Iteratively Reweighted Least Squares Fiducial Interval for Variance in Unbalanced Variance Components Model
Abstract
:1. Introduction
2. Review of Fiducial Generalized Pivotal Quantity
- The FGPQ for θ is derived from the percentiles of .
3. Confidence Interval for
3.1. Matrix Formulation of Model
3.2. Construction of Iteratively Reweighted Least Squares FGPQ
Algorithm 1 The weighted least squares solution of |
Output: |
1: Initial: . |
2: Repeat: |
3: Update: , . |
4: Update: by minimizing respect to . |
5: Until Convergence . |
6: Return . |
3.3. Iteratively Reweighted Least Squares Fiducial Generalized Confidence Intervals for
4. Simulation Study
5. Application
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Meaning |
TG | Ting and others method |
HK | Hartung–Knapp method |
PB | Park–Burdick method |
LL | Li–Li method |
LXH | Liu–Xu–Hannig method |
IRLF | iteratively reweighted least squares fiducial generalized pivotal quantity |
FGPQ | fiducial generalized pivotal quantity |
Symbol | Meaning |
the jth random observation associated with the ith group of the random factor | |
grand mean | |
the ith group of the random factor | |
the jth random error associated with the ith group of the random factor | |
between-group variance | |
within-group variance | |
g | the number of groups |
the number of observations of the ith group | |
n | the number of the total observations |
vector of observations | |
vector of ones | |
incidence matrix | |
vector of the random factor | |
vector of the random error | |
identity matrix | |
Householder matrix | |
measurements of imbalance | |
fiducial generalized pivotal quantity for | |
average widths of the confidence interval of the IRLF method | |
average widths of the confidence interval of competing methods |
References
- Wackerly, D.; Mendenhall, W.; Scheaffer, R.B. Mathematical Statistics with Applications, 7th ed.; Thomson Learning: Chicago, IL, USA, 2008; p. 468. [Google Scholar]
- Searle, S.R.; Casella, G.; McCulloch, C.E.B. Variance Components; John Wiley and Sons: Hoboken, NJ, USA, 2006; p. 38. [Google Scholar]
- Ting, N.; Burdick, R.K.; Graybill, F.A.; Jeyaratnam, S.; Lu, T.F.C. Confidence intervals on linear combinations of variance components that are unrestricted in sign. J. Stat. Comput. Simul. 1990, 35, 135–143. [Google Scholar] [CrossRef]
- Hartung, J.; Knapp, G. Confidence intervals for the between group variance in the unbalanced one-way random effects model of analysis of variance. J. Stat. Comput. Simul. 2000, 65, 311–323. [Google Scholar] [CrossRef]
- Wald, A. A note on the analysis of variance with unequal class frequencies. Ann. Math. Stat. 1940, 11, 96–100. [Google Scholar] [CrossRef]
- Thomas, J.D.; Hultquist, R.A. Interval estimation for the unbalanced case of the one-way random effects model. Ann. Stat. 1978, 6, 582–587. [Google Scholar] [CrossRef]
- Park, D.J.; Burdick, R.K. Performance of confidence intervals in regression models with unbalanced one-fold nested error structures. Commun. Stat.-Simul. Comput. 2003, 32, 717–732. [Google Scholar] [CrossRef]
- Li, X.; Li, G. Confidence intervals on sum of variance components with unbalanced designs. Commun. Stat.-Theory Methods 2005, 34, 833–845. [Google Scholar] [CrossRef]
- Fisher, R.A. The fiducial argument in statistical inference. Ann. Eugen. 1935, 6, 391–398. [Google Scholar] [CrossRef]
- Hannig, J.; Iyer, H.; Patterson, P. Fiducial generalized confidence intervals. J. Am. Stat. Assoc. 2006, 101, 254–269. [Google Scholar] [CrossRef]
- Lidong, E.; Hannig, J.; Iyer, H. Fiducial intervals for variance components in an unbalanced two-component normal mixed linear model. J. Am. Stat. Assoc. 2008, 103, 854–865. [Google Scholar]
- Liu, X.; Xu, X.; Hannig, J. Least squares generalized inferences in unbalanced two component normal mixed linear model. Comput. Stat. 2015, 31, 973–988. [Google Scholar] [CrossRef]
