.035 | Serbia | 0.094 | 0.094 | 0.094 | Kyrgyzstan | 0.156 | 0.156 | 0.156 |
Average | 0.155 | 0.146 | 0.146 | - | 0.280 | 0.276 | 0.276 | - | 0.289 | 0.280 | 0.280 |
Asia | MTCPI | Europe | MTCPI | Africa | MTCPI | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
E-E-E | E-E-C | E-E-A | E-E-E | E-E-C | E-E-A | E-E-E | E-E-C | E-E-A | |||
India | 0.045 | 0.008 | 0.045 | Germany | 0.285 | 0.197 | 0.285 | South Africa | 0.095 | 0.033 | 0.095 |
Japan | 0.337 | 0.254 | 0.337 | Greece | 0.141 | 0.061 | 0.141 | Algeria | 0.041 | 0.006 | 0.041 |
South Korea | 0.157 | 0.074 | 0.157 | Italy | 0.289 | 0.209 | 0.289 | Morocco | 0.074 | 0.021 | 0.074 |
Saudi Arabia | 0.062 | 0.017 | 0.062 | France | 0.298 | 0.212 | 0.298 | Nigeria | 0.088 | 0.026 | 0.088 |
Singapore | 0.510 | 0.510 | 0.510 | Spain | 0.175 | 0.089 | 0.175 | Jamaica | 0.092 | 0.030 | 0.092 |
China | 0.154 | 0.073 | 0.154 | the Netherlands | 0.303 | 0.225 | 0.303 | Mauritius | 0.120 | 0.046 | 0.120 |
Thailand | 0.071 | 0.018 | 0.071 | Russia | 0.073 | 0.021 | 0.073 | Paraguay | 0.061 | 0.013 | 0.061 |
Kazakhstan | 0.127 | 0.056 | 0.127 | Poland | 0.122 | 0.049 | 0.122 | Namibia | 0.085 | 0.024 | 0.085 |
Malaysia | 0.052 | 0.010 | 0.052 | Ukraine | 0.069 | 0.021 | 0.069 | Gabon | 0.793 | 0.793 | 0.793 |
Iraq | 0.072 | 0.019 | 0.072 | Austria | 0.149 | 0.069 | 0.149 | Albania | 0.079 | 0.022 | 0.079 |
Iran | 0.024 | 0.002 | 0.024 | Hungary | 0.078 | 0.021 | 0.078 | Suriname | 0.055 | 0.014 | 0.055 |
Viet Nam | 0.039 | 0.006 | 0.039 | Ireland | 0.234 | 0.149 | 0.234 | Belize | 0.036 | 0.005 | 0.036 |
Pakistan | 0.086 | 0.027 | 0.086 | Finland | 0.222 | 0.133 | 0.222 | Zimbabwe | 0.107 | 0.037 | 0.107 |
the Philippines | 0.096 | 0.031 | 0.096 | Portugal | 0.151 | 0.069 | 0.151 | Mozambique | 0.041 | 0.007 | 0.041 |
Uzbekistan | 0.031 | 0.005 | 0.031 | Slovakia | 1.000 | 1.000 | 1.000 | Kenya | 0.074 | 0.021 | 0.074 |
Bangladesh | 0.302 | 0.217 | 0.302 | Slovenia | 0.128 | 0.053 | 0.128 | Tanzania | 0.076 | 0.025 | 0.076 |
Israel | 0.332 | 0.252 | 0.332 | Lithuania | 0.400 | 0.329 | 0.178 | Ghana | 0.087 | 0.027 | 0.087 |
Bahrain | 0.078 | 0.021 | 0.078 | Luxembourg | 0.190 | 0.109 | 0.190 | Zimbabwe | 0.126 | 0.061 | 0.116 |
Brunei | 0.064 | 0.015 | 0.064 | Switzerland | 0.428 | 0.403 | 0.428 | Mozambique | 0.054 | 0.011 | 0.054 |
Syria | 0.169 | 0.097 | 0.148 | Serbia | 0.082 | 0.027 | 0.082 | Kyrgyzstan | 0.095 | 0.030 | 0.095 |
Average | 0.140 | 0.086 | 0.139 | - | 0.241 | 0.172 | 0.230 | - | 0.114 | 0.063 | 0.113 |
Metric | Projection | Primary Industry | Secondary Industry | Tertiary Industry |
---|---|---|---|---|
(Asia) | E-E-E | 0.112 | 1.160 | 0.647 |
E-E-C | 0.057 | 1.000 | 0.257 | |
MTCPI (Africa) | E-E-E | 0.022 | 0.289 | 0.114 |
E-E-A | 0.019 | 0.280 | 0.113 | |
IHI (Europe) | E-E-E | 0.150 | −0.004 | 0.127 |
E-E-C | 0.162 | 0.000 | 0.195 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Feng, T.; Shen, Y.; Zhang, N.; Guo, X. A Three-Level Meta-Frontier Framework with Machine Learning Projections for Carbon Emission Efficiency Analysis: Heterogeneity Decomposition and Policy Implications. Mathematics 2025, 13, 1542. https://doi.org/10.3390/math13091542
Zhu X, Feng T, Shen Y, Zhang N, Guo X. A Three-Level Meta-Frontier Framework with Machine Learning Projections for Carbon Emission Efficiency Analysis: Heterogeneity Decomposition and Policy Implications. Mathematics. 2025; 13(9):1542. https://doi.org/10.3390/math13091542
Chicago/Turabian StyleZhu, Xiaoxia, Tongyue Feng, Yuhe Shen, Ning Zhang, and Xu Guo. 2025. "A Three-Level Meta-Frontier Framework with Machine Learning Projections for Carbon Emission Efficiency Analysis: Heterogeneity Decomposition and Policy Implications" Mathematics 13, no. 9: 1542. https://doi.org/10.3390/math13091542
APA StyleZhu, X., Feng, T., Shen, Y., Zhang, N., & Guo, X. (2025). A Three-Level Meta-Frontier Framework with Machine Learning Projections for Carbon Emission Efficiency Analysis: Heterogeneity Decomposition and Policy Implications. Mathematics, 13(9), 1542. https://doi.org/10.3390/math13091542