- Burch, B.D. Confidence intervals for variance components in unbalanced one-way random effects model using non-normal distributions. J. Stat. Plan. Inference 2011, 141, 3793–3807. [Google Scholar] [CrossRef]
- Liu, X.; Xu, X. Confidence distribution inferences in one-way random effects model. Test 2015, 25, 59–74. [Google Scholar] [CrossRef]
- Li, X.; Li, G. Comparison of confidence intervals on the among group variance in the unbalanced variance component model. J. Stat. Comput. Simul. 2007, 77, 477–486. [Google Scholar] [CrossRef]
- Jiratampradab, A.; Supapakorn, T.; Suntornchost, J. Comparison of confidence intervals for variance components in an unbalanced one-way random effects model. Stat. Transit. New Ser. 2022, 23, 149–160. [Google Scholar] [CrossRef]
- Seber, G.A.; Wild, C.J.B. Nonlinear Regression; John Wiley and Sons: Hoboken, NJ, USA, 2003; pp. 582–587. [Google Scholar]
- Ahrens, H.; Pincus, R. On two measures of unbalancedness in a one-way model and their relation to efficiency. Biom. J. 1981, 23, 227–235. [Google Scholar] [CrossRef]
- Khuri, A.I. Measures of imbalance for unbalanced models. Biom. J. 1987, 29, 383–396. [Google Scholar] [CrossRef]
- Tornqvist, L.; Vartia, P.; Vartia, Y.O. How should relative changes be measured? Am. Stat. 1985, 39, 43–46. [Google Scholar]
- Anionwu, E.; Walford, D.; Brozovic, M.; Kirkwood, B. Sickle-cell disease in a British urban community. Br. Med J. 1981, 282, 283–286. [Google Scholar] [CrossRef]
- Sahai, H.; Ageel, M.I. The Analysis of Variance: Fixed, Random and Mixed Models; Springer Science and Business Media: New York, NY, USA, 2000; p. 121. [Google Scholar]
- Han, J.; Lee, Y. Enhanced laplace approximation. J. Multivar. Anal. 2024, 202, 105321. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments; John Wiley and Sons: Hoboken, NJ, USA, 2017; pp. 133–135. [Google Scholar]
- Sahai, H.; Ojeda, M.M. Analysis of Variance for Random Models, Volume 2: Unbalanced Data: Theory, Methods, Applications, and Data Analysis; Springer Science and Business Media: Boston, UK, 2004; pp. 154–155. [Google Scholar]
- Heiberger, R.M.; Holland, B. Statistical Analysis and Data Display an Intermediate Course with Examples in R; Springer: New York, NY, USA, 2015; p. 215. [Google Scholar]
Case | g | ||
---|---|---|---|
1 | 3 | 1 1 100 | |
2 | 3 | 3 7 20 | |
3 | 3 | 5 10 15 | |
4 | 4 | 4 4 20 20 | |
5 | 4 | 2 2 4 6 | |
6 | 5 | 4 4 4 8 48 | |
7 | 6 | 1 1 1 1 1 100 | |
8 | 6 | 4 5 5 5 8 8 |
Type | Observations | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HbSS | 7.2 | 7.7 | 8 | 8.1 | 8.3 | 8.4 | 8.4 | 8.5 | 8.6 | 8.7 | 9.1 | 9.1 |
9.1 | 9.8 | 10.1 | 10.3 | |||||||||
HbSβ-thal | 8.1 | 9.2 | 10 | 10.4 | 10.6 | 10.9 | 11.1 | 11.9 | 12 | 12.1 | ||
HbSC | 10.7 | 11.3 | 11.5 | 11.6 | 11.7 | 11.8 | 12 | 12.1 | 12.3 | 12.6 | 12.6 | 13.3 |
13.3 | 13.8 | 13.9 |
Method | TG | HK | PB | LL | LXH | IRLF |
---|---|---|---|---|---|---|
Confidence interval | (0, 126.4) | (0, 127.1) | (0, 116.8) | (0, 135) | (0, 112.4) | (0, 83) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiratampradab, A.; Suntornchost, J.; Supapakorn, T. Iteratively Reweighted Least Squares Fiducial Interval for Variance in Unbalanced Variance Components Model. Mathematics 2025, 13, 153. https://doi.org/10.3390/math13010153
Jiratampradab A, Suntornchost J, Supapakorn T. Iteratively Reweighted Least Squares Fiducial Interval for Variance in Unbalanced Variance Components Model. Mathematics. 2025; 13(1):153. https://doi.org/10.3390/math13010153
Chicago/Turabian StyleJiratampradab, Arisa, Jiraphan Suntornchost, and Thidaporn Supapakorn. 2025. "Iteratively Reweighted Least Squares Fiducial Interval for Variance in Unbalanced Variance Components Model" Mathematics 13, no. 1: 153. https://doi.org/10.3390/math13010153
APA StyleJiratampradab, A., Suntornchost, J., & Supapakorn, T. (2025). Iteratively Reweighted Least Squares Fiducial Interval for Variance in Unbalanced Variance Components Model. Mathematics, 13(1), 153. https://doi.org/10.3390/math13010153